summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/config/test/math_info.cpp
blob: 47fe9ffe4e244280274b0123ec954eaa0d3a9f8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
//  (C) Copyright John Maddock 2005. 
//  Use, modification and distribution are subject to the 
//  Boost Software License, Version 1.0. (See accompanying file 
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

//  See http://www.boost.org/libs/config/test for most recent version.

//
// This test prints out informative information about <math.h>, <float.h>
// and <limits>.  Note that this file does require a correctly configured
// Boost setup, and so can't be folded into config_info which is designed
// to function without Boost.Confg support.  Each test is documented in
// more detail below.
//

#include <boost/limits.hpp>
#include <limits.h>
#include <math.h>
#include <cmath>
#include <float.h>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <boost/type_traits/alignment_of.hpp>

#ifdef BOOST_NO_STDC_NAMESPACE
namespace std{ using ::strcmp; using ::pow; using ::fabs; using ::sqrt; using ::sin; using ::atan2; }
#endif

static unsigned int indent = 4;
static unsigned int width = 40;

void print_macro(const char* name, const char* value)
{
   // if name == value+1 then then macro is not defined,
   // in which case we don't print anything:
   if(0 != std::strcmp(name, value+1))
   {
      for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
      std::cout << std::setw(width);
      std::cout.setf(std::istream::left, std::istream::adjustfield);
      std::cout << name;
      if(value[1])
      {
         // macro has a value:
         std::cout << value << "\n";
      }
      else
      {
         // macro is defined but has no value:
         std::cout << " [no value]\n";
      }
   }
}

#define PRINT_MACRO(X) print_macro(#X, BOOST_STRINGIZE(=X))

template <class T>
void print_expression(const char* expression, T val)
{
   for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
   std::cout << std::setw(width);
   std::cout.setf(std::istream::left, std::istream::adjustfield);
   std::cout << std::setprecision(std::numeric_limits<T>::digits10+2);
   std::cout << expression << "=" << val << std::endl;
}

#define PRINT_EXPRESSION(E) print_expression(#E, E);


template <class T>
void print_limits(T, const char* name)
{
   //
   // Output general information on numeric_limits, as well as 
   // probing known and supected problems.
   //
   std::cout << 
      "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
      "std::numeric_limits information for type " << name << std::endl;
   std::cout << 
      "    is_specialized       = " << std::numeric_limits<T>::is_specialized << std::endl;
   std::cout << 
      "    min" "()                = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::min)() << std::endl;
   std::cout << 
      "    max" "()                = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::max)() << std::endl;
   std::cout << 
      "    digits               = " << std::numeric_limits<T>::digits << std::endl;
   std::cout << 
      "    digits10             = " << std::numeric_limits<T>::digits10 << std::endl;
   std::cout << 
      "    is_signed            = " << std::numeric_limits<T>::is_signed << std::endl;
   std::cout << 
      "    is_integer           = " << std::numeric_limits<T>::is_integer << std::endl;
   std::cout << 
      "    is_exact             = " << std::numeric_limits<T>::is_exact << std::endl;
   std::cout << 
      "    radix                = " << std::numeric_limits<T>::radix << std::endl;

   std::cout << 
      "    epsilon()            = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::epsilon)() << std::endl;
   std::cout << 
      "    round_error()        = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::round_error)() << std::endl;

   std::cout << 
      "    min_exponent         = " << std::numeric_limits<T>::min_exponent << std::endl;
   std::cout << 
      "    min_exponent10       = " << std::numeric_limits<T>::min_exponent10 << std::endl;
   std::cout << 
      "    max_exponent         = " << std::numeric_limits<T>::max_exponent << std::endl;
   std::cout << 
      "    max_exponent10       = " << std::numeric_limits<T>::max_exponent10 << std::endl;
   std::cout << 
      "    has_infinity         = " << std::numeric_limits<T>::has_infinity << std::endl;
   std::cout << 
      "    has_quiet_NaN        = " << std::numeric_limits<T>::has_quiet_NaN << std::endl;
   std::cout << 
      "    has_signaling_NaN    = " << std::numeric_limits<T>::has_signaling_NaN << std::endl;
   std::cout << 
      "    has_denorm           = " << std::numeric_limits<T>::has_denorm << std::endl;
   std::cout << 
      "    has_denorm_loss      = " << std::numeric_limits<T>::has_denorm_loss << std::endl;

   std::cout << 
      "    infinity()           = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::infinity)() << std::endl;
   std::cout << 
      "    quiet_NaN()          = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::quiet_NaN)() << std::endl;
   std::cout << 
      "    signaling_NaN()      = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::signaling_NaN)() << std::endl;
   std::cout << 
      "    denorm_min()         = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::denorm_min)() << std::endl;
   

   std::cout << 
      "    is_iec559            = " << std::numeric_limits<T>::is_iec559 << std::endl;
   std::cout << 
      "    is_bounded           = " << std::numeric_limits<T>::is_bounded << std::endl;
   std::cout << 
      "    is_modulo            = " << std::numeric_limits<T>::is_modulo << std::endl;
   std::cout << 
      "    traps                = " << std::numeric_limits<T>::traps << std::endl;
   std::cout << 
      "    tinyness_before      = " << std::numeric_limits<T>::tinyness_before << std::endl;
   std::cout << 
      "    round_style          = " << std::numeric_limits<T>::round_style << std::endl << std::endl;

   if(std::numeric_limits<T>::is_exact == 0)
   {
      bool r = std::numeric_limits<T>::epsilon() == std::pow(static_cast<T>(std::numeric_limits<T>::radix), 1-std::numeric_limits<T>::digits);
      if(r)
         std::cout << "Epsilon has sane value of std::pow(std::numeric_limits<T>::radix, 1-std::numeric_limits<T>::digits)." << std::endl;
      else
         std::cout << "CAUTION: epsilon does not have a sane value." << std::endl;
      std::cout << std::endl;
   }
   std::cout << 
      "    sizeof(" << name << ") = " << sizeof(T) << std::endl;
   std::cout << 
      "    alignment_of<" << name << "> = " << boost::alignment_of<T>::value << std::endl << std::endl;
}
/*
template <class T>
bool is_same_type(T, T)
{
   return true;
}*/
bool is_same_type(float, float)
{ return true; }
bool is_same_type(double, double)
{ return true; }
bool is_same_type(long double, long double)
{ return true; }
template <class T, class U>
bool is_same_type(T, U)
{
   return false;
}

//
// We need this to test whether abs has been overloaded for
// the floating point types or not:
//
namespace std{
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1300) && \
    !defined(_LIBCPP_VERSION)
template <class T>
char abs(T)
{
   return ' ';
}
#endif
}


template <class T>
void test_overloads(T, const char* name)
{
   //
   // Probe known and suspected problems with the std lib Math functions.
   //
   std::cout << 
      "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
      "Math function overload information for type " << name << std::endl;

   //
   // Are the math functions overloaded for type T,
   // or do we just get double versions?
   //
   bool r = is_same_type(std::fabs(T(0)), T(0));
   r &= is_same_type(std::sqrt(T(0)), T(0));
   r &= is_same_type(std::sin(T(0)), T(0));
   if(r)
      std::cout << "The Math functions are overloaded for type " << name << std::endl;
   else
      std::cout << "CAUTION: The Math functions are NOT overloaded for type " << name << std::endl;

   //
   // Check that a few of the functions work OK, we do this because if these
   // are implemented as double precision internally then we can get
   // overflow or underflow when passing arguments of other types.
   //
   r = (std::fabs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
   r &= (std::fabs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
   r &= (std::fabs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
   r &= (std::fabs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
   if(r)
      std::cout << "std::fabs looks OK for type " << name << std::endl;
   else
      std::cout << "CAUTION: std::fabs is broken for type " << name << std::endl;

   //
   // abs not overloaded for real arguments with VC6 (and others?)
   //
   r = (std::abs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
   r &= (std::abs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
   r &= (std::abs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
   r &= (std::abs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
   if(r)
      std::cout << "std::abs looks OK for type " << name << std::endl;
   else
      std::cout << "CAUTION: std::abs is broken for type " << name << std::endl;

   //
   // std::sqrt on FreeBSD converts long double arguments to double leading to
   // overflow/underflow:
   //
   r = (std::sqrt((std::numeric_limits<T>::max)()) < (std::numeric_limits<T>::max)());
   if(r)
      std::cout << "std::sqrt looks OK for type " << name << std::endl;
   else
      std::cout << "CAUTION: std::sqrt is broken for type " << name << std::endl;

   //
   // Sanity check for atan2: verify that it returns arguments in the correct
   // range and not just atan(x/y).
   //
   static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);

   T val = std::atan2(T(-1), T(-1));
   r = -half_pi > val;
   val = std::atan2(T(1), T(-1));
   r &= half_pi < val;
   val = std::atan2(T(1), T(1));
   r &= (val > 0) && (val < half_pi);
   val = std::atan2(T(-1), T(1));
   r &= (val < 0) && (val > -half_pi);
   if(r)
      std::cout << "std::atan2 looks OK for type " << name << std::endl;
   else
      std::cout << "CAUTION: std::atan2 is broken for type " << name << std::endl;
}



int main()
{
   //
   // Start by printing the values of the macros from float.h
   //
   std::cout << 
      "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
      "Macros from <math.h>" << std::endl;

#ifdef __BORLANDC__
   // Turn off hardware exceptions so we don't just abort 
   // when calling numeric_limits members.
   _control87(MCW_EM,MCW_EM);
#endif

   PRINT_EXPRESSION(HUGE_VAL);
#ifdef HUGE_VALF
   PRINT_EXPRESSION(HUGE_VALF);
#endif
#ifdef HUGE_VALL
   PRINT_EXPRESSION(HUGE_VALL);
#endif
#ifdef INFINITY
   PRINT_EXPRESSION(INFINITY);
#endif

   PRINT_MACRO(NAN);
   PRINT_MACRO(FP_INFINITE);
   PRINT_MACRO(FP_NAN);
   PRINT_MACRO(FP_NORMAL);
   PRINT_MACRO(FP_SUBNORMAL);
   PRINT_MACRO(FP_ZERO);
   PRINT_MACRO(FP_FAST_FMA);
   PRINT_MACRO(FP_FAST_FMAF);
   PRINT_MACRO(FP_FAST_FMAL);
   PRINT_MACRO(FP_ILOGB0);
   PRINT_MACRO(FP_ILOGBNAN);
   PRINT_MACRO(MATH_ERRNO);
   PRINT_MACRO(MATH_ERREXCEPT);

   PRINT_EXPRESSION(FLT_MIN_10_EXP);
   PRINT_EXPRESSION(FLT_DIG);
   PRINT_EXPRESSION(FLT_MIN_EXP);
   PRINT_EXPRESSION(FLT_EPSILON);
   PRINT_EXPRESSION(FLT_RADIX);
   PRINT_EXPRESSION(FLT_MANT_DIG);
   PRINT_EXPRESSION(FLT_ROUNDS);
   PRINT_EXPRESSION(FLT_MAX);
   PRINT_EXPRESSION(FLT_MAX_10_EXP);
   PRINT_EXPRESSION(FLT_MAX_EXP);
   PRINT_EXPRESSION(FLT_MIN);
   PRINT_EXPRESSION(DBL_DIG);
   PRINT_EXPRESSION(DBL_MIN_EXP);
   PRINT_EXPRESSION(DBL_EPSILON);
   PRINT_EXPRESSION(DBL_MANT_DIG);
   PRINT_EXPRESSION(DBL_MAX);
   PRINT_EXPRESSION(DBL_MIN);
   PRINT_EXPRESSION(DBL_MAX_10_EXP);
   PRINT_EXPRESSION(DBL_MAX_EXP);
   PRINT_EXPRESSION(DBL_MIN_10_EXP);
   PRINT_EXPRESSION(LDBL_MAX_10_EXP);
   PRINT_EXPRESSION(LDBL_MAX_EXP);
   PRINT_EXPRESSION(LDBL_MIN);
   PRINT_EXPRESSION(LDBL_MIN_10_EXP);
   PRINT_EXPRESSION(LDBL_DIG);
   PRINT_EXPRESSION(LDBL_MIN_EXP);
   PRINT_EXPRESSION(LDBL_EPSILON);
   PRINT_EXPRESSION(LDBL_MANT_DIG);
   PRINT_EXPRESSION(LDBL_MAX);

   std::cout << std::endl;

   //
   // print out numeric_limits info:
   //
   print_limits(float(0), "float");
   print_limits(double(0), "double");
   print_limits((long double)(0), "long double");

   //
   // print out function overload information:
   //
   test_overloads(float(0), "float");
   test_overloads(double(0), "double");
   test_overloads((long double)(0), "long double");
   return 0;
}