summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db_stress_tool/db_stress_common.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/rocksdb/db_stress_tool/db_stress_common.cc')
-rw-r--r--src/rocksdb/db_stress_tool/db_stress_common.cc225
1 files changed, 225 insertions, 0 deletions
diff --git a/src/rocksdb/db_stress_tool/db_stress_common.cc b/src/rocksdb/db_stress_tool/db_stress_common.cc
new file mode 100644
index 000000000..953cfe505
--- /dev/null
+++ b/src/rocksdb/db_stress_tool/db_stress_common.cc
@@ -0,0 +1,225 @@
+// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+//
+// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file. See the AUTHORS file for names of contributors.
+//
+
+#ifdef GFLAGS
+#include "db_stress_tool/db_stress_common.h"
+#include <cmath>
+
+ROCKSDB_NAMESPACE::DbStressEnvWrapper* db_stress_env = nullptr;
+enum ROCKSDB_NAMESPACE::CompressionType compression_type_e =
+ ROCKSDB_NAMESPACE::kSnappyCompression;
+enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e =
+ ROCKSDB_NAMESPACE::kSnappyCompression;
+enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e =
+ ROCKSDB_NAMESPACE::kCRC32c;
+enum RepFactory FLAGS_rep_factory = kSkipList;
+std::vector<double> sum_probs(100001);
+int64_t zipf_sum_size = 100000;
+
+namespace ROCKSDB_NAMESPACE {
+
+// Zipfian distribution is generated based on a pre-calculated array.
+// It should be used before start the stress test.
+// First, the probability distribution function (PDF) of this Zipfian follows
+// power low. P(x) = 1/(x^alpha).
+// So we calculate the PDF when x is from 0 to zipf_sum_size in first for loop
+// and add the PDF value togetger as c. So we get the total probability in c.
+// Next, we calculate inverse CDF of Zipfian and store the value of each in
+// an array (sum_probs). The rank is from 0 to zipf_sum_size. For example, for
+// integer k, its Zipfian CDF value is sum_probs[k].
+// Third, when we need to get an integer whose probability follows Zipfian
+// distribution, we use a rand_seed [0,1] which follows uniform distribution
+// as a seed and search it in the sum_probs via binary search. When we find
+// the closest sum_probs[i] of rand_seed, i is the integer that in
+// [0, zipf_sum_size] following Zipfian distribution with parameter alpha.
+// Finally, we can scale i to [0, max_key] scale.
+// In order to avoid that hot keys are close to each other and skew towards 0,
+// we use Rando64 to shuffle it.
+void InitializeHotKeyGenerator(double alpha) {
+ double c = 0;
+ for (int64_t i = 1; i <= zipf_sum_size; i++) {
+ c = c + (1.0 / std::pow(static_cast<double>(i), alpha));
+ }
+ c = 1.0 / c;
+
+ sum_probs[0] = 0;
+ for (int64_t i = 1; i <= zipf_sum_size; i++) {
+ sum_probs[i] =
+ sum_probs[i - 1] + c / std::pow(static_cast<double>(i), alpha);
+ }
+}
+
+// Generate one key that follows the Zipfian distribution. The skewness
+// is decided by the parameter alpha. Input is the rand_seed [0,1] and
+// the max of the key to be generated. If we directly return tmp_zipf_seed,
+// the closer to 0, the higher probability will be. To randomly distribute
+// the hot keys in [0, max_key], we use Random64 to shuffle it.
+int64_t GetOneHotKeyID(double rand_seed, int64_t max_key) {
+ int64_t low = 1, mid, high = zipf_sum_size, zipf = 0;
+ while (low <= high) {
+ mid = (low + high) / 2;
+ if (sum_probs[mid] >= rand_seed && sum_probs[mid - 1] < rand_seed) {
+ zipf = mid;
+ break;
+ } else if (sum_probs[mid] >= rand_seed) {
+ high = mid - 1;
+ } else {
+ low = mid + 1;
+ }
+ }
+ int64_t tmp_zipf_seed = zipf * max_key / zipf_sum_size;
+ Random64 rand_local(tmp_zipf_seed);
+ return rand_local.Next() % max_key;
+}
+
+void PoolSizeChangeThread(void* v) {
+ assert(FLAGS_compaction_thread_pool_adjust_interval > 0);
+ ThreadState* thread = reinterpret_cast<ThreadState*>(v);
+ SharedState* shared = thread->shared;
+
+ while (true) {
+ {
+ MutexLock l(shared->GetMutex());
+ if (shared->ShouldStopBgThread()) {
+ shared->IncBgThreadsFinished();
+ if (shared->BgThreadsFinished()) {
+ shared->GetCondVar()->SignalAll();
+ }
+ return;
+ }
+ }
+
+ auto thread_pool_size_base = FLAGS_max_background_compactions;
+ auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations;
+ int new_thread_pool_size =
+ thread_pool_size_base - thread_pool_size_var +
+ thread->rand.Next() % (thread_pool_size_var * 2 + 1);
+ if (new_thread_pool_size < 1) {
+ new_thread_pool_size = 1;
+ }
+ db_stress_env->SetBackgroundThreads(new_thread_pool_size,
+ ROCKSDB_NAMESPACE::Env::Priority::LOW);
+ // Sleep up to 3 seconds
+ db_stress_env->SleepForMicroseconds(
+ thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval *
+ 1000 +
+ 1);
+ }
+}
+
+void DbVerificationThread(void* v) {
+ assert(FLAGS_continuous_verification_interval > 0);
+ auto* thread = reinterpret_cast<ThreadState*>(v);
+ SharedState* shared = thread->shared;
+ StressTest* stress_test = shared->GetStressTest();
+ assert(stress_test != nullptr);
+ while (true) {
+ {
+ MutexLock l(shared->GetMutex());
+ if (shared->ShouldStopBgThread()) {
+ shared->IncBgThreadsFinished();
+ if (shared->BgThreadsFinished()) {
+ shared->GetCondVar()->SignalAll();
+ }
+ return;
+ }
+ }
+ if (!shared->HasVerificationFailedYet()) {
+ stress_test->ContinuouslyVerifyDb(thread);
+ }
+ db_stress_env->SleepForMicroseconds(
+ thread->rand.Next() % FLAGS_continuous_verification_interval * 1000 +
+ 1);
+ }
+}
+
+void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) {
+ if (!FLAGS_verbose) {
+ return;
+ }
+ std::string tmp;
+ tmp.reserve(sz * 2 + 16);
+ char buf[4];
+ for (size_t i = 0; i < sz; i++) {
+ snprintf(buf, 4, "%X", value[i]);
+ tmp.append(buf);
+ }
+ fprintf(stdout, "[CF %d] %" PRIi64 " == > (%" ROCKSDB_PRIszt ") %s\n", cf,
+ key, sz, tmp.c_str());
+}
+
+// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
+// distribution. Keys are randomly scattered to [0, FLAGS_max_key]. It does
+// not ensure the order of the keys being generated and the keys does not have
+// the active range which is related to FLAGS_active_width.
+int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) {
+ const double completed_ratio =
+ static_cast<double>(iteration) / FLAGS_ops_per_thread;
+ const int64_t base_key = static_cast<int64_t>(
+ completed_ratio * (FLAGS_max_key - FLAGS_active_width));
+ int64_t rand_seed = base_key + thread->rand.Next() % FLAGS_active_width;
+ int64_t cur_key = rand_seed;
+ if (FLAGS_hot_key_alpha != 0) {
+ // If set the Zipfian distribution Alpha to non 0, use Zipfian
+ double float_rand =
+ (static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
+ FLAGS_max_key;
+ cur_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
+ }
+ return cur_key;
+}
+
+// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
+// distribution. Keys being generated are in random order.
+// If user want to generate keys based on uniform distribution, user needs to
+// set hot_key_alpha == 0. It will generate the random keys in increasing
+// order in the key array (ensure key[i] >= key[i+1]) and constrained in a
+// range related to FLAGS_active_width.
+std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
+ uint64_t iteration) {
+ const double completed_ratio =
+ static_cast<double>(iteration) / FLAGS_ops_per_thread;
+ const int64_t base_key = static_cast<int64_t>(
+ completed_ratio * (FLAGS_max_key - FLAGS_active_width));
+ std::vector<int64_t> keys;
+ keys.reserve(num_keys);
+ int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width;
+ keys.push_back(next_key);
+ for (int i = 1; i < num_keys; ++i) {
+ // Generate the key follows zipfian distribution
+ if (FLAGS_hot_key_alpha != 0) {
+ double float_rand =
+ (static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
+ FLAGS_max_key;
+ next_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
+ } else {
+ // This may result in some duplicate keys
+ next_key = next_key + thread->rand.Next() %
+ (FLAGS_active_width - (next_key - base_key));
+ }
+ keys.push_back(next_key);
+ }
+ return keys;
+}
+
+size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) {
+ size_t value_sz =
+ ((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult;
+ assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t));
+ (void)max_sz;
+ *((uint32_t*)v) = rand;
+ for (size_t i = sizeof(uint32_t); i < value_sz; i++) {
+ v[i] = (char)(rand ^ i);
+ }
+ v[value_sz] = '\0';
+ return value_sz; // the size of the value set.
+}
+} // namespace ROCKSDB_NAMESPACE
+#endif // GFLAGS