1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TEST_TEST_HPP
#define BOOST_MATH_TEST_TEST_HPP
#include <atomic>
#include <iostream>
#include <iomanip>
#include <cmath> // for std::isnan
#include <boost/assert.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/core/demangle.hpp>
namespace boost { namespace math { namespace test {
namespace detail {
static std::atomic<int64_t> global_error_count{0};
static std::atomic<int64_t> total_ulp_distance{0};
}
template<class Real>
bool check_mollified_close(Real expected, Real computed, Real tol, std::string const & filename, std::string const & function, int line)
{
using std::isnan;
BOOST_ASSERT_MSG(!isnan(tol), "Tolerance cannot be a nan.");
BOOST_ASSERT_MSG(!isnan(expected), "Expected value cannot be a nan.");
BOOST_ASSERT_MSG(tol >= 0, "Tolerance must be non-negative.");
if (isnan(computed)) {
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Computed value is a nan\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
using std::max;
using std::abs;
Real denom = (max)(abs(expected), Real(1));
Real mollified_relative_error = abs(expected - computed)/denom;
if (mollified_relative_error > tol)
{
Real dist = abs(boost::math::float_distance(expected, computed));
detail::total_ulp_distance += static_cast<int64_t>(dist);
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Mollified relative error in " << boost::core::demangle(typeid(Real).name())<< " precision is " << mollified_relative_error
<< ", which exceeds " << tol << ", error/tol = " << mollified_relative_error/tol << ".\n"
<< std::setprecision(std::numeric_limits<Real>::digits10) << std::showpos
<< " Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
<< " Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
<< std::defaultfloat
<< " ULP distance: " << dist << "\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
return true;
}
template<class PreciseReal, class Real>
bool check_ulp_close(PreciseReal expected1, Real computed, size_t ulps, std::string const & filename, std::string const & function, int line)
{
using std::max;
using std::abs;
using std::isnan;
// Of course integers can be expected values, and they are exact:
if (!std::is_integral<PreciseReal>::value) {
BOOST_ASSERT_MSG(sizeof(PreciseReal) >= sizeof(Real),
"The expected number must be computed in higher (or equal) precision than the number being tested.");
BOOST_ASSERT_MSG(!isnan(expected1), "Expected value cannot be a nan.");
}
if (isnan(computed))
{
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Computed value is a nan\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
Real expected = Real(expected1);
Real dist = abs(boost::math::float_distance(expected, computed));
if (dist > ulps)
{
detail::total_ulp_distance += static_cast<int64_t>(dist);
Real denom = (max)(abs(expected), Real(1));
Real mollified_relative_error = abs(expected - computed)/denom;
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m ULP distance in " << boost::core::demangle(typeid(Real).name())<< " precision is " << dist
<< ", which exceeds " << ulps;
if (ulps > 0)
{
std::cerr << ", error/ulps = " << dist/static_cast<Real>(ulps) << ".\n";
}
else
{
std::cerr << ".\n";
}
std::cerr << std::setprecision(std::numeric_limits<Real>::digits10) << std::showpos
<< " Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
<< " Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
<< std::defaultfloat
<< " Mollified relative error: " << mollified_relative_error << "\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
return true;
}
int report_errors()
{
if (detail::global_error_count > 0)
{
std::cerr << "\033[0;31mError count: " << detail::global_error_count;
if (detail::total_ulp_distance > 0) {
std::cerr << ", total ulp distance = " << detail::total_ulp_distance << "\n\033[0m";
}
else {
// else we overflowed the ULPs counter and all we could print is a bizarre negative number.
std::cerr << "\n\033[0m";
}
detail::global_error_count = 0;
detail::total_ulp_distance = 0;
return 1;
}
std::cout << "\x1B[32mNo errors detected.\n\033[0m";
return 0;
}
}}}
#define CHECK_MOLLIFIED_CLOSE(X, Y, Z) boost::math::test::check_mollified_close< typename std::remove_reference<decltype((Y))>::type>((X), (Y), (Z), __FILE__, __func__, __LINE__)
#define CHECK_ULP_CLOSE(X, Y, Z) boost::math::test::check_ulp_close((X), (Y), (Z), __FILE__, __func__, __LINE__)
#endif
|