summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/graph/example/r_c_shortest_paths_example.cpp
blob: 2d759e73d5beda39b055b6958f6b4e7aeb0a46c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright Michael Drexl 2005, 2006.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://boost.org/LICENSE_1_0.txt)

// Example use of the resource-constrained shortest paths algorithm.
#include <boost/config.hpp>

#ifdef BOOST_MSVC
#pragma warning(disable : 4267)
#endif

#include <boost/graph/adjacency_list.hpp>

#include <boost/graph/r_c_shortest_paths.hpp>
#include <iostream>

using namespace boost;

struct SPPRC_Example_Graph_Vert_Prop
{
    SPPRC_Example_Graph_Vert_Prop(int n = 0, int e = 0, int l = 0)
    : num(n), eat(e), lat(l)
    {
    }
    int num;
    // earliest arrival time
    int eat;
    // latest arrival time
    int lat;
};

struct SPPRC_Example_Graph_Arc_Prop
{
    SPPRC_Example_Graph_Arc_Prop(int n = 0, int c = 0, int t = 0)
    : num(n), cost(c), time(t)
    {
    }
    int num;
    // traversal cost
    int cost;
    // traversal time
    int time;
};

typedef adjacency_list< vecS, vecS, directedS, SPPRC_Example_Graph_Vert_Prop,
    SPPRC_Example_Graph_Arc_Prop >
    SPPRC_Example_Graph;

// data structures for spp without resource constraints:
// ResourceContainer model
struct spp_no_rc_res_cont
{
    spp_no_rc_res_cont(int c = 0) : cost(c) {};
    spp_no_rc_res_cont& operator=(const spp_no_rc_res_cont& other)
    {
        if (this == &other)
            return *this;
        this->~spp_no_rc_res_cont();
        new (this) spp_no_rc_res_cont(other);
        return *this;
    }
    int cost;
};

bool operator==(
    const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2)
{
    return (res_cont_1.cost == res_cont_2.cost);
}

bool operator<(
    const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2)
{
    return (res_cont_1.cost < res_cont_2.cost);
}

// ResourceExtensionFunction model
class ref_no_res_cont
{
public:
    inline bool operator()(const SPPRC_Example_Graph& g,
        spp_no_rc_res_cont& new_cont, const spp_no_rc_res_cont& old_cont,
        graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const
    {
        new_cont.cost = old_cont.cost + g[ed].cost;
        return true;
    }
};

// DominanceFunction model
class dominance_no_res_cont
{
public:
    inline bool operator()(const spp_no_rc_res_cont& res_cont_1,
        const spp_no_rc_res_cont& res_cont_2) const
    {
        // must be "<=" here!!!
        // must NOT be "<"!!!
        return res_cont_1.cost <= res_cont_2.cost;
        // this is not a contradiction to the documentation
        // the documentation says:
        // "A label $l_1$ dominates a label $l_2$ if and only if both are
        // resident at the same vertex, and if, for each resource, the resource
        // consumption of $l_1$ is less than or equal to the resource
        // consumption of $l_2$, and if there is at least one resource where
        // $l_1$ has a lower resource consumption than $l_2$." one can think of
        // a new label with a resource consumption equal to that of an old label
        // as being dominated by that old label, because the new one will have a
        // higher number and is created at a later point in time, so one can
        // implicitly use the number or the creation time as a resource for
        // tie-breaking
    }
};
// end data structures for spp without resource constraints:

// data structures for shortest path problem with time windows (spptw)
// ResourceContainer model
struct spp_spptw_res_cont
{
    spp_spptw_res_cont(int c = 0, int t = 0) : cost(c), time(t) {}
    spp_spptw_res_cont& operator=(const spp_spptw_res_cont& other)
    {
        if (this == &other)
            return *this;
        this->~spp_spptw_res_cont();
        new (this) spp_spptw_res_cont(other);
        return *this;
    }
    int cost;
    int time;
};

bool operator==(
    const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2)
{
    return (res_cont_1.cost == res_cont_2.cost
        && res_cont_1.time == res_cont_2.time);
}

bool operator<(
    const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2)
{
    if (res_cont_1.cost > res_cont_2.cost)
        return false;
    if (res_cont_1.cost == res_cont_2.cost)
        return res_cont_1.time < res_cont_2.time;
    return true;
}

// ResourceExtensionFunction model
class ref_spptw
{
public:
    inline bool operator()(const SPPRC_Example_Graph& g,
        spp_spptw_res_cont& new_cont, const spp_spptw_res_cont& old_cont,
        graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const
    {
        const SPPRC_Example_Graph_Arc_Prop& arc_prop = get(edge_bundle, g)[ed];
        const SPPRC_Example_Graph_Vert_Prop& vert_prop
            = get(vertex_bundle, g)[target(ed, g)];
        new_cont.cost = old_cont.cost + arc_prop.cost;
        int& i_time = new_cont.time;
        i_time = old_cont.time + arc_prop.time;
        i_time < vert_prop.eat ? i_time = vert_prop.eat : 0;
        return i_time <= vert_prop.lat ? true : false;
    }
};

// DominanceFunction model
class dominance_spptw
{
public:
    inline bool operator()(const spp_spptw_res_cont& res_cont_1,
        const spp_spptw_res_cont& res_cont_2) const
    {
        // must be "<=" here!!!
        // must NOT be "<"!!!
        return res_cont_1.cost <= res_cont_2.cost
            && res_cont_1.time <= res_cont_2.time;
        // this is not a contradiction to the documentation
        // the documentation says:
        // "A label $l_1$ dominates a label $l_2$ if and only if both are
        // resident at the same vertex, and if, for each resource, the resource
        // consumption of $l_1$ is less than or equal to the resource
        // consumption of $l_2$, and if there is at least one resource where
        // $l_1$ has a lower resource consumption than $l_2$." one can think of
        // a new label with a resource consumption equal to that of an old label
        // as being dominated by that old label, because the new one will have a
        // higher number and is created at a later point in time, so one can
        // implicitly use the number or the creation time as a resource for
        // tie-breaking
    }
};
// end data structures for shortest path problem with time windows (spptw)

// example graph structure and cost from
// http://www.boost.org/libs/graph/example/dijkstra-example.cpp
enum nodes
{
    A,
    B,
    C,
    D,
    E
};
char name[] = "ABCDE";

int main()
{
    SPPRC_Example_Graph g;

    add_vertex(SPPRC_Example_Graph_Vert_Prop(A, 0, 0), g);
    add_vertex(SPPRC_Example_Graph_Vert_Prop(B, 5, 20), g);
    add_vertex(SPPRC_Example_Graph_Vert_Prop(C, 6, 10), g);
    add_vertex(SPPRC_Example_Graph_Vert_Prop(D, 3, 12), g);
    add_vertex(SPPRC_Example_Graph_Vert_Prop(E, 0, 100), g);

    add_edge(A, C, SPPRC_Example_Graph_Arc_Prop(0, 1, 5), g);
    add_edge(B, B, SPPRC_Example_Graph_Arc_Prop(1, 2, 5), g);
    add_edge(B, D, SPPRC_Example_Graph_Arc_Prop(2, 1, 2), g);
    add_edge(B, E, SPPRC_Example_Graph_Arc_Prop(3, 2, 7), g);
    add_edge(C, B, SPPRC_Example_Graph_Arc_Prop(4, 7, 3), g);
    add_edge(C, D, SPPRC_Example_Graph_Arc_Prop(5, 3, 8), g);
    add_edge(D, E, SPPRC_Example_Graph_Arc_Prop(6, 1, 3), g);
    add_edge(E, A, SPPRC_Example_Graph_Arc_Prop(7, 1, 5), g);
    add_edge(E, B, SPPRC_Example_Graph_Arc_Prop(8, 1, 4), g);

    // the unique shortest path from A to E in the dijkstra-example.cpp is
    // A -> C -> D -> E
    // its length is 5
    // the following code also yields this result

    // with the above time windows, this path is infeasible
    // now, there are two shortest paths that are also feasible with respect to
    // the vertex time windows:
    // A -> C -> B -> D -> E and
    // A -> C -> B -> E
    // however, the latter has a longer total travel time and is therefore not
    // pareto-optimal, i.e., it is dominated by the former path
    // therefore, the code below returns only the former path

    // spp without resource constraints
    graph_traits< SPPRC_Example_Graph >::vertex_descriptor s = A;
    graph_traits< SPPRC_Example_Graph >::vertex_descriptor t = E;

    std::vector<
        std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > >
        opt_solutions;
    std::vector< spp_no_rc_res_cont > pareto_opt_rcs_no_rc;

    r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g),
        get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions,
        pareto_opt_rcs_no_rc, spp_no_rc_res_cont(0), ref_no_res_cont(),
        dominance_no_res_cont(),
        std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph,
            spp_no_rc_res_cont > >(),
        default_r_c_shortest_paths_visitor());

    std::cout << "SPP without resource constraints:" << std::endl;
    std::cout << "Number of optimal solutions: ";
    std::cout << static_cast< int >(opt_solutions.size()) << std::endl;
    for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i)
    {
        std::cout << "The " << i << "th shortest path from A to E is: ";
        std::cout << std::endl;
        for (int j = static_cast< int >(opt_solutions[i].size()) - 1; j >= 0;
             --j)
            std::cout << name[source(opt_solutions[i][j], g)] << std::endl;
        std::cout << "E" << std::endl;
        std::cout << "Length: " << pareto_opt_rcs_no_rc[i].cost << std::endl;
    }
    std::cout << std::endl;

    // spptw
    std::vector<
        std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > >
        opt_solutions_spptw;
    std::vector< spp_spptw_res_cont > pareto_opt_rcs_spptw;

    r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g),
        get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions_spptw,
        pareto_opt_rcs_spptw, spp_spptw_res_cont(0, 0), ref_spptw(),
        dominance_spptw(),
        std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph,
            spp_spptw_res_cont > >(),
        default_r_c_shortest_paths_visitor());

    std::cout << "SPP with time windows:" << std::endl;
    std::cout << "Number of optimal solutions: ";
    std::cout << static_cast< int >(opt_solutions.size()) << std::endl;
    for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i)
    {
        std::cout << "The " << i << "th shortest path from A to E is: ";
        std::cout << std::endl;
        for (int j = static_cast< int >(opt_solutions_spptw[i].size()) - 1;
             j >= 0; --j)
            std::cout << name[source(opt_solutions_spptw[i][j], g)]
                      << std::endl;
        std::cout << "E" << std::endl;
        std::cout << "Length: " << pareto_opt_rcs_spptw[i].cost << std::endl;
        std::cout << "Time: " << pareto_opt_rcs_spptw[i].time << std::endl;
    }

    // utility function check_r_c_path example
    std::cout << std::endl;
    bool b_is_a_path_at_all = false;
    bool b_feasible = false;
    bool b_correctly_extended = false;
    spp_spptw_res_cont actual_final_resource_levels(0, 0);
    graph_traits< SPPRC_Example_Graph >::edge_descriptor ed_last_extended_arc;
    check_r_c_path(g, opt_solutions_spptw[0], spp_spptw_res_cont(0, 0), true,
        pareto_opt_rcs_spptw[0], actual_final_resource_levels, ref_spptw(),
        b_is_a_path_at_all, b_feasible, b_correctly_extended,
        ed_last_extended_arc);
    if (!b_is_a_path_at_all)
        std::cout << "Not a path." << std::endl;
    if (!b_feasible)
        std::cout << "Not a feasible path." << std::endl;
    if (!b_correctly_extended)
        std::cout << "Not correctly extended." << std::endl;
    if (b_is_a_path_at_all && b_feasible && b_correctly_extended)
    {
        std::cout << "Actual final resource levels:" << std::endl;
        std::cout << "Length: " << actual_final_resource_levels.cost
                  << std::endl;
        std::cout << "Time: " << actual_final_resource_levels.time << std::endl;
        std::cout << "OK." << std::endl;
    }

    return 0;
}