summaryrefslogtreecommitdiffstats
path: root/src/osd/pg_scrubber.h
blob: 392a4a588026f6810fceb95702d8fb797ae1bcba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab

#pragma once

#include <cassert>
#include <chrono>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <string_view>
#include <vector>

#include "PG.h"
#include "ScrubStore.h"
#include "scrub_machine_lstnr.h"
#include "scrubber_common.h"

class Callback;

namespace Scrub {
class ScrubMachine;
struct BuildMap;

/**
 * Reserving/freeing scrub resources at the replicas.
 *
 *  When constructed - sends reservation requests to the acting_set.
 *  A rejection triggers a "couldn't acquire the replicas' scrub resources" event.
 *  All previous requests, whether already granted or not, are explicitly released.
 *
 *  A note re performance: I've measured a few container alternatives for
 *  m_reserved_peers, with its specific usage pattern. Std::set is extremely slow, as
 *  expected. flat_set is only slightly better. Surprisingly - std::vector (with no
 *  sorting) is better than boost::small_vec. And for std::vector: no need to pre-reserve.
 */
class ReplicaReservations {
  using OrigSet = decltype(std::declval<PG>().get_actingset());

  PG* m_pg;
  OrigSet m_acting_set;
  OSDService* m_osds;
  std::vector<pg_shard_t> m_waited_for_peers;
  std::vector<pg_shard_t> m_reserved_peers;
  bool m_had_rejections{false};
  int m_pending{-1};

  void release_replica(pg_shard_t peer, epoch_t epoch);

  void send_all_done();	 ///< all reservations are granted

  /// notify the scrubber that we have failed to reserve replicas' resources
  void send_reject();

 public:
  std::string m_log_msg_prefix;

  /**
   *  quietly discard all knowledge about existing reservations. No messages
   *  are sent to peers.
   *  To be used upon interval change, as we know the the running scrub is no longer
   *  relevant, and that the replicas had reset the reservations on their side.
   */
  void discard_all();

  ReplicaReservations(PG* pg, pg_shard_t whoami);

  ~ReplicaReservations();

  void handle_reserve_grant(OpRequestRef op, pg_shard_t from);

  void handle_reserve_reject(OpRequestRef op, pg_shard_t from);

  std::ostream& gen_prefix(std::ostream& out) const;
};

/**
 *  wraps the local OSD scrub resource reservation in an RAII wrapper
 */
class LocalReservation {
  OSDService* m_osds;
  bool m_holding_local_reservation{false};

 public:
  LocalReservation(OSDService* osds);
  ~LocalReservation();
  bool is_reserved() const { return m_holding_local_reservation; }
};

/**
 *  wraps the OSD resource we are using when reserved as a replica by a scrubbing master.
 */
class ReservedByRemotePrimary {
  const PgScrubber* m_scrubber; ///< we will be using its gen_prefix()
  PG* m_pg;
  OSDService* m_osds;
  bool m_reserved_by_remote_primary{false};
  const epoch_t m_reserved_at;

 public:
  ReservedByRemotePrimary(const PgScrubber* scrubber, PG* pg, OSDService* osds, epoch_t epoch);
  ~ReservedByRemotePrimary();
  [[nodiscard]] bool is_reserved() const { return m_reserved_by_remote_primary; }

  /// compare the remembered reserved-at epoch to the current interval
  [[nodiscard]] bool is_stale() const;

  std::ostream& gen_prefix(std::ostream& out) const;
};

/**
 * Once all replicas' scrub maps are received, we go on to compare the maps. That is -
 * unless we we have not yet completed building our own scrub map. MapsCollectionStatus
 * combines the status of waiting for both the local map and the replicas, without
 * resorting to adding dummy entries into a list.
 */
class MapsCollectionStatus {

  bool m_local_map_ready{false};
  std::vector<pg_shard_t> m_maps_awaited_for;

 public:
  [[nodiscard]] bool are_all_maps_available() const
  {
    return m_local_map_ready && m_maps_awaited_for.empty();
  }

  void mark_local_map_ready() { m_local_map_ready = true; }

  void mark_replica_map_request(pg_shard_t from_whom)
  {
    m_maps_awaited_for.push_back(from_whom);
  }

  /// @returns true if indeed waiting for this one. Otherwise: an error string
  auto mark_arriving_map(pg_shard_t from) -> std::tuple<bool, std::string_view>;

  std::vector<pg_shard_t> get_awaited() const { return m_maps_awaited_for; }

  void reset();

  std::string dump() const;

  friend ostream& operator<<(ostream& out, const MapsCollectionStatus& sf);
};

}  // namespace Scrub


/**
 * the scrub operation flags. Primary only.
 * Set at scrub start. Checked in multiple locations - mostly
 * at finish.
 */
struct scrub_flags_t {

  unsigned int priority{0};

  /**
   * set by queue_scrub() if either planned_scrub.auto_repair or
   * need_auto were set.
   * Tested at scrub end.
   */
  bool auto_repair{false};

  /// this flag indicates that we are scrubbing post repair to verify everything is fixed
  bool check_repair{false};

  /// checked at the end of the scrub, to possibly initiate a deep-scrub
  bool deep_scrub_on_error{false};

  /**
   * scrub must not be aborted.
   * Set for explicitly requested scrubs, and for scrubs originated by the pairing
   * process with the 'repair' flag set (in the RequestScrub event).
   */
  bool required{false};
};

ostream& operator<<(ostream& out, const scrub_flags_t& sf);


/**
 * The part of PG-scrubbing code that isn't state-machine wiring.
 *
 * Why the separation? I wish to move to a different FSM implementation. Thus I
 * am forced to strongly decouple the state-machine implementation details from
 * the actual scrubbing code.
 */
class PgScrubber : public ScrubPgIF, public ScrubMachineListener {

 public:
  explicit PgScrubber(PG* pg);

  //  ------------------  the I/F exposed to the PG (ScrubPgIF) -------------

  /// are we waiting for resource reservation grants form our replicas?
  [[nodiscard]] bool is_reserving() const final;

  void initiate_regular_scrub(epoch_t epoch_queued) final;

  void initiate_scrub_after_repair(epoch_t epoch_queued) final;

  void send_scrub_resched(epoch_t epoch_queued) final;

  void active_pushes_notification(epoch_t epoch_queued) final;

  void update_applied_notification(epoch_t epoch_queued) final;

  void send_scrub_unblock(epoch_t epoch_queued) final;

  void digest_update_notification(epoch_t epoch_queued) final;

  void send_replica_maps_ready(epoch_t epoch_queued) final;

  void send_start_replica(epoch_t epoch_queued, Scrub::act_token_t token) final;

  void send_sched_replica(epoch_t epoch_queued, Scrub::act_token_t token) final;

  void send_replica_pushes_upd(epoch_t epoch_queued) final;
  /**
   *  The PG has updated its 'applied version'. It might be that we are waiting for this
   *  information: after selecting a range of objects to scrub, we've marked the latest
   *  version of these objects in m_subset_last_update. We will not start the map building
   *  before we know that the PG has reached this version.
   */
  void on_applied_when_primary(const eversion_t& applied_version) final;

  void send_full_reset(epoch_t epoch_queued) final;

  void send_chunk_free(epoch_t epoch_queued) final;

  void send_chunk_busy(epoch_t epoch_queued) final;

  void send_local_map_done(epoch_t epoch_queued) final;

  void send_maps_compared(epoch_t epoch_queued) final;

  void send_get_next_chunk(epoch_t epoch_queued) final;

  void send_scrub_is_finished(epoch_t epoch_queued) final;

  /**
   *  we allow some number of preemptions of the scrub, which mean we do
   *  not block.  Then we start to block.  Once we start blocking, we do
   *  not stop until the scrub range is completed.
   */
  bool write_blocked_by_scrub(const hobject_t& soid) final;

  /// true if the given range intersects the scrub interval in any way
  bool range_intersects_scrub(const hobject_t& start, const hobject_t& end) final;

  /**
   *  we are a replica being asked by the Primary to reserve OSD resources for
   *  scrubbing
   */
  void handle_scrub_reserve_request(OpRequestRef op) final;

  void handle_scrub_reserve_grant(OpRequestRef op, pg_shard_t from) final;
  void handle_scrub_reserve_reject(OpRequestRef op, pg_shard_t from) final;
  void handle_scrub_reserve_release(OpRequestRef op) final;
  void discard_replica_reservations() final;
  void clear_scrub_reservations() final;  // PG::clear... fwds to here
  void unreserve_replicas() final;

  // managing scrub op registration

  void reg_next_scrub(const requested_scrub_t& request_flags) final;

  void unreg_next_scrub() final;

  void scrub_requested(scrub_level_t scrub_level,
		       scrub_type_t scrub_type,
		       requested_scrub_t& req_flags) final;

  /**
   * Reserve local scrub resources (managed by the OSD)
   *
   * Fails if OSD's local-scrubs budget was exhausted
   * \returns were local resources reserved?
   */
  bool reserve_local() final;

  void handle_query_state(ceph::Formatter* f) final;

  void dump(ceph::Formatter* f) const override;

  // used if we are a replica

  void replica_scrub_op(OpRequestRef op) final;

  /// the op priority, taken from the primary's request message
  Scrub::scrub_prio_t replica_op_priority() const final
  {
    return m_replica_request_priority;
  };

  unsigned int scrub_requeue_priority(Scrub::scrub_prio_t with_priority,
				      unsigned int suggested_priority) const final;
  /// the version that refers to m_flags.priority
  unsigned int scrub_requeue_priority(Scrub::scrub_prio_t with_priority) const final;

  void add_callback(Context* context) final { m_callbacks.push_back(context); }

  [[nodiscard]] bool are_callbacks_pending() const final  // used for an assert in PG.cc
  {
    return !m_callbacks.empty();
  }

  /// handle a message carrying a replica map
  void map_from_replica(OpRequestRef op) final;

  void scrub_clear_state() final;

  bool is_queued_or_active() const final;

  /**
   *  add to scrub statistics, but only if the soid is below the scrub start
   */
  virtual void stats_of_handled_objects(const object_stat_sum_t& delta_stats,
					const hobject_t& soid) override
  {
    ceph_assert(false);
  }

  /**
   * finalize the parameters of the initiated scrubbing session:
   *
   * The "current scrub" flags (m_flags) are set from the 'planned_scrub' flag-set;
   * PG_STATE_SCRUBBING, and possibly PG_STATE_DEEP_SCRUB & PG_STATE_REPAIR are set.
   */
  void set_op_parameters(requested_scrub_t& request) final;

  void cleanup_store(ObjectStore::Transaction* t) final;

  bool get_store_errors(const scrub_ls_arg_t& arg,
			scrub_ls_result_t& res_inout) const override
  {
    return false;
  }

  // -------------------------------------------------------------------------------------------
  // the I/F used by the state-machine (i.e. the implementation of ScrubMachineListener)

  [[nodiscard]] bool is_primary() const final { return m_pg->recovery_state.is_primary(); }

  void select_range_n_notify() final;

  /// walk the log to find the latest update that affects our chunk
  eversion_t search_log_for_updates() const final;

  eversion_t get_last_update_applied() const final
  {
    return m_pg->recovery_state.get_last_update_applied();
  }

  int pending_active_pushes() const final { return m_pg->active_pushes; }

  void on_init() final;
  void on_replica_init() final;
  void replica_handling_done() final;

  /// the version of 'scrub_clear_state()' that does not try to invoke FSM services
  /// (thus can be called from FSM reactions)
  void clear_pgscrub_state() final;

  /*
   * Send an 'InternalSchedScrub' FSM event either immediately, or - if 'm_need_sleep'
   * is asserted - after a configuration-dependent timeout.
   */
  void add_delayed_scheduling() final;

  void get_replicas_maps(bool replica_can_preempt) final;

  void on_digest_updates() final;

  void scrub_begin() final;

  void scrub_finish() final;

  ScrubMachineListener::MsgAndEpoch
  prep_replica_map_msg(Scrub::PreemptionNoted was_preempted) final;

  void send_replica_map(const ScrubMachineListener::MsgAndEpoch& preprepared) final;

  void send_preempted_replica() final;

  void send_remotes_reserved(epoch_t epoch_queued) final;
  void send_reservation_failure(epoch_t epoch_queued) final;

  /**
   *  does the PG have newer updates than what we (the scrubber) know?
   */
  [[nodiscard]] bool has_pg_marked_new_updates() const final;

  void set_subset_last_update(eversion_t e) final;

  void maps_compare_n_cleanup() final;

  Scrub::preemption_t& get_preemptor() final;

  int build_primary_map_chunk() final;

  int build_replica_map_chunk() final;

  void reserve_replicas() final;

  [[nodiscard]] bool was_epoch_changed() const final;

  void set_queued_or_active() final;
  void clear_queued_or_active() final;

  void mark_local_map_ready() final;

  [[nodiscard]] bool are_all_maps_available() const final;

  std::string dump_awaited_maps() const final;

  std::ostream& gen_prefix(std::ostream& out) const final;

 protected:
  bool state_test(uint64_t m) const { return m_pg->state_test(m); }
  void state_set(uint64_t m) { m_pg->state_set(m); }
  void state_clear(uint64_t m) { m_pg->state_clear(m); }

  [[nodiscard]] bool is_scrub_registered() const;

  virtual void _scrub_clear_state() {}

  utime_t m_scrub_reg_stamp;  ///< stamp we registered for

  ostream& show(ostream& out) const override;

 public:
  // -------------------------------------------------------------------------------------------

  friend ostream& operator<<(ostream& out, const PgScrubber& scrubber);

  static utime_t scrub_must_stamp() { return utime_t(1, 1); }

  virtual ~PgScrubber();  // must be defined separately, in the .cc file

  [[nodiscard]] bool is_scrub_active() const final { return m_active; }

 private:
  void reset_internal_state();

  /**
   *  the current scrubbing operation is done. We should mark that fact, so that
   *  all events related to the previous operation can be discarded.
   */
  void advance_token();

  bool is_token_current(Scrub::act_token_t received_token);

  void requeue_waiting() const { m_pg->requeue_ops(m_pg->waiting_for_scrub); }

  void _scan_snaps(ScrubMap& smap);

  ScrubMap clean_meta_map();

  /**
   *  mark down some parameters of the initiated scrub:
   *  - the epoch when started;
   *  - the depth of the scrub requested (from the PG_STATE variable)
   */
  void reset_epoch(epoch_t epoch_queued);

  void run_callbacks();

  // -----     methods used to verify the relevance of incoming events:

  /**
   *  is the incoming event still relevant, and should be processed?
   *
   *  It isn't if:
   *  - (1) we are no longer 'actively scrubbing'; or
   *  - (2) the message is from an epoch prior to when we started the current scrub
   * session; or
   *  - (3) the message epoch is from a previous interval; or
   *  - (4) the 'abort' configuration flags were set.
   *
   *  For (1) & (2) - teh incoming message is discarded, w/o further action.
   *
   *  For (3): (see check_interval() for a full description) if we have not reacted yet
   *  to this specific new interval, we do now:
   *  - replica reservations are silently discarded (we count on the replicas to notice
   *        the interval change and un-reserve themselves);
   *  - the scrubbing is halted.
   *
   *  For (4): the message will be discarded, but also:
   *    if this is the first time we've noticed the 'abort' request, we perform the abort.
   *
   *  \returns should the incoming event be processed?
   */
  bool is_message_relevant(epoch_t epoch_to_verify);

  /**
   * check the 'no scrub' configuration options.
   */
  [[nodiscard]] bool should_abort() const;

  /**
   * Check the 'no scrub' configuration flags.
   *
   * Reset everything if the abort was not handled before.
   * @returns false if the message was discarded due to abort flag.
   */
  [[nodiscard]] bool verify_against_abort(epoch_t epoch_to_verify);

  [[nodiscard]] bool check_interval(epoch_t epoch_to_verify);

  epoch_t m_last_aborted{};  // last time we've noticed a request to abort

  /**
   * return true if any inconsistency/missing is repaired, false otherwise
   */
  [[nodiscard]] bool scrub_process_inconsistent();

  void scrub_compare_maps();

  bool m_needs_sleep{true};  ///< should we sleep before being rescheduled? always
			     ///< 'true', unless we just got out of a sleep period

  utime_t m_sleep_started_at;


  // 'optional', as 'ReplicaReservations' & 'LocalReservation' are 'RAII-designed'
  // to guarantee un-reserving when deleted.
  std::optional<Scrub::ReplicaReservations> m_reservations;
  std::optional<Scrub::LocalReservation> m_local_osd_resource;

  /// the 'remote' resource we, as a replica, grant our Primary when it is scrubbing
  std::optional<Scrub::ReservedByRemotePrimary> m_remote_osd_resource;

  void cleanup_on_finish();  // scrub_clear_state() as called for a Primary when
			     // Active->NotActive

 protected:
  PG* const m_pg;

  /**
   * the derivative-specific scrub-finishing touches:
   */
  virtual void _scrub_finish() {}

  /**
   * Validate consistency of the object info and snap sets.
   */
  virtual void scrub_snapshot_metadata(ScrubMap& map, const missing_map_t& missing_digest)
  {}

  // common code used by build_primary_map_chunk() and build_replica_map_chunk():
  int build_scrub_map_chunk(ScrubMap& map,  // primary or replica?
			    ScrubMapBuilder& pos,
			    hobject_t start,
			    hobject_t end,
			    bool deep);

  std::unique_ptr<Scrub::ScrubMachine> m_fsm;
  const spg_t m_pg_id;	///< a local copy of m_pg->pg_id
  OSDService* const m_osds;
  const pg_shard_t m_pg_whoami;	 ///< a local copy of m_pg->pg_whoami;

  epoch_t m_interval_start{0};  ///< interval's 'from' of when scrubbing was first scheduled
  /*
   * the exact epoch when the scrubbing actually started (started here - cleared checks
   *  for no-scrub conf). Incoming events are verified against this, with stale events
   *  discarded.
   */
  epoch_t m_epoch_start{0};  ///< the actual epoch when scrubbing started

  /**
   *  (replica) a tag identifying a specific scrub "session". Incremented whenever the
   *  Primary releases the replica scrub resources.
   *  When the scrub session is terminated (even if the interval remains unchanged, as
   *  might happen following an asok no-scrub command), stale scrub-resched messages
   *  triggered by the backend will be discarded.
   */
  Scrub::act_token_t m_current_token{1};

  scrub_flags_t m_flags;

  bool m_active{false};

  /**
   * a flag designed to prevent the initiation of a second scrub on a PG for which scrubbing
   * has been initiated.
   *
   * set once scrubbing was initiated (i.e. - even before the FSM event that
   * will trigger a state-change out of Inactive was handled), and only reset
   * once the FSM is back in Inactive.
   * In other words - its ON period encompasses:
   *   - the time period covered today by 'queued', and
   *   - the time when m_active is set, and
   *   - all the time from scrub_finish() calling update_stats() till the
   *     FSM handles the 'finished' event
   *
   * Compared with 'm_active', this flag is asserted earlier  and remains ON for longer.
   */
  bool m_queued_or_active{false};

  eversion_t m_subset_last_update{};

  std::unique_ptr<Scrub::Store> m_store;

  int num_digest_updates_pending{0};
  hobject_t m_start, m_end;  ///< note: half-closed: [start,end)

  /// Returns reference to current osdmap
  const OSDMapRef& get_osdmap() const;

  /// Returns epoch of current osdmap
  epoch_t get_osdmap_epoch() const { return get_osdmap()->get_epoch(); }

  CephContext* get_pg_cct() const { return m_pg->cct; }

  // collected statistics
  int m_shallow_errors{0};
  int m_deep_errors{0};
  int m_fixed_count{0};

  /// Maps from objects with errors to missing peers
  HobjToShardSetMapping m_missing;

 protected:
  /**
   * 'm_is_deep' - is the running scrub a deep one?
   *
   * Note that most of the code directly checks PG_STATE_DEEP_SCRUB, which is
   * primary-only (and is set earlier - when scheduling the scrub). 'm_is_deep' is
   * meaningful both for the primary and the replicas, and is used as a parameter when
   * building the scrub maps.
   */
  bool m_is_deep{false};

  /**
   * If set: affects the backend & scrubber-backend functions called after all
   * scrub maps are available.
   *
   * Replaces code that directly checks PG_STATE_REPAIR (which was meant to be
   * a "user facing" status display only).
   */
  bool m_is_repair{false};

  /**
   * User-readable summary of the scrubber's current mode of operation. Used for
   * both osd.*.log and the cluster log.
   * One of:
   *    "repair"
   *    "deep-scrub",
   *    "scrub
   *
   * Note: based on PG_STATE_REPAIR, and not on m_is_repair. I.e. for
   * auto_repair will show as "deep-scrub" and not as "repair" (until the first error
   * is detected).
   */
  std::string_view m_mode_desc;

  void update_op_mode_text();

private:

  /**
   * initiate a deep-scrub after the current scrub ended with errors.
   */
  void request_rescrubbing(requested_scrub_t& req_flags);

  /*
   * Select a range of objects to scrub.
   *
   * By:
   * - setting tentative range based on conf and divisor
   * - requesting a partial list of elements from the backend;
   * - handling some head/clones issues
   *
   * The selected range is set directly into 'm_start' and 'm_end'
   */
  bool select_range();

  std::list<Context*> m_callbacks;

  /**
   * send a replica (un)reservation request to the acting set
   *
   * @param opcode - one of MOSDScrubReserve::REQUEST
   *                  or MOSDScrubReserve::RELEASE
   */
  void message_all_replicas(int32_t opcode, std::string_view op_text);

  hobject_t m_max_end;	///< Largest end that may have been sent to replicas
  ScrubMap m_primary_scrubmap;
  ScrubMapBuilder m_primary_scrubmap_pos;

  std::map<pg_shard_t, ScrubMap> m_received_maps;

  /// Cleaned std::map pending snap metadata scrub
  ScrubMap m_cleaned_meta_map;

  void _request_scrub_map(pg_shard_t replica,
			  eversion_t version,
			  hobject_t start,
			  hobject_t end,
			  bool deep,
			  bool allow_preemption);


  Scrub::MapsCollectionStatus m_maps_status;

  omap_stat_t m_omap_stats = (const struct omap_stat_t){0};

  /// Maps from objects with errors to inconsistent peers
  HobjToShardSetMapping m_inconsistent;

  /// Maps from object with errors to good peers
  std::map<hobject_t, std::list<std::pair<ScrubMap::object, pg_shard_t>>> m_authoritative;

  // ------------ members used if we are a replica

  epoch_t m_replica_min_epoch;	///< the min epoch needed to handle this message

  ScrubMapBuilder replica_scrubmap_pos;
  ScrubMap replica_scrubmap;

  /**
   * we mark the request priority as it arrived. It influences the queuing priority
   * when we wait for local updates
   */
  Scrub::scrub_prio_t m_replica_request_priority;

  /**
   * the 'preemption' "state-machine".
   * Note: I was considering an orthogonal sub-machine implementation, but as
   * the state diagram is extremely simple, the added complexity wasn't justified.
   */
  class preemption_data_t : public Scrub::preemption_t {
   public:
    preemption_data_t(PG* pg);	// the PG access is used for conf access (and logs)

    [[nodiscard]] bool is_preemptable() const final { return m_preemptable; }

    bool do_preempt() final
    {
      if (m_preempted || !m_preemptable)
	return false;

      std::lock_guard<std::mutex> lk{m_preemption_lock};
      if (!m_preemptable)
	return false;

      m_preempted = true;
      return true;
    }

    /// same as 'do_preempt()' but w/o checks (as once a replica
    /// was preempted, we cannot continue)
    void replica_preempted() { m_preempted = true; }

    void enable_preemption()
    {
      std::lock_guard<std::mutex> lk{m_preemption_lock};
      if (are_preemptions_left() && !m_preempted) {
	m_preemptable = true;
      }
    }

    /// used by a replica to set preemptability state according to the Primary's request
    void force_preemptability(bool is_allowed)
    {
      // note: no need to lock for a replica
      m_preempted = false;
      m_preemptable = is_allowed;
    }

    bool disable_and_test() final
    {
      std::lock_guard<std::mutex> lk{m_preemption_lock};
      m_preemptable = false;
      return m_preempted;
    }

    [[nodiscard]] bool was_preempted() const { return m_preempted; }

    [[nodiscard]] size_t chunk_divisor() const { return m_size_divisor; }

    void reset();

    void adjust_parameters() final
    {
      std::lock_guard<std::mutex> lk{m_preemption_lock};

      if (m_preempted) {
	m_preempted = false;
	m_preemptable = adjust_left();
      } else {
	m_preemptable = are_preemptions_left();
      }
    }

   private:
    PG* m_pg;
    mutable std::mutex m_preemption_lock;
    bool m_preemptable{false};
    bool m_preempted{false};
    int m_left;
    size_t m_size_divisor{1};
    bool are_preemptions_left() const { return m_left > 0; }

    bool adjust_left()
    {
      if (m_left > 0) {
	--m_left;
	m_size_divisor *= 2;
      }
      return m_left > 0;
    }
  };

  preemption_data_t preemption_data;
};