summaryrefslogtreecommitdiffstats
path: root/src/isa-l/crc/crc32_gzip_refl_by8_02.asm
diff options
context:
space:
mode:
Diffstat (limited to 'src/isa-l/crc/crc32_gzip_refl_by8_02.asm')
-rw-r--r--src/isa-l/crc/crc32_gzip_refl_by8_02.asm555
1 files changed, 555 insertions, 0 deletions
diff --git a/src/isa-l/crc/crc32_gzip_refl_by8_02.asm b/src/isa-l/crc/crc32_gzip_refl_by8_02.asm
new file mode 100644
index 000000000..80d849e40
--- /dev/null
+++ b/src/isa-l/crc/crc32_gzip_refl_by8_02.asm
@@ -0,0 +1,555 @@
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
+;
+; Redistribution and use in source and binary forms, with or without
+; modification, are permitted provided that the following conditions
+; are met:
+; * Redistributions of source code must retain the above copyright
+; notice, this list of conditions and the following disclaimer.
+; * Redistributions in binary form must reproduce the above copyright
+; notice, this list of conditions and the following disclaimer in
+; the documentation and/or other materials provided with the
+; distribution.
+; * Neither the name of Intel Corporation nor the names of its
+; contributors may be used to endorse or promote products derived
+; from this software without specific prior written permission.
+;
+; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Function API:
+; UINT32 crc32_gzip_refl_by8_02(
+; UINT32 init_crc, //initial CRC value, 32 bits
+; const unsigned char *buf, //buffer pointer to calculate CRC on
+; UINT64 len //buffer length in bytes (64-bit data)
+; );
+;
+; Authors:
+; Erdinc Ozturk
+; Vinodh Gopal
+; James Guilford
+;
+; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
+; URL: http://download.intel.com/design/intarch/papers/323102.pdf
+;
+;
+; sample yasm command line:
+; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8
+;
+; As explained here:
+; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
+; CRC-32 checksum is described in RFC 1952
+; Implementing RFC 1952 CRC:
+; http://www.ietf.org/rfc/rfc1952.txt
+
+%include "reg_sizes.asm"
+
+%define fetch_dist 1024
+
+[bits 64]
+default rel
+
+section .text
+
+
+%ifidn __OUTPUT_FORMAT__, win64
+ %xdefine arg1 rcx
+ %xdefine arg2 rdx
+ %xdefine arg3 r8
+
+ %xdefine arg1_low32 ecx
+%else
+ %xdefine arg1 rdi
+ %xdefine arg2 rsi
+ %xdefine arg3 rdx
+
+ %xdefine arg1_low32 edi
+%endif
+
+%define TMP 16*0
+%ifidn __OUTPUT_FORMAT__, win64
+ %define XMM_SAVE 16*2
+ %define VARIABLE_OFFSET 16*10+8
+%else
+ %define VARIABLE_OFFSET 16*2+8
+%endif
+
+align 16
+global crc32_gzip_refl_by8_02:ISAL_SYM_TYPE_FUNCTION
+crc32_gzip_refl_by8_02:
+ not arg1_low32
+ sub rsp, VARIABLE_OFFSET
+
+%ifidn __OUTPUT_FORMAT__, win64
+ ; push the xmm registers into the stack to maintain
+ vmovdqa [rsp + XMM_SAVE + 16*0], xmm6
+ vmovdqa [rsp + XMM_SAVE + 16*1], xmm7
+ vmovdqa [rsp + XMM_SAVE + 16*2], xmm8
+ vmovdqa [rsp + XMM_SAVE + 16*3], xmm9
+ vmovdqa [rsp + XMM_SAVE + 16*4], xmm10
+ vmovdqa [rsp + XMM_SAVE + 16*5], xmm11
+ vmovdqa [rsp + XMM_SAVE + 16*6], xmm12
+ vmovdqa [rsp + XMM_SAVE + 16*7], xmm13
+%endif
+
+ ; check if smaller than 256B
+ cmp arg3, 256
+ jl .less_than_256
+
+ ; load the initial crc value
+ vmovd xmm10, arg1_low32 ; initial crc
+
+ ; receive the initial 64B data, xor the initial crc value
+ vmovdqu xmm0, [arg2+16*0]
+ vmovdqu xmm1, [arg2+16*1]
+ vmovdqu xmm2, [arg2+16*2]
+ vmovdqu xmm3, [arg2+16*3]
+ vmovdqu xmm4, [arg2+16*4]
+ vmovdqu xmm5, [arg2+16*5]
+ vmovdqu xmm6, [arg2+16*6]
+ vmovdqu xmm7, [arg2+16*7]
+
+ ; XOR the initial_crc value
+ vpxor xmm0, xmm10
+ vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4
+ ;imm value of pclmulqdq instruction will determine which constant to use
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ; we subtract 256 instead of 128 to save one instruction from the loop
+ sub arg3, 256
+
+ ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
+ ; loop will fold 128B at a time until we have 128+y Bytes of buffer
+
+ ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
+.fold_128_B_loop:
+ add arg2, 128
+ prefetchnta [arg2+fetch_dist+0]
+ vmovdqu xmm9, [arg2+16*0]
+ vmovdqu xmm12, [arg2+16*1]
+ vpclmulqdq xmm8, xmm0, xmm10, 0x10
+ vpclmulqdq xmm0, xmm0, xmm10 , 0x1
+ vpclmulqdq xmm13, xmm1, xmm10, 0x10
+ vpclmulqdq xmm1, xmm1, xmm10 , 0x1
+ vpxor xmm0, xmm9
+ vxorps xmm0, xmm8
+ vpxor xmm1, xmm12
+ vxorps xmm1, xmm13
+
+ prefetchnta [arg2+fetch_dist+32]
+ vmovdqu xmm9, [arg2+16*2]
+ vmovdqu xmm12, [arg2+16*3]
+ vpclmulqdq xmm8, xmm2, xmm10, 0x10
+ vpclmulqdq xmm2, xmm2, xmm10 , 0x1
+ vpclmulqdq xmm13, xmm3, xmm10, 0x10
+ vpclmulqdq xmm3, xmm3, xmm10 , 0x1
+ vpxor xmm2, xmm9
+ vxorps xmm2, xmm8
+ vpxor xmm3, xmm12
+ vxorps xmm3, xmm13
+
+ prefetchnta [arg2+fetch_dist+64]
+ vmovdqu xmm9, [arg2+16*4]
+ vmovdqu xmm12, [arg2+16*5]
+ vpclmulqdq xmm8, xmm4, xmm10, 0x10
+ vpclmulqdq xmm4, xmm4, xmm10 , 0x1
+ vpclmulqdq xmm13, xmm5, xmm10, 0x10
+ vpclmulqdq xmm5, xmm5, xmm10 , 0x1
+ vpxor xmm4, xmm9
+ vxorps xmm4, xmm8
+ vpxor xmm5, xmm12
+ vxorps xmm5, xmm13
+
+ prefetchnta [arg2+fetch_dist+96]
+ vmovdqu xmm9, [arg2+16*6]
+ vmovdqu xmm12, [arg2+16*7]
+ vpclmulqdq xmm8, xmm6, xmm10, 0x10
+ vpclmulqdq xmm6, xmm6, xmm10 , 0x1
+ vpclmulqdq xmm13, xmm7, xmm10, 0x10
+ vpclmulqdq xmm7, xmm7, xmm10 , 0x1
+ vpxor xmm6, xmm9
+ vxorps xmm6, xmm8
+ vpxor xmm7, xmm12
+ vxorps xmm7, xmm13
+
+ sub arg3, 128
+ jge .fold_128_B_loop
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ add arg2, 128
+ ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128
+ ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
+
+ ; fold the 8 xmm registers to 1 xmm register with different constants
+ vmovdqa xmm10, [rk9]
+ vpclmulqdq xmm8, xmm0, xmm10, 0x1
+ vpclmulqdq xmm0, xmm0, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vxorps xmm7, xmm0
+
+ vmovdqa xmm10, [rk11]
+ vpclmulqdq xmm8, xmm1, xmm10, 0x1
+ vpclmulqdq xmm1, xmm1, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vxorps xmm7, xmm1
+
+ vmovdqa xmm10, [rk13]
+ vpclmulqdq xmm8, xmm2, xmm10, 0x1
+ vpclmulqdq xmm2, xmm2, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vpxor xmm7, xmm2
+
+ vmovdqa xmm10, [rk15]
+ vpclmulqdq xmm8, xmm3, xmm10, 0x1
+ vpclmulqdq xmm3, xmm3, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vxorps xmm7, xmm3
+
+ vmovdqa xmm10, [rk17]
+ vpclmulqdq xmm8, xmm4, xmm10, 0x1
+ vpclmulqdq xmm4, xmm4, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vpxor xmm7, xmm4
+
+ vmovdqa xmm10, [rk19]
+ vpclmulqdq xmm8, xmm5, xmm10, 0x1
+ vpclmulqdq xmm5, xmm5, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vxorps xmm7, xmm5
+
+ vmovdqa xmm10, [rk1]
+ vpclmulqdq xmm8, xmm6, xmm10, 0x1
+ vpclmulqdq xmm6, xmm6, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vpxor xmm7, xmm6
+
+
+ ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
+ ; instead of a cmp instruction, we use the negative flag with the jl instruction
+ add arg3, 128-16
+ jl .final_reduction_for_128
+
+ ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
+ ; we can fold 16 bytes at a time if y>=16
+ ; continue folding 16B at a time
+
+.16B_reduction_loop:
+ vpclmulqdq xmm8, xmm7, xmm10, 0x1
+ vpclmulqdq xmm7, xmm7, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vmovdqu xmm0, [arg2]
+ vpxor xmm7, xmm0
+ add arg2, 16
+ sub arg3, 16
+ ; instead of a cmp instruction, we utilize the flags with the jge instruction
+ ; equivalent of: cmp arg3, 16-16
+ ; check if there is any more 16B in the buffer to be able to fold
+ jge .16B_reduction_loop
+
+ ;now we have 16+z bytes left to reduce, where 0<= z < 16.
+ ;first, we reduce the data in the xmm7 register
+
+
+.final_reduction_for_128:
+ add arg3, 16
+ je .128_done
+
+ ; here we are getting data that is less than 16 bytes.
+ ; since we know that there was data before the pointer, we can offset
+ ; the input pointer before the actual point, to receive exactly 16 bytes.
+ ; after that the registers need to be adjusted.
+.get_last_two_xmms:
+
+ vmovdqa xmm2, xmm7
+ vmovdqu xmm1, [arg2 - 16 + arg3]
+
+ ; get rid of the extra data that was loaded before
+ ; load the shift constant
+ lea rax, [pshufb_shf_table]
+ add rax, arg3
+ vmovdqu xmm0, [rax]
+
+ vpshufb xmm7, xmm0
+ vpxor xmm0, [mask3]
+ vpshufb xmm2, xmm0
+
+ vpblendvb xmm2, xmm2, xmm1, xmm0
+ ;;;;;;;;;;
+ vpclmulqdq xmm8, xmm7, xmm10, 0x1
+ vpclmulqdq xmm7, xmm7, xmm10, 0x10
+ vpxor xmm7, xmm8
+ vpxor xmm7, xmm2
+
+.128_done:
+ ; compute crc of a 128-bit value
+ vmovdqa xmm10, [rk5]
+ vmovdqa xmm0, xmm7
+
+ ;64b fold
+ vpclmulqdq xmm7, xmm10, 0
+ vpsrldq xmm0, 8
+ vpxor xmm7, xmm0
+
+ ;32b fold
+ vmovdqa xmm0, xmm7
+ vpslldq xmm7, 4
+ vpclmulqdq xmm7, xmm10, 0x10
+ vpxor xmm7, xmm0
+
+
+ ;barrett reduction
+.barrett:
+ vpand xmm7, [mask2]
+ vmovdqa xmm1, xmm7
+ vmovdqa xmm2, xmm7
+ vmovdqa xmm10, [rk7]
+
+ vpclmulqdq xmm7, xmm10, 0
+ vpxor xmm7, xmm2
+ vpand xmm7, [mask]
+ vmovdqa xmm2, xmm7
+ vpclmulqdq xmm7, xmm10, 0x10
+ vpxor xmm7, xmm2
+ vpxor xmm7, xmm1
+ vpextrd eax, xmm7, 2
+
+.cleanup:
+ not eax
+
+
+%ifidn __OUTPUT_FORMAT__, win64
+ vmovdqa xmm6, [rsp + XMM_SAVE + 16*0]
+ vmovdqa xmm7, [rsp + XMM_SAVE + 16*1]
+ vmovdqa xmm8, [rsp + XMM_SAVE + 16*2]
+ vmovdqa xmm9, [rsp + XMM_SAVE + 16*3]
+ vmovdqa xmm10, [rsp + XMM_SAVE + 16*4]
+ vmovdqa xmm11, [rsp + XMM_SAVE + 16*5]
+ vmovdqa xmm12, [rsp + XMM_SAVE + 16*6]
+ vmovdqa xmm13, [rsp + XMM_SAVE + 16*7]
+%endif
+ add rsp, VARIABLE_OFFSET
+ ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+align 16
+.less_than_256:
+
+ ; check if there is enough buffer to be able to fold 16B at a time
+ cmp arg3, 32
+ jl .less_than_32
+
+ ; if there is, load the constants
+ vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
+
+ vmovd xmm0, arg1_low32 ; get the initial crc value
+ vmovdqu xmm7, [arg2] ; load the plaintext
+ vpxor xmm7, xmm0
+
+ ; update the buffer pointer
+ add arg2, 16
+
+ ; update the counter. subtract 32 instead of 16 to save one instruction from the loop
+ sub arg3, 32
+
+ jmp .16B_reduction_loop
+
+
+align 16
+.less_than_32:
+ ; mov initial crc to the return value. this is necessary for zero-length buffers.
+ mov eax, arg1_low32
+ test arg3, arg3
+ je .cleanup
+
+ vmovd xmm0, arg1_low32 ; get the initial crc value
+
+ cmp arg3, 16
+ je .exact_16_left
+ jl .less_than_16_left
+
+ vmovdqu xmm7, [arg2] ; load the plaintext
+ vpxor xmm7, xmm0 ; xor the initial crc value
+ add arg2, 16
+ sub arg3, 16
+ vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
+ jmp .get_last_two_xmms
+
+align 16
+.less_than_16_left:
+ ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first.
+
+ vpxor xmm1, xmm1
+ mov r11, rsp
+ vmovdqa [r11], xmm1
+
+ cmp arg3, 4
+ jl .only_less_than_4
+
+ ; backup the counter value
+ mov r9, arg3
+ cmp arg3, 8
+ jl .less_than_8_left
+
+ ; load 8 Bytes
+ mov rax, [arg2]
+ mov [r11], rax
+ add r11, 8
+ sub arg3, 8
+ add arg2, 8
+.less_than_8_left:
+
+ cmp arg3, 4
+ jl .less_than_4_left
+
+ ; load 4 Bytes
+ mov eax, [arg2]
+ mov [r11], eax
+ add r11, 4
+ sub arg3, 4
+ add arg2, 4
+.less_than_4_left:
+
+ cmp arg3, 2
+ jl .less_than_2_left
+
+ ; load 2 Bytes
+ mov ax, [arg2]
+ mov [r11], ax
+ add r11, 2
+ sub arg3, 2
+ add arg2, 2
+.less_than_2_left:
+ cmp arg3, 1
+ jl .zero_left
+
+ ; load 1 Byte
+ mov al, [arg2]
+ mov [r11], al
+
+.zero_left:
+ vmovdqa xmm7, [rsp]
+ vpxor xmm7, xmm0 ; xor the initial crc value
+
+ lea rax,[pshufb_shf_table]
+ vmovdqu xmm0, [rax + r9]
+ vpshufb xmm7,xmm0
+ jmp .128_done
+
+align 16
+.exact_16_left:
+ vmovdqu xmm7, [arg2]
+ vpxor xmm7, xmm0 ; xor the initial crc value
+ jmp .128_done
+
+.only_less_than_4:
+ cmp arg3, 3
+ jl .only_less_than_3
+
+ ; load 3 Bytes
+ mov al, [arg2]
+ mov [r11], al
+
+ mov al, [arg2+1]
+ mov [r11+1], al
+
+ mov al, [arg2+2]
+ mov [r11+2], al
+
+ vmovdqa xmm7, [rsp]
+ vpxor xmm7, xmm0 ; xor the initial crc value
+
+ vpslldq xmm7, 5
+ jmp .barrett
+
+.only_less_than_3:
+ cmp arg3, 2
+ jl .only_less_than_2
+
+ ; load 2 Bytes
+ mov al, [arg2]
+ mov [r11], al
+
+ mov al, [arg2+1]
+ mov [r11+1], al
+
+ vmovdqa xmm7, [rsp]
+ vpxor xmm7, xmm0 ; xor the initial crc value
+
+ vpslldq xmm7, 6
+ jmp .barrett
+
+.only_less_than_2:
+ ; load 1 Byte
+ mov al, [arg2]
+ mov [r11], al
+
+ vmovdqa xmm7, [rsp]
+ vpxor xmm7, xmm0 ; xor the initial crc value
+
+ vpslldq xmm7, 7
+ jmp .barrett
+
+section .data
+
+; precomputed constants
+align 16
+rk1: dq 0x00000000ccaa009e
+rk2: dq 0x00000001751997d0
+rk3: dq 0x000000014a7fe880
+rk4: dq 0x00000001e88ef372
+rk5: dq 0x00000000ccaa009e
+rk6: dq 0x0000000163cd6124
+rk7: dq 0x00000001f7011640
+rk8: dq 0x00000001db710640
+rk9: dq 0x00000001d7cfc6ac
+rk10: dq 0x00000001ea89367e
+rk11: dq 0x000000018cb44e58
+rk12: dq 0x00000000df068dc2
+rk13: dq 0x00000000ae0b5394
+rk14: dq 0x00000001c7569e54
+rk15: dq 0x00000001c6e41596
+rk16: dq 0x0000000154442bd4
+rk17: dq 0x0000000174359406
+rk18: dq 0x000000003db1ecdc
+rk19: dq 0x000000015a546366
+rk20: dq 0x00000000f1da05aa
+
+mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
+mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
+mask3: dq 0x8080808080808080, 0x8080808080808080
+
+pshufb_shf_table:
+; use these values for shift constants for the pshufb instruction
+; different alignments result in values as shown:
+; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
+; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
+; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
+; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
+; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
+; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
+; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
+; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
+; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
+; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
+; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
+; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
+; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
+; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
+; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
+dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
+dq 0x0706050403020100, 0x000e0d0c0b0a0908