diff options
Diffstat (limited to 'src/boost/libs/math/test/gauss_quadrature_test.cpp')
-rw-r--r-- | src/boost/libs/math/test/gauss_quadrature_test.cpp | 519 |
1 files changed, 519 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/gauss_quadrature_test.cpp b/src/boost/libs/math/test/gauss_quadrature_test.cpp new file mode 100644 index 000000000..b8b7f3b72 --- /dev/null +++ b/src/boost/libs/math/test/gauss_quadrature_test.cpp @@ -0,0 +1,519 @@ +// Copyright Nick Thompson, 2017 +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +#define BOOST_TEST_MODULE tanh_sinh_quadrature_test + +#include <complex> +//#include <boost/multiprecision/mpc.hpp> +#include <boost/config.hpp> +#include <boost/detail/workaround.hpp> + +#if !defined(BOOST_NO_CXX11_DECLTYPE) && !defined(BOOST_NO_CXX11_TRAILING_RESULT_TYPES) && !defined(BOOST_NO_SFINAE_EXPR) + +#include <boost/math/concepts/real_concept.hpp> +#include <boost/test/included/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/quadrature/gauss.hpp> +#include <boost/math/special_functions/sinc.hpp> +#include <boost/multiprecision/cpp_bin_float.hpp> +#include <boost/multiprecision/cpp_complex.hpp> + +#ifdef BOOST_HAS_FLOAT128 +#include <boost/multiprecision/complex128.hpp> +#endif + +#ifdef _MSC_VER +#pragma warning(disable:4127) // Conditional expression is constant +#endif + +#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3) +# define TEST1 +# define TEST2 +# define TEST3 +#endif + +using std::expm1; +using std::atan; +using std::tan; +using std::log; +using std::log1p; +using std::asinh; +using std::atanh; +using std::sqrt; +using std::isnormal; +using std::abs; +using std::sinh; +using std::tanh; +using std::cosh; +using std::pow; +using std::exp; +using std::sin; +using std::cos; +using std::string; +using boost::math::quadrature::gauss; +using boost::math::constants::pi; +using boost::math::constants::half_pi; +using boost::math::constants::two_div_pi; +using boost::math::constants::two_pi; +using boost::math::constants::half; +using boost::math::constants::third; +using boost::math::constants::half; +using boost::math::constants::third; +using boost::math::constants::catalan; +using boost::math::constants::ln_two; +using boost::math::constants::root_two; +using boost::math::constants::root_two_pi; +using boost::math::constants::root_pi; +using boost::multiprecision::cpp_bin_float_quad; + +// +// Error rates depend only on the number of points in the approximation, not the type being tested, +// define all our expected errors here: +// + +enum +{ + test_ca_error_id, + test_ca_error_id_2, + test_three_quad_error_id, + test_three_quad_error_id_2, + test_integration_over_real_line_error_id, + test_right_limit_infinite_error_id, + test_left_limit_infinite_error_id +}; + +template <unsigned Points> +double expected_error(unsigned) +{ + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<7>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 1e-7; + case test_ca_error_id_2: + return 2e-5; + case test_three_quad_error_id: + return 1e-8; + case test_three_quad_error_id_2: + return 3.5e-3; + case test_integration_over_real_line_error_id: + return 6e-3; + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 1e-5; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<9>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 1e-7; + case test_ca_error_id_2: + return 2e-5; + case test_three_quad_error_id: + return 1e-8; + case test_three_quad_error_id_2: + return 3.5e-3; + case test_integration_over_real_line_error_id: + return 6e-3; + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 1e-5; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<10>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 1e-12; + case test_ca_error_id_2: + return 3e-6; + case test_three_quad_error_id: + return 2e-13; + case test_three_quad_error_id_2: + return 2e-3; + case test_integration_over_real_line_error_id: + return 6e-3; // doesn't get any better with more points! + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 5e-8; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<15>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 6e-20; + case test_ca_error_id_2: + return 3e-7; + case test_three_quad_error_id: + return 1e-19; + case test_three_quad_error_id_2: + return 6e-4; + case test_integration_over_real_line_error_id: + return 6e-3; // doesn't get any better with more points! + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 5e-11; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<20>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 1e-26; + case test_ca_error_id_2: + return 1e-7; + case test_three_quad_error_id: + return 3e-27; + case test_three_quad_error_id_2: + return 3e-4; + case test_integration_over_real_line_error_id: + return 5e-5; // doesn't get any better with more points! + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 1e-15; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<25>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 5e-33; + case test_ca_error_id_2: + return 1e-8; + case test_three_quad_error_id: + return 1e-32; + case test_three_quad_error_id_2: + return 3e-4; + case test_integration_over_real_line_error_id: + return 1e-14; + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 3e-19; + } + return 0; // placeholder, all tests will fail +} + +template <> +double expected_error<30>(unsigned id) +{ + switch (id) + { + case test_ca_error_id: + return 2e-34; + case test_ca_error_id_2: + return 5e-9; + case test_three_quad_error_id: + return 4e-34; + case test_three_quad_error_id_2: + return 1e-4; + case test_integration_over_real_line_error_id: + return 1e-16; + case test_right_limit_infinite_error_id: + case test_left_limit_infinite_error_id: + return 3e-23; + } + return 0; // placeholder, all tests will fail +} + + +template<class Real, unsigned Points> +void test_linear() +{ + std::cout << "Testing linear functions are integrated properly by gauss on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = boost::math::tools::epsilon<Real>() * 10; + auto f = [](const Real& x) + { + return 5*x + 7; + }; + Real L1; + Real Q = gauss<Real, Points>::integrate(f, (Real) 0, (Real) 1, &L1); + BOOST_CHECK_CLOSE_FRACTION(Q, 9.5, tol); + BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol); + Q = gauss<Real, Points>::integrate(f, (Real) 0, (Real) 0, &L1); + BOOST_CHECK_CLOSE(Q, 0, tol); + Q = gauss<Real, Points>::integrate(f, (Real) 1, (Real) 0, &L1); + BOOST_CHECK_CLOSE_FRACTION(Q, -9.5, tol); +} + +template<class Real, unsigned Points> +void test_quadratic() +{ + std::cout << "Testing quadratic functions are integrated properly by Gaussian quadrature on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = boost::math::tools::epsilon<Real>() * 10; + + auto f = [](const Real& x) { return 5*x*x + 7*x + 12; }; + Real L1; + Real Q = gauss<Real, Points>::integrate(f, 0, 1, &L1); + BOOST_CHECK_CLOSE_FRACTION(Q, (Real) 17 + half<Real>()*third<Real>(), tol); + BOOST_CHECK_CLOSE_FRACTION(L1, (Real) 17 + half<Real>()*third<Real>(), tol); +} + +// Examples taken from +//http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf +template<class Real, unsigned Points> +void test_ca() +{ + std::cout << "Testing integration of C(a) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = expected_error<Points>(test_ca_error_id); + Real L1; + + auto f1 = [](const Real& x) { return atan(x)/(x*(x*x + 1)) ; }; + Real Q = gauss<Real, Points>::integrate(f1, 0, 1, &L1); + Real Q_expected = pi<Real>()*ln_two<Real>()/8 + catalan<Real>()*half<Real>(); + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol); + + auto f2 = [](Real x)->Real { Real t0 = x*x + 1; Real t1 = sqrt(t0); return atan(t1)/(t0*t1); }; + Q = gauss<Real, Points>::integrate(f2, 0 , 1, &L1); + Q_expected = pi<Real>()/4 - pi<Real>()/root_two<Real>() + 3*atan(root_two<Real>())/root_two<Real>(); + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol); + + tol = expected_error<Points>(test_ca_error_id_2); + auto f5 = [](Real t)->Real { return t*t*log(t)/((t*t - 1)*(t*t*t*t + 1)); }; + Q = gauss<Real, Points>::integrate(f5, 0 , 1); + Q_expected = pi<Real>()*pi<Real>()*(2 - root_two<Real>())/32; + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); +} + +template<class Real, unsigned Points> +void test_three_quadrature_schemes_examples() +{ + std::cout << "Testing integral in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = expected_error<Points>(test_three_quad_error_id); + Real Q; + Real Q_expected; + + // Example 1: + auto f1 = [](const Real& t) { return t*boost::math::log1p(t); }; + Q = gauss<Real, Points>::integrate(f1, 0 , 1); + Q_expected = half<Real>()*half<Real>(); + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + + + // Example 2: + auto f2 = [](const Real& t) { return t*t*atan(t); }; + Q = gauss<Real, Points>::integrate(f2, 0 , 1); + Q_expected = (pi<Real>() -2 + 2*ln_two<Real>())/12; + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, 2 * tol); + + // Example 3: + auto f3 = [](const Real& t) { return exp(t)*cos(t); }; + Q = gauss<Real, Points>::integrate(f3, 0, half_pi<Real>()); + Q_expected = boost::math::expm1(half_pi<Real>())*half<Real>(); + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + + // Example 4: + auto f4 = [](Real x)->Real { Real t0 = sqrt(x*x + 2); return atan(t0)/(t0*(x*x+1)); }; + Q = gauss<Real, Points>::integrate(f4, 0 , 1); + Q_expected = 5*pi<Real>()*pi<Real>()/96; + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + + tol = expected_error<Points>(test_three_quad_error_id_2); + // Example 5: + auto f5 = [](const Real& t) { return sqrt(t)*log(t); }; + Q = gauss<Real, Points>::integrate(f5, 0 , 1); + Q_expected = -4/ (Real) 9; + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + + // Example 6: + auto f6 = [](const Real& t) { return sqrt(1 - t*t); }; + Q = gauss<Real, Points>::integrate(f6, 0 , 1); + Q_expected = pi<Real>()/4; + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); +} + + +template<class Real, unsigned Points> +void test_integration_over_real_line() +{ + std::cout << "Testing integrals over entire real line in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = expected_error<Points>(test_integration_over_real_line_error_id); + Real Q; + Real Q_expected; + Real L1; + + auto f1 = [](const Real& t) { return 1/(1+t*t);}; + Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), boost::math::tools::max_value<Real>(), &L1); + Q_expected = pi<Real>(); + BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol); + BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol); +} + +template<class Real, unsigned Points> +void test_right_limit_infinite() +{ + std::cout << "Testing right limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = expected_error<Points>(test_right_limit_infinite_error_id); + Real Q; + Real Q_expected; + Real L1; + + // Example 11: + auto f1 = [](const Real& t) { return 1/(1+t*t);}; + Q = gauss<Real, Points>::integrate(f1, 0, boost::math::tools::max_value<Real>(), &L1); + Q_expected = half_pi<Real>(); + BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol); + + auto f4 = [](const Real& t) { return 1/(1+t*t); }; + Q = gauss<Real, Points>::integrate(f4, 1, boost::math::tools::max_value<Real>(), &L1); + Q_expected = pi<Real>()/4; + BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol); +} + +template<class Real, unsigned Points> +void test_left_limit_infinite() +{ + std::cout << "Testing left limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + Real tol = expected_error<Points>(test_left_limit_infinite_error_id); + Real Q; + Real Q_expected; + + // Example 11: + auto f1 = [](const Real& t) { return 1/(1+t*t);}; + Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), Real(0)); + Q_expected = half_pi<Real>(); + BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol); +} + +template<class Complex> +void test_complex_lambert_w() +{ + std::cout << "Testing that complex-valued integrands are integrated correctly by Gaussian quadrature on type " << boost::typeindex::type_id<Complex>().pretty_name() << "\n"; + typedef typename Complex::value_type Real; + Real tol = 10e-9; + using boost::math::constants::pi; + Complex z{2, 3}; + auto lw = [&z](Real v)->Complex { + using std::cos; + using std::sin; + using std::exp; + Real sinv = sin(v); + Real cosv = cos(v); + + Real cotv = cosv/sinv; + Real cscv = 1/sinv; + Real t = (1-v*cotv)*(1-v*cotv) + v*v; + Real x = v*cscv*exp(-v*cotv); + Complex den = z + x; + Complex num = t*(z/pi<Real>()); + Complex res = num/den; + return res; + }; + + //N[ProductLog[2+3*I], 150] + Complex Q = gauss<Real, 30>::integrate(lw, (Real) 0, pi<Real>()); + BOOST_CHECK_CLOSE_FRACTION(Q.real(), boost::lexical_cast<Real>("1.09007653448579084630177782678166964987102108635357778056449870727913321296238687023915522935120701763447787503167111962008709116746523970476893277703"), tol); + BOOST_CHECK_CLOSE_FRACTION(Q.imag(), boost::lexical_cast<Real>("0.530139720774838801426860213574121741928705631382703178297940568794784362495390544411799468140433404536019992695815009036975117285537382995180319280835"), tol); +} + +BOOST_AUTO_TEST_CASE(gauss_quadrature_test) +{ + +#ifdef TEST1 + test_linear<double, 7>(); + test_quadratic<double, 7>(); + test_ca<double, 7>(); + test_three_quadrature_schemes_examples<double, 7>(); + test_integration_over_real_line<double, 7>(); + test_right_limit_infinite<double, 7>(); + test_left_limit_infinite<double, 7>(); + + test_linear<double, 9>(); + test_quadratic<double, 9>(); + test_ca<double, 9>(); + test_three_quadrature_schemes_examples<double, 9>(); + test_integration_over_real_line<double, 9>(); + test_right_limit_infinite<double, 9>(); + test_left_limit_infinite<double, 9>(); + + test_linear<cpp_bin_float_quad, 10>(); + test_quadratic<cpp_bin_float_quad, 10>(); + test_ca<cpp_bin_float_quad, 10>(); + test_three_quadrature_schemes_examples<cpp_bin_float_quad, 10>(); + test_integration_over_real_line<cpp_bin_float_quad, 10>(); + test_right_limit_infinite<cpp_bin_float_quad, 10>(); + test_left_limit_infinite<cpp_bin_float_quad, 10>(); +#endif +#ifdef TEST2 + test_linear<cpp_bin_float_quad, 15>(); + test_quadratic<cpp_bin_float_quad, 15>(); + test_ca<cpp_bin_float_quad, 15>(); + test_three_quadrature_schemes_examples<cpp_bin_float_quad, 15>(); + test_integration_over_real_line<cpp_bin_float_quad, 15>(); + test_right_limit_infinite<cpp_bin_float_quad, 15>(); + test_left_limit_infinite<cpp_bin_float_quad, 15>(); + + test_linear<cpp_bin_float_quad, 20>(); + test_quadratic<cpp_bin_float_quad, 20>(); + test_ca<cpp_bin_float_quad, 20>(); + test_three_quadrature_schemes_examples<cpp_bin_float_quad, 20>(); + test_integration_over_real_line<cpp_bin_float_quad, 20>(); + test_right_limit_infinite<cpp_bin_float_quad, 20>(); + test_left_limit_infinite<cpp_bin_float_quad, 20>(); + + test_linear<cpp_bin_float_quad, 25>(); + test_quadratic<cpp_bin_float_quad, 25>(); + test_ca<cpp_bin_float_quad, 25>(); + test_three_quadrature_schemes_examples<cpp_bin_float_quad, 25>(); + test_integration_over_real_line<cpp_bin_float_quad, 25>(); + test_right_limit_infinite<cpp_bin_float_quad, 25>(); + test_left_limit_infinite<cpp_bin_float_quad, 25>(); + + test_linear<cpp_bin_float_quad, 30>(); + test_quadratic<cpp_bin_float_quad, 30>(); + test_ca<cpp_bin_float_quad, 30>(); + test_three_quadrature_schemes_examples<cpp_bin_float_quad, 30>(); + test_integration_over_real_line<cpp_bin_float_quad, 30>(); + test_right_limit_infinite<cpp_bin_float_quad, 30>(); + test_left_limit_infinite<cpp_bin_float_quad, 30>(); + + +#endif +#ifdef TEST3 + test_left_limit_infinite<cpp_bin_float_quad, 30>(); + test_complex_lambert_w<std::complex<double>>(); + test_complex_lambert_w<std::complex<long double>>(); +#ifdef BOOST_HAS_FLOAT128 + test_left_limit_infinite<boost::multiprecision::float128, 30>(); + test_complex_lambert_w<boost::multiprecision::complex128>(); +#endif + test_complex_lambert_w<boost::multiprecision::cpp_complex_quad>(); +#endif +} + +#else + +int main() { return 0; } + +#endif |