summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/bivariate_statistics_test.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/test/bivariate_statistics_test.cpp')
-rw-r--r--src/boost/libs/math/test/bivariate_statistics_test.cpp170
1 files changed, 170 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/bivariate_statistics_test.cpp b/src/boost/libs/math/test/bivariate_statistics_test.cpp
new file mode 100644
index 000000000..82feeb727
--- /dev/null
+++ b/src/boost/libs/math/test/bivariate_statistics_test.cpp
@@ -0,0 +1,170 @@
+/*
+ * (C) Copyright Nick Thompson 2018.
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0. (See accompanying file
+ * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#include <iostream>
+#include <iomanip>
+#include <vector>
+#include <array>
+#include <forward_list>
+#include <algorithm>
+#include <random>
+#include <boost/core/lightweight_test.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/statistics/univariate_statistics.hpp>
+#include <boost/math/statistics/bivariate_statistics.hpp>
+#include <boost/multiprecision/cpp_bin_float.hpp>
+#include <boost/multiprecision/cpp_complex.hpp>
+
+using boost::multiprecision::cpp_bin_float_50;
+using boost::multiprecision::cpp_complex_50;
+
+/*
+ * Test checklist:
+ * 1) Does it work with multiprecision?
+ * 2) Does it work with .cbegin()/.cend() if the data is not altered?
+ * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
+ * 4) Does it work with std::forward_list if a forward iterator is all that is required?
+ * 5) Does it work with complex data if complex data is sensible?
+ */
+
+using boost::math::statistics::means_and_covariance;
+using boost::math::statistics::covariance;
+
+template<class Real>
+void test_covariance()
+{
+ std::cout << std::setprecision(std::numeric_limits<Real>::digits10+1);
+ Real tol = std::numeric_limits<Real>::epsilon();
+ using std::abs;
+
+ // Covariance of a single thing is zero:
+ std::array<Real, 1> u1{8};
+ std::array<Real, 1> v1{17};
+ auto [mu_u1, mu_v1, cov1] = means_and_covariance(u1, v1);
+
+ BOOST_TEST(abs(cov1) < tol);
+ BOOST_TEST(abs(mu_u1 - 8) < tol);
+ BOOST_TEST(abs(mu_v1 - 17) < tol);
+
+
+ std::array<Real, 2> u2{8, 4};
+ std::array<Real, 2> v2{3, 7};
+ auto [mu_u2, mu_v2, cov2] = means_and_covariance(u2, v2);
+
+ BOOST_TEST(abs(cov2+4) < tol);
+ BOOST_TEST(abs(mu_u2 - 6) < tol);
+ BOOST_TEST(abs(mu_v2 - 5) < tol);
+
+ std::vector<Real> u3{1,2,3};
+ std::vector<Real> v3{1,1,1};
+
+ auto [mu_u3, mu_v3, cov3] = means_and_covariance(u3, v3);
+
+ // Since v is constant, covariance(u,v) = 0 against everything any u:
+ BOOST_TEST(abs(cov3) < tol);
+ BOOST_TEST(abs(mu_u3 - 2) < tol);
+ BOOST_TEST(abs(mu_v3 - 1) < tol);
+ // Make sure we pull the correct symbol out of means_and_covariance:
+ cov3 = covariance(u3, v3);
+ BOOST_TEST(abs(cov3) < tol);
+
+ cov3 = covariance(v3, u3);
+ // Covariance is symmetric: cov(u,v) = cov(v,u)
+ BOOST_TEST(abs(cov3) < tol);
+
+ // cov(u,u) = sigma(u)^2:
+ cov3 = covariance(u3, u3);
+ Real expected = Real(2)/Real(3);
+
+ BOOST_TEST(abs(cov3 - expected) < tol);
+
+ std::mt19937 gen(15);
+ // Can't template standard library on multiprecision, so use double and cast back:
+ std::uniform_real_distribution<double> dis(-1.0, 1.0);
+ std::vector<Real> u(500);
+ std::vector<Real> v(500);
+ for(size_t i = 0; i < u.size(); ++i)
+ {
+ u[i] = (Real) dis(gen);
+ v[i] = (Real) dis(gen);
+ }
+
+ Real mu_u = boost::math::statistics::mean(u);
+ Real mu_v = boost::math::statistics::mean(v);
+ Real sigma_u_sq = boost::math::statistics::variance(u);
+ Real sigma_v_sq = boost::math::statistics::variance(v);
+
+ auto [mu_u_, mu_v_, cov_uv] = means_and_covariance(u, v);
+ BOOST_TEST(abs(mu_u - mu_u_) < tol);
+ BOOST_TEST(abs(mu_v - mu_v_) < tol);
+
+ // Cauchy-Schwartz inequality:
+ BOOST_TEST(cov_uv*cov_uv <= sigma_u_sq*sigma_v_sq);
+ // cov(X, X) = sigma(X)^2:
+ Real cov_uu = covariance(u, u);
+ BOOST_TEST(abs(cov_uu - sigma_u_sq) < tol);
+ Real cov_vv = covariance(v, v);
+ BOOST_TEST(abs(cov_vv - sigma_v_sq) < tol);
+
+}
+
+template<class Real>
+void test_correlation_coefficient()
+{
+ using boost::math::statistics::correlation_coefficient;
+
+ Real tol = std::numeric_limits<Real>::epsilon();
+ std::vector<Real> u{1};
+ std::vector<Real> v{1};
+ Real rho_uv = correlation_coefficient(u, v);
+ BOOST_TEST(abs(rho_uv - 1) < tol);
+
+ u = {1,1};
+ v = {1,1};
+ rho_uv = correlation_coefficient(u, v);
+ BOOST_TEST(abs(rho_uv - 1) < tol);
+
+ u = {1, 2, 3};
+ v = {1, 2, 3};
+ rho_uv = correlation_coefficient(u, v);
+ BOOST_TEST(abs(rho_uv - 1) < tol);
+
+ u = {1, 2, 3};
+ v = {-1, -2, -3};
+ rho_uv = correlation_coefficient(u, v);
+ BOOST_TEST(abs(rho_uv + 1) < tol);
+
+ rho_uv = correlation_coefficient(v, u);
+ BOOST_TEST(abs(rho_uv + 1) < tol);
+
+ u = {1, 2, 3};
+ v = {0, 0, 0};
+ rho_uv = correlation_coefficient(v, u);
+ BOOST_TEST(abs(rho_uv) < tol);
+
+ u = {1, 2, 3};
+ v = {0, 0, 3};
+ rho_uv = correlation_coefficient(v, u);
+ // mu_u = 2, sigma_u^2 = 2/3, mu_v = 1, sigma_v^2 = 2, cov(u,v) = 1.
+ BOOST_TEST(abs(rho_uv - sqrt(Real(3))/Real(2)) < tol);
+}
+
+int main()
+{
+ test_covariance<float>();
+ test_covariance<double>();
+ test_covariance<long double>();
+ test_covariance<cpp_bin_float_50>();
+
+ test_correlation_coefficient<float>();
+ test_correlation_coefficient<double>();
+ test_correlation_coefficient<long double>();
+ test_correlation_coefficient<cpp_bin_float_50>();
+
+ return boost::report_errors();
+}