summaryrefslogtreecommitdiffstats
path: root/src/common/ceph_time.h
blob: 9204802927407eb05b8e06c41e925baa933b4eba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
 * Ceph - scalable distributed file system
 *
 * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
 *
 * This is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software
 * Foundation.	See file COPYING.
 *
 */

#ifndef COMMON_CEPH_TIME_H
#define COMMON_CEPH_TIME_H

#include <chrono>
#include <iostream>
#include <string>
#include <optional>
#include <sys/time.h>

#if defined(__APPLE__)
#include <sys/_types/_timespec.h>

#define CLOCK_REALTIME_COARSE CLOCK_REALTIME
#define CLOCK_MONOTONIC_COARSE CLOCK_MONOTONIC

int clock_gettime(int clk_id, struct timespec *tp);
#endif

#ifdef _WIN32
#define CLOCK_REALTIME_COARSE CLOCK_REALTIME
#define CLOCK_MONOTONIC_COARSE CLOCK_MONOTONIC
// MINGW uses the QueryPerformanceCounter API behind the scenes.
#endif

struct ceph_timespec;

namespace ceph {
// Currently we use a 64-bit count of nanoseconds.

// We could, if we wished, use a struct holding a uint64_t count
// of seconds and a uint32_t count of nanoseconds.

// At least this way we can change it to something else if we
// want.
typedef uint64_t rep;


// duration is the concrete time representation for our code in the
// case that we are only interested in durations between now and the
// future. Using it means we don't have to have EVERY function that
// deals with a duration be a template. We can do so for user-facing
// APIs, however.
typedef std::chrono::duration<rep, std::nano> timespan;


// Like the above but signed.
typedef int64_t signed_rep;

// Similar to the above but for durations that can specify
// differences between now and a time point in the past.
typedef std::chrono::duration<signed_rep, std::nano> signedspan;

template<typename Duration>
struct timeval to_timeval(Duration d) {
  struct timeval tv;
  auto sec = std::chrono::duration_cast<std::chrono::seconds>(d);
  tv.tv_sec = sec.count();
  auto usec = std::chrono::duration_cast<std::chrono::microseconds>(d-sec);
  tv.tv_usec = usec.count();
  return tv;
}

// We define our own clocks so we can have our choice of all time
// sources supported by the operating system. With the standard
// library the resolution and cost are unspecified. (For example,
// the libc++ system_clock class gives only microsecond
// resolution.)

// One potential issue is that we should accept system_clock
// timepoints in user-facing APIs alongside (or instead of)
// ceph::real_clock times.

// High-resolution real-time clock
class real_clock {
public:
  typedef timespan duration;
  typedef duration::rep rep;
  typedef duration::period period;
  // The second template parameter defaults to the clock's duration
  // type.
  typedef std::chrono::time_point<real_clock> time_point;
  static constexpr const bool is_steady = false;

  static time_point now() noexcept {
    struct timespec ts;
    clock_gettime(CLOCK_REALTIME, &ts);
    return from_timespec(ts);
  }

  static bool is_zero(const time_point& t) {
    return (t == time_point::min());
  }

  static time_point zero() {
    return time_point::min();
  }

  // Allow conversion to/from any clock with the same interface as
  // std::chrono::system_clock)
  template<typename Clock, typename Duration>
  static time_point to_system_time_point(
    const std::chrono::time_point<Clock, Duration>& t) {
    return time_point(seconds(Clock::to_time_t(t)) +
		      std::chrono::duration_cast<duration>(t.time_since_epoch() %
							   std::chrono::seconds(1)));
  }
  template<typename Clock, typename Duration>
  static std::chrono::time_point<Clock, Duration> to_system_time_point(
    const time_point& t) {
    return (Clock::from_time_t(to_time_t(t)) +
	    std::chrono::duration_cast<Duration>(t.time_since_epoch() %
						 std::chrono::seconds(1)));
  }

  static time_t to_time_t(const time_point& t) noexcept {
    return std::chrono::duration_cast<std::chrono::seconds>(t.time_since_epoch()).count();
  }
  static time_point from_time_t(const time_t& t) noexcept {
    return time_point(std::chrono::seconds(t));
  }

  static void to_timespec(const time_point& t, struct timespec& ts) {
    ts.tv_sec = to_time_t(t);
    ts.tv_nsec = (t.time_since_epoch() % std::chrono::seconds(1)).count();
  }
  static struct timespec to_timespec(const time_point& t) {
    struct timespec ts;
    to_timespec(t, ts);
    return ts;
  }
  static time_point from_timespec(const struct timespec& ts) {
    return time_point(std::chrono::seconds(ts.tv_sec) +
		      std::chrono::nanoseconds(ts.tv_nsec));
  }

  static void to_ceph_timespec(const time_point& t,
			       struct ceph_timespec& ts);
  static struct ceph_timespec to_ceph_timespec(const time_point& t);
  static time_point from_ceph_timespec(const struct ceph_timespec& ts);

  static void to_timeval(const time_point& t, struct timeval& tv) {
    tv.tv_sec = to_time_t(t);
    tv.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
      t.time_since_epoch() % std::chrono::seconds(1)).count();
  }
  static struct timeval to_timeval(const time_point& t) {
    struct timeval tv;
    to_timeval(t, tv);
    return tv;
  }
  static time_point from_timeval(const struct timeval& tv) {
    return time_point(std::chrono::seconds(tv.tv_sec) +
		      std::chrono::microseconds(tv.tv_usec));
  }

  static double to_double(const time_point& t) {
    return std::chrono::duration<double>(t.time_since_epoch()).count();
  }
  static time_point from_double(const double d) {
    return time_point(std::chrono::duration_cast<duration>(
			std::chrono::duration<double>(d)));
  }
};

// Low-resolution but preusmably faster real-time clock
class coarse_real_clock {
public:
  typedef timespan duration;
  typedef duration::rep rep;
  typedef duration::period period;
  // The second template parameter defaults to the clock's duration
  // type.
  typedef std::chrono::time_point<coarse_real_clock> time_point;
  static constexpr const bool is_steady = false;

  static time_point now() noexcept {
    struct timespec ts;
#if defined(CLOCK_REALTIME_COARSE)
    // Linux systems have _COARSE clocks.
    clock_gettime(CLOCK_REALTIME_COARSE, &ts);
#elif defined(CLOCK_REALTIME_FAST)
    // BSD systems have _FAST clocks.
    clock_gettime(CLOCK_REALTIME_FAST, &ts);
#else
    // And if we find neither, you may wish to consult your system's
    // documentation.
#warning Falling back to CLOCK_REALTIME, may be slow.
    clock_gettime(CLOCK_REALTIME, &ts);
#endif
    return from_timespec(ts);
  }

  static bool is_zero(const time_point& t) {
    return (t == time_point::min());
  }

  static time_point zero() {
    return time_point::min();
  }

  static time_t to_time_t(const time_point& t) noexcept {
    return std::chrono::duration_cast<std::chrono::seconds>(
      t.time_since_epoch()).count();
  }
  static time_point from_time_t(const time_t t) noexcept {
    return time_point(std::chrono::seconds(t));
  }

  static void to_timespec(const time_point& t, struct timespec& ts) {
    ts.tv_sec = to_time_t(t);
    ts.tv_nsec = (t.time_since_epoch() % std::chrono::seconds(1)).count();
  }
  static struct timespec to_timespec(const time_point& t) {
    struct timespec ts;
    to_timespec(t, ts);
    return ts;
  }
  static time_point from_timespec(const struct timespec& ts) {
    return time_point(std::chrono::seconds(ts.tv_sec) +
		      std::chrono::nanoseconds(ts.tv_nsec));
  }

  static void to_ceph_timespec(const time_point& t,
			       struct ceph_timespec& ts);
  static struct ceph_timespec to_ceph_timespec(const time_point& t);
  static time_point from_ceph_timespec(const struct ceph_timespec& ts);

  static void to_timeval(const time_point& t, struct timeval& tv) {
    tv.tv_sec = to_time_t(t);
    tv.tv_usec = std::chrono::duration_cast<std::chrono::microseconds>(
      t.time_since_epoch() % std::chrono::seconds(1)).count();
  }
  static struct timeval to_timeval(const time_point& t) {
    struct timeval tv;
    to_timeval(t, tv);
    return tv;
  }
  static time_point from_timeval(const struct timeval& tv) {
    return time_point(std::chrono::seconds(tv.tv_sec) +
		      std::chrono::microseconds(tv.tv_usec));
  }

  static double to_double(const time_point& t) {
    return std::chrono::duration<double>(t.time_since_epoch()).count();
  }
  static time_point from_double(const double d) {
    return time_point(std::chrono::duration_cast<duration>(
			std::chrono::duration<double>(d)));
  }
};

// High-resolution monotonic clock
class mono_clock {
public:
  typedef timespan duration;
  typedef duration::rep rep;
  typedef duration::period period;
  typedef std::chrono::time_point<mono_clock> time_point;
  static constexpr const bool is_steady = true;

  static time_point now() noexcept {
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return time_point(std::chrono::seconds(ts.tv_sec) +
		      std::chrono::nanoseconds(ts.tv_nsec));
  }

  static bool is_zero(const time_point& t) {
    return (t == time_point::min());
  }

  static time_point zero() {
    return time_point::min();
  }
};

// Low-resolution but, I would hope or there's no point, faster
// monotonic clock
class coarse_mono_clock {
public:
  typedef timespan duration;
  typedef duration::rep rep;
  typedef duration::period period;
  typedef std::chrono::time_point<coarse_mono_clock> time_point;
  static constexpr const bool is_steady = true;

  static time_point now() noexcept {
    struct timespec ts;
#if defined(CLOCK_MONOTONIC_COARSE)
    // Linux systems have _COARSE clocks.
    clock_gettime(CLOCK_MONOTONIC_COARSE, &ts);
#elif defined(CLOCK_MONOTONIC_FAST)
    // BSD systems have _FAST clocks.
    clock_gettime(CLOCK_MONOTONIC_FAST, &ts);
#else
    // And if we find neither, you may wish to consult your system's
    // documentation.
#warning Falling back to CLOCK_MONOTONIC, may be slow.
    clock_gettime(CLOCK_MONOTONIC, &ts);
#endif
    return time_point(std::chrono::seconds(ts.tv_sec) +
		      std::chrono::nanoseconds(ts.tv_nsec));
  }

  static bool is_zero(const time_point& t) {
    return (t == time_point::min());
  }

  static time_point zero() {
    return time_point::min();
  }
};

namespace time_detail {
// So that our subtractions produce negative spans rather than
// arithmetic underflow.
template<typename Rep1, typename Period1, typename Rep2,
	 typename Period2>
inline auto difference(std::chrono::duration<Rep1, Period1> minuend,
		       std::chrono::duration<Rep2, Period2> subtrahend)
  -> typename std::common_type<
  std::chrono::duration<typename std::make_signed<Rep1>::type,
			Period1>,
  std::chrono::duration<typename std::make_signed<Rep2>::type,
			Period2> >::type {
  // Foo.
  using srep =
    typename std::common_type<
      std::chrono::duration<typename std::make_signed<Rep1>::type,
			    Period1>,
    std::chrono::duration<typename std::make_signed<Rep2>::type,
			  Period2> >::type;
  return srep(srep(minuend).count() - srep(subtrahend).count());
}

template<typename Clock, typename Duration1, typename Duration2>
inline auto difference(
  typename std::chrono::time_point<Clock, Duration1> minuend,
  typename std::chrono::time_point<Clock, Duration2> subtrahend)
  -> typename std::common_type<
  std::chrono::duration<typename std::make_signed<
			  typename Duration1::rep>::type,
			typename Duration1::period>,
  std::chrono::duration<typename std::make_signed<
			  typename Duration2::rep>::type,
			typename Duration2::period> >::type {
  return difference(minuend.time_since_epoch(),
		    subtrahend.time_since_epoch());
}
}

// Please note that the coarse clocks are disjoint. You cannot
// subtract a real_clock timepoint from a coarse_real_clock
// timepoint as, from C++'s perspective, they are disjoint types.

// This is not necessarily bad. If I sample a mono_clock and then a
// coarse_mono_clock, the coarse_mono_clock's time could potentially
// be previous to the mono_clock's time (just due to differing
// resolution) which would be Incorrect.

// This is not horrible, though, since you can use an idiom like
// mono_clock::timepoint(coarsepoint.time_since_epoch()) to unwrap
// and rewrap if you know what you're doing.


// Actual wall-clock times
typedef real_clock::time_point real_time;
typedef coarse_real_clock::time_point coarse_real_time;

// Monotonic times should never be serialized or communicated
// between machines, since they are incomparable. Thus we also don't
// make any provision for converting between
// std::chrono::steady_clock time and ceph::mono_clock time.
typedef mono_clock::time_point mono_time;
typedef coarse_mono_clock::time_point coarse_mono_time;

template<typename Rep1, typename Ratio1, typename Rep2, typename Ratio2>
auto floor(const std::chrono::duration<Rep1, Ratio1>& duration,
	   const std::chrono::duration<Rep2, Ratio2>& precision) ->
  typename std::common_type<std::chrono::duration<Rep1, Ratio1>,
			    std::chrono::duration<Rep2, Ratio2> >::type {
  return duration - (duration % precision);
}

template<typename Rep1, typename Ratio1, typename Rep2, typename Ratio2>
auto ceil(const std::chrono::duration<Rep1, Ratio1>& duration,
	  const std::chrono::duration<Rep2, Ratio2>& precision) ->
  typename std::common_type<std::chrono::duration<Rep1, Ratio1>,
			    std::chrono::duration<Rep2, Ratio2> >::type {
  auto tmod = duration % precision;
  return duration - tmod + (tmod > tmod.zero() ? 1 : 0) * precision;
}

template<typename Clock, typename Duration, typename Rep, typename Ratio>
auto floor(const std::chrono::time_point<Clock, Duration>& timepoint,
	   const std::chrono::duration<Rep, Ratio>& precision) ->
  std::chrono::time_point<Clock,
			  typename std::common_type<
			    Duration, std::chrono::duration<Rep, Ratio>
			    >::type> {
  return std::chrono::time_point<
    Clock, typename std::common_type<
      Duration, std::chrono::duration<Rep, Ratio> >::type>(
	floor(timepoint.time_since_epoch(), precision));
}
template<typename Clock, typename Duration, typename Rep, typename Ratio>
auto ceil(const std::chrono::time_point<Clock, Duration>& timepoint,
	  const std::chrono::duration<Rep, Ratio>& precision) ->
  std::chrono::time_point<Clock,
			  typename std::common_type<
			    Duration,
			    std::chrono::duration<Rep, Ratio> >::type> {
  return std::chrono::time_point<
    Clock, typename std::common_type<
      Duration, std::chrono::duration<Rep, Ratio> >::type>(
	ceil(timepoint.time_since_epoch(), precision));
}

inline timespan make_timespan(const double d) {
  return std::chrono::duration_cast<timespan>(
    std::chrono::duration<double>(d));
}
inline std::optional<timespan> maybe_timespan(const double d) {
  return d ? std::make_optional(make_timespan(d)) : std::nullopt;
}

template<typename Clock,
	 typename std::enable_if<!Clock::is_steady>::type* = nullptr>
std::ostream& operator<<(std::ostream& m,
			 const std::chrono::time_point<Clock>& t);
template<typename Clock,
	 typename std::enable_if<Clock::is_steady>::type* = nullptr>
std::ostream& operator<<(std::ostream& m,
			 const std::chrono::time_point<Clock>& t);

// The way std::chrono handles the return type of subtraction is not
// wonderful. The difference of two unsigned types SHOULD be signed.

inline signedspan operator -(real_time minuend,
			     real_time subtrahend) {
  return time_detail::difference(minuend, subtrahend);
}

inline signedspan operator -(coarse_real_time minuend,
			     coarse_real_time subtrahend) {
  return time_detail::difference(minuend, subtrahend);
}

inline signedspan operator -(mono_time minuend,
			     mono_time subtrahend) {
  return time_detail::difference(minuend, subtrahend);
}

inline signedspan operator -(coarse_mono_time minuend,
			     coarse_mono_time subtrahend) {
  return time_detail::difference(minuend, subtrahend);
}

// We could add specializations of time_point - duration and
// time_point + duration to assert on overflow, but I don't think we
// should.
inline timespan abs(signedspan z) {
  return z > signedspan::zero() ?
    std::chrono::duration_cast<timespan>(z) :
    timespan(-z.count());
}
inline timespan to_timespan(signedspan z) {
  if (z < signedspan::zero()) {
    //ceph_assert(z >= signedspan::zero());
    // There is a kernel bug that seems to be triggering this assert.  We've
    // seen it in:
    //   centos 8.1: 4.18.0-147.el8.x86_64
    //   debian 10.3: 4.19.0-8-amd64
    //   debian 10.1: 4.19.67-2+deb10u1
    //   ubuntu 18.04
    // see bugs:
    //   https://tracker.ceph.com/issues/43365
    //   https://tracker.ceph.com/issues/44078
    z = signedspan::zero();
  }
  return std::chrono::duration_cast<timespan>(z);
}

std::string timespan_str(timespan t);
std::string exact_timespan_str(timespan t);
std::chrono::seconds parse_timespan(const std::string& s);

// detects presence of Clock::to_timespec() and from_timespec()
template <typename Clock, typename = std::void_t<>>
struct converts_to_timespec : std::false_type {};

template <typename Clock>
struct converts_to_timespec<Clock, std::void_t<decltype(
  Clock::from_timespec(Clock::to_timespec(
			 std::declval<typename Clock::time_point>()))
  )>> : std::true_type {};

template <typename Clock>
constexpr bool converts_to_timespec_v = converts_to_timespec<Clock>::value;

template<typename Rep, typename T>
static Rep to_seconds(T t) {
  return std::chrono::duration_cast<
    std::chrono::duration<Rep>>(t).count();
}

template<typename Rep, typename T>
static Rep to_microseconds(T t) {
  return std::chrono::duration_cast<
    std::chrono::duration<
      Rep,
      std::micro>>(t).count();
}

} // namespace ceph

namespace std {
template<typename Rep, typename Period>
ostream& operator<<(ostream& m, const chrono::duration<Rep, Period>& t);
}

#endif // COMMON_CEPH_TIME_H