summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/distribution_construction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/example/distribution_construction.cpp')
-rw-r--r--src/boost/libs/math/example/distribution_construction.cpp295
1 files changed, 295 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/distribution_construction.cpp b/src/boost/libs/math/example/distribution_construction.cpp
new file mode 100644
index 000000000..a3d1a635d
--- /dev/null
+++ b/src/boost/libs/math/example/distribution_construction.cpp
@@ -0,0 +1,295 @@
+// distribution_construction.cpp
+
+// Copyright Paul A. Bristow 2007, 2010, 2012.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Caution: this file contains Quickbook markup as well as code
+// and comments, don't change any of the special comment markups!
+
+#ifdef _MSC_VER
+# pragma warning (disable : 4996) // disable -D_SCL_SECURE_NO_WARNINGS C++ 'Checked Iterators'
+#endif
+
+#include <iostream>
+#include <exception>
+
+//[distribution_construction_1
+
+/*`
+The structure of distributions is rather different from some other statistical libraries,
+for example, those written in less object-oriented language like FORTRAN and C that
+provide a few arguments to each free function.
+
+Boost.Math library instead provides each distribution as a template C++ class.
+A distribution is constructed with a few arguments, and then
+member and non-member functions are used to find values of the
+distribution, often a function of a random variate.
+
+For this demonstration, first we need some includes to access the
+negative binomial distribution (and the binomial, beta and gamma distributions too).
+
+To demonstrate the use with a high precision User-defined floating-point type
+`cpp_bin_float`, we also need an include from Boost.Multiprecision.
+(We could equally well have used a `cpp_dec_float` multiprecision type).
+
+We choose a typedef `cpp_bin_float_50` to provide a 50 decimal digit type,
+but we could equally have chosen at 128-bit type `cpp_bin_float_quad`,
+or on some platforms `__float128`, providing about 35 decimal digits.
+*/
+
+#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
+ using boost::math::negative_binomial_distribution; // default type is double.
+ using boost::math::negative_binomial; // typedef provides default type is double.
+#include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
+#include <boost/math/distributions/beta.hpp> // for beta_distribution.
+#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
+#include <boost/math/distributions/normal.hpp> // for normal_distribution.
+
+#include <boost/multiprecision/cpp_bin_float.hpp> // for cpp_bin_float_50
+/*`
+Several examples of constructing distributions follow:
+*/
+//] [/distribution_construction_1 end of Quickbook in C++ markup]
+
+int main()
+{
+ try
+ {
+//[distribution_construction_2
+/*`
+First, a negative binomial distribution with 8 successes
+and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
+*/
+ boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
+ /*`
+ But this is inconveniently long, so we might be tempted to write
+ */
+ using namespace boost::math;
+ /*`
+ but this might risk ambiguity with names in `std random` so
+ [*much] better is explicit `using boost::math::` statements, for example:
+ */
+ using boost::math::negative_binomial_distribution;
+ /*`
+ and we can still reduce typing.
+
+ Since the vast majority of applications use will be using `double` precision,
+ the template argument to the distribution (`RealType`) defaults
+ to type `double`, so we can also write:
+ */
+
+ negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`.
+
+ /*`
+ But the name `negative_binomial_distribution` is still inconveniently long,
+ so, for most distributions, a convenience `typedef` is provided, for example:
+
+ typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
+
+ [caution
+ This convenience typedef is [*not provided] if a clash would occur
+ with the name of a function; currently only `beta` and `gamma`
+ fall into this category.
+ ]
+
+ So, after a using statement,
+ */
+
+ using boost::math::negative_binomial;
+
+ /*`
+ we have a convenient typedef to `negative_binomial_distribution<double>`:
+ */
+ negative_binomial mydist(8., 0.25);
+
+ /*`
+ Some more examples using the convenience typedef:
+ */
+ negative_binomial mydist10(5., 0.4); // Both arguments double.
+ /*`
+ And automatic conversion of arguments takes place, so you can use integers and floats:
+ */
+ negative_binomial mydist11(5, 0.4); // Using provided typedef of type double, and int and double arguments.
+ /*`
+ This is probably the most common usage.
+ Other combination are possible too:
+ */
+ negative_binomial mydist12(5., 0.4F); // Double and float arguments.
+ negative_binomial mydist13(5, 1); // Both arguments integer.
+
+ /*`
+ Similarly for most other distributions like the binomial.
+ */
+ binomial mybinomial(1, 0.5); // is more concise than
+ binomial_distribution<> mybinomd1(1, 0.5);
+
+ /*`
+ For cases when the typdef distribution name would clash with a math special function
+ (currently only beta and gamma)
+ the typedef is deliberately not provided, and the longer version of the name
+ must be used, so for example, do not use:
+
+ using boost::math::beta;
+ beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
+
+ Which produces the error messages:
+
+ [pre
+ error C2146: syntax error : missing ';' before identifier 'mybetad0'
+ warning C4551: function call missing argument list
+ error C3861: 'mybetad0': identifier not found
+ ]
+
+ Instead you should use:
+ */
+ using boost::math::beta_distribution;
+ beta_distribution<> mybetad1(1, 0.5);
+ /*`
+ or for the gamma distribution:
+ */
+ gamma_distribution<> mygammad1(1, 0.5);
+
+ /*`
+ We can, of course, still provide the type explicitly thus:
+ */
+
+ // Explicit double precision: both arguments are double:
+ negative_binomial_distribution<double> mydist1(8., 0.25);
+
+ // Explicit float precision, double arguments are truncated to float:
+ negative_binomial_distribution<float> mydist2(8., 0.25);
+
+ // Explicit float precision, integer & double arguments converted to float:
+ negative_binomial_distribution<float> mydist3(8, 0.25);
+
+ // Explicit float precision, float arguments, so no conversion:
+ negative_binomial_distribution<float> mydist4(8.F, 0.25F);
+
+ // Explicit float precision, integer arguments promoted to float.
+ negative_binomial_distribution<float> mydist5(8, 1);
+
+ // Explicit double precision:
+ negative_binomial_distribution<double> mydist6(5., 0.4);
+
+ // Explicit long double precision:
+ negative_binomial_distribution<long double> mydist7(8., 0.25);
+
+ /*`
+ And you can use your own template RealType,
+ for example, `boost::math::cpp_bin_float_50` (an arbitrary 50 decimal digits precision type),
+ then we can write:
+ */
+ using namespace boost::multiprecision;
+ negative_binomial_distribution<cpp_bin_float_50> mydist8(8, 0.25);
+
+ // `integer` arguments are promoted to your RealType exactly, but
+ // `double` argument are converted to RealType,
+ // most likely losing precision!
+
+ // So DON'T be tempted to write the 'obvious':
+ negative_binomial_distribution<cpp_bin_float_50> mydist20(8, 0.23456789012345678901234567890);
+ // to avoid truncation of second parameter to `0.2345678901234567` and loss of precision.
+
+ // Instead pass a quoted decimal digit string:
+ negative_binomial_distribution<cpp_bin_float_50> mydist21(8, cpp_bin_float_50("0.23456789012345678901234567890") );
+
+ // Ensure that all potentially significant digits are shown.
+ std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
+ //
+ cpp_bin_float_50 x("1.23456789012345678901234567890");
+ std::cout << pdf(mydist8, x) << std::endl;
+/*` showing 0.00012630010495970320103876754721976419438231705359935
+ 0.00012630010495970320103876754721976419438231528547467
+
+[warning When using multiprecision, it is all too easy to get accidental truncation!]
+
+For example, if you write
+*/
+ std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;
+/*`
+showing 0.00012630010495970318465064569310967179576805651692929,
+which is wrong at about the 17th decimal digit!
+
+This is because the value provided is truncated to a `double`, effectively
+ `double x = 1.23456789012345678901234567890;`
+
+Then the now `double x` is passed to function `pdf`,
+and this truncated `double` value is finally promoted to `cpp_bin_float_50`.
+
+Another way of quietly getting the wrong answer is to write:
+*/
+ std::cout << pdf(mydist8, cpp_bin_float_50(1.23456789012345678901234567890)) << std::endl;
+/*`
+A correct way from a multi-digit string value is
+*/
+ std::cout << pdf(mydist8, cpp_bin_float_50("1.23456789012345678901234567890")) << std::endl;
+/*`
+
+[tip Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.]
+*/
+
+/*`
+[h4 Default arguments to distribution constructors.]
+
+Note that default constructor arguments are only provided for some distributions.
+So if you wrongly assume a default argument, you will get an error message, for example:
+
+ negative_binomial_distribution<> mydist8;
+
+[pre error C2512 no appropriate default constructor available.]
+
+No default constructors are provided for the `negative binomial` distribution,
+because it is difficult to chose any sensible default values for this distribution.
+
+For other distributions, like the normal distribution,
+it is obviously very useful to provide 'standard'
+defaults for the mean (zero) and standard deviation (unity) thus:
+
+ normal_distribution(RealType mean = 0, RealType sd = 1);
+
+So in this case we can more tersely write:
+*/
+ using boost::math::normal;
+
+ normal norm1; // Standard normal distribution N[0,1].
+ normal norm2(2); // Mean = 2, std deviation = 1.
+ normal norm3(2, 3); // Mean = 2, std deviation = 3.
+
+ }
+ catch(std::exception &ex)
+ {
+ std::cout << ex.what() << std::endl;
+ }
+
+ return 0;
+} // int main()
+
+/*`There is no useful output from this demonstration program, of course. */
+
+//] [/end of distribution_construction_2]
+
+/*
+//[distribution_construction_output
+
+ 0.00012630010495970320103876754721976419438231705359935
+ 0.00012630010495970318465064569310967179576805651692929
+ 0.00012630010495970318465064569310967179576805651692929
+ 0.00012630010495970320103876754721976419438231705359935
+
+//] [/distribution_construction_output]
+
+
+ 0.00012630010495970320103876754721976419438231528547467
+ 0.0001263001049597031846506456931096717957680547488046
+ 0.0001263001049597031846506456931096717957680547488046
+ 0.00012630010495970320103876754721976419438231528547467
+
+
+*/
+
+
+