diff options
Diffstat (limited to 'src/isa-l/crc/crc32_gzip_refl_by8_02.asm')
-rw-r--r-- | src/isa-l/crc/crc32_gzip_refl_by8_02.asm | 555 |
1 files changed, 555 insertions, 0 deletions
diff --git a/src/isa-l/crc/crc32_gzip_refl_by8_02.asm b/src/isa-l/crc/crc32_gzip_refl_by8_02.asm new file mode 100644 index 000000000..80d849e40 --- /dev/null +++ b/src/isa-l/crc/crc32_gzip_refl_by8_02.asm @@ -0,0 +1,555 @@ +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +; Copyright(c) 2011-2020 Intel Corporation All rights reserved. +; +; Redistribution and use in source and binary forms, with or without +; modification, are permitted provided that the following conditions +; are met: +; * Redistributions of source code must retain the above copyright +; notice, this list of conditions and the following disclaimer. +; * Redistributions in binary form must reproduce the above copyright +; notice, this list of conditions and the following disclaimer in +; the documentation and/or other materials provided with the +; distribution. +; * Neither the name of Intel Corporation nor the names of its +; contributors may be used to endorse or promote products derived +; from this software without specific prior written permission. +; +; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +; Function API: +; UINT32 crc32_gzip_refl_by8_02( +; UINT32 init_crc, //initial CRC value, 32 bits +; const unsigned char *buf, //buffer pointer to calculate CRC on +; UINT64 len //buffer length in bytes (64-bit data) +; ); +; +; Authors: +; Erdinc Ozturk +; Vinodh Gopal +; James Guilford +; +; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" +; URL: http://download.intel.com/design/intarch/papers/323102.pdf +; +; +; sample yasm command line: +; yasm -f x64 -f elf64 -X gnu -g dwarf2 crc32_gzip_refl_by8 +; +; As explained here: +; http://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html +; CRC-32 checksum is described in RFC 1952 +; Implementing RFC 1952 CRC: +; http://www.ietf.org/rfc/rfc1952.txt + +%include "reg_sizes.asm" + +%define fetch_dist 1024 + +[bits 64] +default rel + +section .text + + +%ifidn __OUTPUT_FORMAT__, win64 + %xdefine arg1 rcx + %xdefine arg2 rdx + %xdefine arg3 r8 + + %xdefine arg1_low32 ecx +%else + %xdefine arg1 rdi + %xdefine arg2 rsi + %xdefine arg3 rdx + + %xdefine arg1_low32 edi +%endif + +%define TMP 16*0 +%ifidn __OUTPUT_FORMAT__, win64 + %define XMM_SAVE 16*2 + %define VARIABLE_OFFSET 16*10+8 +%else + %define VARIABLE_OFFSET 16*2+8 +%endif + +align 16 +global crc32_gzip_refl_by8_02:ISAL_SYM_TYPE_FUNCTION +crc32_gzip_refl_by8_02: + not arg1_low32 + sub rsp, VARIABLE_OFFSET + +%ifidn __OUTPUT_FORMAT__, win64 + ; push the xmm registers into the stack to maintain + vmovdqa [rsp + XMM_SAVE + 16*0], xmm6 + vmovdqa [rsp + XMM_SAVE + 16*1], xmm7 + vmovdqa [rsp + XMM_SAVE + 16*2], xmm8 + vmovdqa [rsp + XMM_SAVE + 16*3], xmm9 + vmovdqa [rsp + XMM_SAVE + 16*4], xmm10 + vmovdqa [rsp + XMM_SAVE + 16*5], xmm11 + vmovdqa [rsp + XMM_SAVE + 16*6], xmm12 + vmovdqa [rsp + XMM_SAVE + 16*7], xmm13 +%endif + + ; check if smaller than 256B + cmp arg3, 256 + jl .less_than_256 + + ; load the initial crc value + vmovd xmm10, arg1_low32 ; initial crc + + ; receive the initial 64B data, xor the initial crc value + vmovdqu xmm0, [arg2+16*0] + vmovdqu xmm1, [arg2+16*1] + vmovdqu xmm2, [arg2+16*2] + vmovdqu xmm3, [arg2+16*3] + vmovdqu xmm4, [arg2+16*4] + vmovdqu xmm5, [arg2+16*5] + vmovdqu xmm6, [arg2+16*6] + vmovdqu xmm7, [arg2+16*7] + + ; XOR the initial_crc value + vpxor xmm0, xmm10 + vmovdqa xmm10, [rk3] ;xmm10 has rk3 and rk4 + ;imm value of pclmulqdq instruction will determine which constant to use + ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + ; we subtract 256 instead of 128 to save one instruction from the loop + sub arg3, 256 + + ; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop + ; loop will fold 128B at a time until we have 128+y Bytes of buffer + + ; fold 128B at a time. This section of the code folds 8 xmm registers in parallel +.fold_128_B_loop: + add arg2, 128 + prefetchnta [arg2+fetch_dist+0] + vmovdqu xmm9, [arg2+16*0] + vmovdqu xmm12, [arg2+16*1] + vpclmulqdq xmm8, xmm0, xmm10, 0x10 + vpclmulqdq xmm0, xmm0, xmm10 , 0x1 + vpclmulqdq xmm13, xmm1, xmm10, 0x10 + vpclmulqdq xmm1, xmm1, xmm10 , 0x1 + vpxor xmm0, xmm9 + vxorps xmm0, xmm8 + vpxor xmm1, xmm12 + vxorps xmm1, xmm13 + + prefetchnta [arg2+fetch_dist+32] + vmovdqu xmm9, [arg2+16*2] + vmovdqu xmm12, [arg2+16*3] + vpclmulqdq xmm8, xmm2, xmm10, 0x10 + vpclmulqdq xmm2, xmm2, xmm10 , 0x1 + vpclmulqdq xmm13, xmm3, xmm10, 0x10 + vpclmulqdq xmm3, xmm3, xmm10 , 0x1 + vpxor xmm2, xmm9 + vxorps xmm2, xmm8 + vpxor xmm3, xmm12 + vxorps xmm3, xmm13 + + prefetchnta [arg2+fetch_dist+64] + vmovdqu xmm9, [arg2+16*4] + vmovdqu xmm12, [arg2+16*5] + vpclmulqdq xmm8, xmm4, xmm10, 0x10 + vpclmulqdq xmm4, xmm4, xmm10 , 0x1 + vpclmulqdq xmm13, xmm5, xmm10, 0x10 + vpclmulqdq xmm5, xmm5, xmm10 , 0x1 + vpxor xmm4, xmm9 + vxorps xmm4, xmm8 + vpxor xmm5, xmm12 + vxorps xmm5, xmm13 + + prefetchnta [arg2+fetch_dist+96] + vmovdqu xmm9, [arg2+16*6] + vmovdqu xmm12, [arg2+16*7] + vpclmulqdq xmm8, xmm6, xmm10, 0x10 + vpclmulqdq xmm6, xmm6, xmm10 , 0x1 + vpclmulqdq xmm13, xmm7, xmm10, 0x10 + vpclmulqdq xmm7, xmm7, xmm10 , 0x1 + vpxor xmm6, xmm9 + vxorps xmm6, xmm8 + vpxor xmm7, xmm12 + vxorps xmm7, xmm13 + + sub arg3, 128 + jge .fold_128_B_loop + ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + + add arg2, 128 + ; at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 + ; the 128B of folded data is in 8 of the xmm registers: xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 + + ; fold the 8 xmm registers to 1 xmm register with different constants + vmovdqa xmm10, [rk9] + vpclmulqdq xmm8, xmm0, xmm10, 0x1 + vpclmulqdq xmm0, xmm0, xmm10, 0x10 + vpxor xmm7, xmm8 + vxorps xmm7, xmm0 + + vmovdqa xmm10, [rk11] + vpclmulqdq xmm8, xmm1, xmm10, 0x1 + vpclmulqdq xmm1, xmm1, xmm10, 0x10 + vpxor xmm7, xmm8 + vxorps xmm7, xmm1 + + vmovdqa xmm10, [rk13] + vpclmulqdq xmm8, xmm2, xmm10, 0x1 + vpclmulqdq xmm2, xmm2, xmm10, 0x10 + vpxor xmm7, xmm8 + vpxor xmm7, xmm2 + + vmovdqa xmm10, [rk15] + vpclmulqdq xmm8, xmm3, xmm10, 0x1 + vpclmulqdq xmm3, xmm3, xmm10, 0x10 + vpxor xmm7, xmm8 + vxorps xmm7, xmm3 + + vmovdqa xmm10, [rk17] + vpclmulqdq xmm8, xmm4, xmm10, 0x1 + vpclmulqdq xmm4, xmm4, xmm10, 0x10 + vpxor xmm7, xmm8 + vpxor xmm7, xmm4 + + vmovdqa xmm10, [rk19] + vpclmulqdq xmm8, xmm5, xmm10, 0x1 + vpclmulqdq xmm5, xmm5, xmm10, 0x10 + vpxor xmm7, xmm8 + vxorps xmm7, xmm5 + + vmovdqa xmm10, [rk1] + vpclmulqdq xmm8, xmm6, xmm10, 0x1 + vpclmulqdq xmm6, xmm6, xmm10, 0x10 + vpxor xmm7, xmm8 + vpxor xmm7, xmm6 + + + ; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop + ; instead of a cmp instruction, we use the negative flag with the jl instruction + add arg3, 128-16 + jl .final_reduction_for_128 + + ; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory + ; we can fold 16 bytes at a time if y>=16 + ; continue folding 16B at a time + +.16B_reduction_loop: + vpclmulqdq xmm8, xmm7, xmm10, 0x1 + vpclmulqdq xmm7, xmm7, xmm10, 0x10 + vpxor xmm7, xmm8 + vmovdqu xmm0, [arg2] + vpxor xmm7, xmm0 + add arg2, 16 + sub arg3, 16 + ; instead of a cmp instruction, we utilize the flags with the jge instruction + ; equivalent of: cmp arg3, 16-16 + ; check if there is any more 16B in the buffer to be able to fold + jge .16B_reduction_loop + + ;now we have 16+z bytes left to reduce, where 0<= z < 16. + ;first, we reduce the data in the xmm7 register + + +.final_reduction_for_128: + add arg3, 16 + je .128_done + + ; here we are getting data that is less than 16 bytes. + ; since we know that there was data before the pointer, we can offset + ; the input pointer before the actual point, to receive exactly 16 bytes. + ; after that the registers need to be adjusted. +.get_last_two_xmms: + + vmovdqa xmm2, xmm7 + vmovdqu xmm1, [arg2 - 16 + arg3] + + ; get rid of the extra data that was loaded before + ; load the shift constant + lea rax, [pshufb_shf_table] + add rax, arg3 + vmovdqu xmm0, [rax] + + vpshufb xmm7, xmm0 + vpxor xmm0, [mask3] + vpshufb xmm2, xmm0 + + vpblendvb xmm2, xmm2, xmm1, xmm0 + ;;;;;;;;;; + vpclmulqdq xmm8, xmm7, xmm10, 0x1 + vpclmulqdq xmm7, xmm7, xmm10, 0x10 + vpxor xmm7, xmm8 + vpxor xmm7, xmm2 + +.128_done: + ; compute crc of a 128-bit value + vmovdqa xmm10, [rk5] + vmovdqa xmm0, xmm7 + + ;64b fold + vpclmulqdq xmm7, xmm10, 0 + vpsrldq xmm0, 8 + vpxor xmm7, xmm0 + + ;32b fold + vmovdqa xmm0, xmm7 + vpslldq xmm7, 4 + vpclmulqdq xmm7, xmm10, 0x10 + vpxor xmm7, xmm0 + + + ;barrett reduction +.barrett: + vpand xmm7, [mask2] + vmovdqa xmm1, xmm7 + vmovdqa xmm2, xmm7 + vmovdqa xmm10, [rk7] + + vpclmulqdq xmm7, xmm10, 0 + vpxor xmm7, xmm2 + vpand xmm7, [mask] + vmovdqa xmm2, xmm7 + vpclmulqdq xmm7, xmm10, 0x10 + vpxor xmm7, xmm2 + vpxor xmm7, xmm1 + vpextrd eax, xmm7, 2 + +.cleanup: + not eax + + +%ifidn __OUTPUT_FORMAT__, win64 + vmovdqa xmm6, [rsp + XMM_SAVE + 16*0] + vmovdqa xmm7, [rsp + XMM_SAVE + 16*1] + vmovdqa xmm8, [rsp + XMM_SAVE + 16*2] + vmovdqa xmm9, [rsp + XMM_SAVE + 16*3] + vmovdqa xmm10, [rsp + XMM_SAVE + 16*4] + vmovdqa xmm11, [rsp + XMM_SAVE + 16*5] + vmovdqa xmm12, [rsp + XMM_SAVE + 16*6] + vmovdqa xmm13, [rsp + XMM_SAVE + 16*7] +%endif + add rsp, VARIABLE_OFFSET + ret + + +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; + +align 16 +.less_than_256: + + ; check if there is enough buffer to be able to fold 16B at a time + cmp arg3, 32 + jl .less_than_32 + + ; if there is, load the constants + vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 + + vmovd xmm0, arg1_low32 ; get the initial crc value + vmovdqu xmm7, [arg2] ; load the plaintext + vpxor xmm7, xmm0 + + ; update the buffer pointer + add arg2, 16 + + ; update the counter. subtract 32 instead of 16 to save one instruction from the loop + sub arg3, 32 + + jmp .16B_reduction_loop + + +align 16 +.less_than_32: + ; mov initial crc to the return value. this is necessary for zero-length buffers. + mov eax, arg1_low32 + test arg3, arg3 + je .cleanup + + vmovd xmm0, arg1_low32 ; get the initial crc value + + cmp arg3, 16 + je .exact_16_left + jl .less_than_16_left + + vmovdqu xmm7, [arg2] ; load the plaintext + vpxor xmm7, xmm0 ; xor the initial crc value + add arg2, 16 + sub arg3, 16 + vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10 + jmp .get_last_two_xmms + +align 16 +.less_than_16_left: + ; use stack space to load data less than 16 bytes, zero-out the 16B in memory first. + + vpxor xmm1, xmm1 + mov r11, rsp + vmovdqa [r11], xmm1 + + cmp arg3, 4 + jl .only_less_than_4 + + ; backup the counter value + mov r9, arg3 + cmp arg3, 8 + jl .less_than_8_left + + ; load 8 Bytes + mov rax, [arg2] + mov [r11], rax + add r11, 8 + sub arg3, 8 + add arg2, 8 +.less_than_8_left: + + cmp arg3, 4 + jl .less_than_4_left + + ; load 4 Bytes + mov eax, [arg2] + mov [r11], eax + add r11, 4 + sub arg3, 4 + add arg2, 4 +.less_than_4_left: + + cmp arg3, 2 + jl .less_than_2_left + + ; load 2 Bytes + mov ax, [arg2] + mov [r11], ax + add r11, 2 + sub arg3, 2 + add arg2, 2 +.less_than_2_left: + cmp arg3, 1 + jl .zero_left + + ; load 1 Byte + mov al, [arg2] + mov [r11], al + +.zero_left: + vmovdqa xmm7, [rsp] + vpxor xmm7, xmm0 ; xor the initial crc value + + lea rax,[pshufb_shf_table] + vmovdqu xmm0, [rax + r9] + vpshufb xmm7,xmm0 + jmp .128_done + +align 16 +.exact_16_left: + vmovdqu xmm7, [arg2] + vpxor xmm7, xmm0 ; xor the initial crc value + jmp .128_done + +.only_less_than_4: + cmp arg3, 3 + jl .only_less_than_3 + + ; load 3 Bytes + mov al, [arg2] + mov [r11], al + + mov al, [arg2+1] + mov [r11+1], al + + mov al, [arg2+2] + mov [r11+2], al + + vmovdqa xmm7, [rsp] + vpxor xmm7, xmm0 ; xor the initial crc value + + vpslldq xmm7, 5 + jmp .barrett + +.only_less_than_3: + cmp arg3, 2 + jl .only_less_than_2 + + ; load 2 Bytes + mov al, [arg2] + mov [r11], al + + mov al, [arg2+1] + mov [r11+1], al + + vmovdqa xmm7, [rsp] + vpxor xmm7, xmm0 ; xor the initial crc value + + vpslldq xmm7, 6 + jmp .barrett + +.only_less_than_2: + ; load 1 Byte + mov al, [arg2] + mov [r11], al + + vmovdqa xmm7, [rsp] + vpxor xmm7, xmm0 ; xor the initial crc value + + vpslldq xmm7, 7 + jmp .barrett + +section .data + +; precomputed constants +align 16 +rk1: dq 0x00000000ccaa009e +rk2: dq 0x00000001751997d0 +rk3: dq 0x000000014a7fe880 +rk4: dq 0x00000001e88ef372 +rk5: dq 0x00000000ccaa009e +rk6: dq 0x0000000163cd6124 +rk7: dq 0x00000001f7011640 +rk8: dq 0x00000001db710640 +rk9: dq 0x00000001d7cfc6ac +rk10: dq 0x00000001ea89367e +rk11: dq 0x000000018cb44e58 +rk12: dq 0x00000000df068dc2 +rk13: dq 0x00000000ae0b5394 +rk14: dq 0x00000001c7569e54 +rk15: dq 0x00000001c6e41596 +rk16: dq 0x0000000154442bd4 +rk17: dq 0x0000000174359406 +rk18: dq 0x000000003db1ecdc +rk19: dq 0x000000015a546366 +rk20: dq 0x00000000f1da05aa + +mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000 +mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF +mask3: dq 0x8080808080808080, 0x8080808080808080 + +pshufb_shf_table: +; use these values for shift constants for the pshufb instruction +; different alignments result in values as shown: +; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1 +; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2 +; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3 +; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4 +; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5 +; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6 +; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7 +; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8 +; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9 +; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10 +; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11 +; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12 +; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13 +; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14 +; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15 +dq 0x8786858483828100, 0x8f8e8d8c8b8a8988 +dq 0x0706050403020100, 0x000e0d0c0b0a0908 |