summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/python/example/numpy/wrap.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/python/example/numpy/wrap.cpp')
-rw-r--r--src/boost/libs/python/example/numpy/wrap.cpp135
1 files changed, 135 insertions, 0 deletions
diff --git a/src/boost/libs/python/example/numpy/wrap.cpp b/src/boost/libs/python/example/numpy/wrap.cpp
new file mode 100644
index 000000000..33f71c85a
--- /dev/null
+++ b/src/boost/libs/python/example/numpy/wrap.cpp
@@ -0,0 +1,135 @@
+// Copyright Jim Bosch 2011-2012.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+/**
+ * A simple example showing how to wrap a couple of C++ functions that
+ * operate on 2-d arrays into Python functions that take NumPy arrays
+ * as arguments.
+ *
+ * If you find have a lot of such functions to wrap, you may want to
+ * create a C++ array type (or use one of the many existing C++ array
+ * libraries) that maps well to NumPy arrays and create Boost.Python
+ * converters. There's more work up front than the approach here,
+ * but much less boilerplate per function. See the "Gaussian" example
+ * included with Boost.NumPy for an example of custom converters, or
+ * take a look at the "ndarray" project on GitHub for a more complete,
+ * high-level solution.
+ *
+ * Note that we're using embedded Python here only to make a convenient
+ * self-contained example; you could just as easily put the wrappers
+ * in a regular C++-compiled module and imported them in regular
+ * Python. Again, see the Gaussian demo for an example.
+ */
+
+#include <boost/python/numpy.hpp>
+#include <boost/scoped_array.hpp>
+#include <iostream>
+
+namespace p = boost::python;
+namespace np = boost::python::numpy;
+
+// This is roughly the most efficient way to write a C/C++ function that operates
+// on a 2-d NumPy array - operate directly on the array by incrementing a pointer
+// with the strides.
+void fill1(double * array, int rows, int cols, int row_stride, int col_stride) {
+ double * row_iter = array;
+ double n = 0.0; // just a counter we'll fill the array with.
+ for (int i = 0; i < rows; ++i, row_iter += row_stride) {
+ double * col_iter = row_iter;
+ for (int j = 0; j < cols; ++j, col_iter += col_stride) {
+ *col_iter = ++n;
+ }
+ }
+}
+
+// Here's a simple wrapper function for fill1. It requires that the passed
+// NumPy array be exactly what we're looking for - no conversion from nested
+// sequences or arrays with other data types, because we want to modify it
+// in-place.
+void wrap_fill1(np::ndarray const & array) {
+ if (array.get_dtype() != np::dtype::get_builtin<double>()) {
+ PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
+ p::throw_error_already_set();
+ }
+ if (array.get_nd() != 2) {
+ PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
+ p::throw_error_already_set();
+ }
+ fill1(reinterpret_cast<double*>(array.get_data()),
+ array.shape(0), array.shape(1),
+ array.strides(0) / sizeof(double), array.strides(1) / sizeof(double));
+}
+
+// Another fill function that takes a double**. This is less efficient, because
+// it's not the native NumPy data layout, but it's common enough in C/C++ that
+// it's worth its own example. This time we don't pass the strides, and instead
+// in wrap_fill2 we'll require the C_CONTIGUOUS bitflag, which guarantees that
+// the column stride is 1 and the row stride is the number of columns. That
+// restricts the arrays that can be passed to fill2 (it won't work on most
+// subarray views or transposes, for instance).
+void fill2(double ** array, int rows, int cols) {
+ double n = 0.0; // just a counter we'll fill the array with.
+ for (int i = 0; i < rows; ++i) {
+ for (int j = 0; j < cols; ++j) {
+ array[i][j] = ++n;
+ }
+ }
+}
+// Here's the wrapper for fill2; it's a little more complicated because we need
+// to check the flags and create the array of pointers.
+void wrap_fill2(np::ndarray const & array) {
+ if (array.get_dtype() != np::dtype::get_builtin<double>()) {
+ PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
+ p::throw_error_already_set();
+ }
+ if (array.get_nd() != 2) {
+ PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
+ p::throw_error_already_set();
+ }
+ if (!(array.get_flags() & np::ndarray::C_CONTIGUOUS)) {
+ PyErr_SetString(PyExc_TypeError, "Array must be row-major contiguous");
+ p::throw_error_already_set();
+ }
+ double * iter = reinterpret_cast<double*>(array.get_data());
+ int rows = array.shape(0);
+ int cols = array.shape(1);
+ boost::scoped_array<double*> ptrs(new double*[rows]);
+ for (int i = 0; i < rows; ++i, iter += cols) {
+ ptrs[i] = iter;
+ }
+ fill2(ptrs.get(), array.shape(0), array.shape(1));
+}
+
+BOOST_PYTHON_MODULE(example) {
+ np::initialize(); // have to put this in any module that uses Boost.NumPy
+ p::def("fill1", wrap_fill1);
+ p::def("fill2", wrap_fill2);
+}
+
+int main(int argc, char **argv)
+{
+ // This line makes our module available to the embedded Python intepreter.
+# if PY_VERSION_HEX >= 0x03000000
+ PyImport_AppendInittab("example", &PyInit_example);
+# else
+ PyImport_AppendInittab("example", &initexample);
+# endif
+ // Initialize the Python runtime.
+ Py_Initialize();
+
+ PyRun_SimpleString(
+ "import example\n"
+ "import numpy\n"
+ "z1 = numpy.zeros((5,6), dtype=float)\n"
+ "z2 = numpy.zeros((4,3), dtype=float)\n"
+ "example.fill1(z1)\n"
+ "example.fill2(z2)\n"
+ "print z1\n"
+ "print z2\n"
+ );
+ Py_Finalize();
+}
+
+