summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/rate_limiter.cc
blob: b1eefe620127d06aa99a62b9e4701e757d0671a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "util/rate_limiter.h"
#include "monitoring/statistics.h"
#include "port/port.h"
#include "rocksdb/env.h"
#include "test_util/sync_point.h"
#include "util/aligned_buffer.h"

namespace ROCKSDB_NAMESPACE {

size_t RateLimiter::RequestToken(size_t bytes, size_t alignment,
                                 Env::IOPriority io_priority, Statistics* stats,
                                 RateLimiter::OpType op_type) {
  if (io_priority < Env::IO_TOTAL && IsRateLimited(op_type)) {
    bytes = std::min(bytes, static_cast<size_t>(GetSingleBurstBytes()));

    if (alignment > 0) {
      // Here we may actually require more than burst and block
      // but we can not write less than one page at a time on direct I/O
      // thus we may want not to use ratelimiter
      bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
    }
    Request(bytes, io_priority, stats, op_type);
  }
  return bytes;
}

// Pending request
struct GenericRateLimiter::Req {
  explicit Req(int64_t _bytes, port::Mutex* _mu)
      : request_bytes(_bytes), bytes(_bytes), cv(_mu), granted(false) {}
  int64_t request_bytes;
  int64_t bytes;
  port::CondVar cv;
  bool granted;
};

GenericRateLimiter::GenericRateLimiter(int64_t rate_bytes_per_sec,
                                       int64_t refill_period_us,
                                       int32_t fairness, RateLimiter::Mode mode,
                                       Env* env, bool auto_tuned)
    : RateLimiter(mode),
      refill_period_us_(refill_period_us),
      rate_bytes_per_sec_(auto_tuned ? rate_bytes_per_sec / 2
                                     : rate_bytes_per_sec),
      refill_bytes_per_period_(
          CalculateRefillBytesPerPeriod(rate_bytes_per_sec_)),
      env_(env),
      stop_(false),
      exit_cv_(&request_mutex_),
      requests_to_wait_(0),
      available_bytes_(0),
      next_refill_us_(NowMicrosMonotonic(env_)),
      fairness_(fairness > 100 ? 100 : fairness),
      rnd_((uint32_t)time(nullptr)),
      leader_(nullptr),
      auto_tuned_(auto_tuned),
      num_drains_(0),
      prev_num_drains_(0),
      max_bytes_per_sec_(rate_bytes_per_sec),
      tuned_time_(NowMicrosMonotonic(env_)) {
  total_requests_[0] = 0;
  total_requests_[1] = 0;
  total_bytes_through_[0] = 0;
  total_bytes_through_[1] = 0;
}

GenericRateLimiter::~GenericRateLimiter() {
  MutexLock g(&request_mutex_);
  stop_ = true;
  requests_to_wait_ = static_cast<int32_t>(queue_[Env::IO_LOW].size() +
                                           queue_[Env::IO_HIGH].size());
  for (auto& r : queue_[Env::IO_HIGH]) {
    r->cv.Signal();
  }
  for (auto& r : queue_[Env::IO_LOW]) {
    r->cv.Signal();
  }
  while (requests_to_wait_ > 0) {
    exit_cv_.Wait();
  }
}

// This API allows user to dynamically change rate limiter's bytes per second.
void GenericRateLimiter::SetBytesPerSecond(int64_t bytes_per_second) {
  assert(bytes_per_second > 0);
  rate_bytes_per_sec_ = bytes_per_second;
  refill_bytes_per_period_.store(
      CalculateRefillBytesPerPeriod(bytes_per_second),
      std::memory_order_relaxed);
}

void GenericRateLimiter::Request(int64_t bytes, const Env::IOPriority pri,
                                 Statistics* stats) {
  assert(bytes <= refill_bytes_per_period_.load(std::memory_order_relaxed));
  TEST_SYNC_POINT("GenericRateLimiter::Request");
  TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:1",
                           &rate_bytes_per_sec_);
  MutexLock g(&request_mutex_);

  if (auto_tuned_) {
    static const int kRefillsPerTune = 100;
    std::chrono::microseconds now(NowMicrosMonotonic(env_));
    if (now - tuned_time_ >=
        kRefillsPerTune * std::chrono::microseconds(refill_period_us_)) {
      Tune();
    }
  }

  if (stop_) {
    return;
  }

  ++total_requests_[pri];

  if (available_bytes_ >= bytes) {
    // Refill thread assigns quota and notifies requests waiting on
    // the queue under mutex. So if we get here, that means nobody
    // is waiting?
    available_bytes_ -= bytes;
    total_bytes_through_[pri] += bytes;
    return;
  }

  // Request cannot be satisfied at this moment, enqueue
  Req r(bytes, &request_mutex_);
  queue_[pri].push_back(&r);

  do {
    bool timedout = false;
    // Leader election, candidates can be:
    // (1) a new incoming request,
    // (2) a previous leader, whose quota has not been not assigned yet due
    //     to lower priority
    // (3) a previous waiter at the front of queue, who got notified by
    //     previous leader
    if (leader_ == nullptr &&
        ((!queue_[Env::IO_HIGH].empty() &&
            &r == queue_[Env::IO_HIGH].front()) ||
         (!queue_[Env::IO_LOW].empty() &&
            &r == queue_[Env::IO_LOW].front()))) {
      leader_ = &r;
      int64_t delta = next_refill_us_ - NowMicrosMonotonic(env_);
      delta = delta > 0 ? delta : 0;
      if (delta == 0) {
        timedout = true;
      } else {
        int64_t wait_until = env_->NowMicros() + delta;
        RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
        ++num_drains_;
        timedout = r.cv.TimedWait(wait_until);
      }
    } else {
      // Not at the front of queue or an leader has already been elected
      r.cv.Wait();
    }

    // request_mutex_ is held from now on
    if (stop_) {
      --requests_to_wait_;
      exit_cv_.Signal();
      return;
    }

    // Make sure the waken up request is always the header of its queue
    assert(r.granted ||
           (!queue_[Env::IO_HIGH].empty() &&
            &r == queue_[Env::IO_HIGH].front()) ||
           (!queue_[Env::IO_LOW].empty() &&
            &r == queue_[Env::IO_LOW].front()));
    assert(leader_ == nullptr ||
           (!queue_[Env::IO_HIGH].empty() &&
            leader_ == queue_[Env::IO_HIGH].front()) ||
           (!queue_[Env::IO_LOW].empty() &&
            leader_ == queue_[Env::IO_LOW].front()));

    if (leader_ == &r) {
      // Waken up from TimedWait()
      if (timedout) {
        // Time to do refill!
        Refill();

        // Re-elect a new leader regardless. This is to simplify the
        // election handling.
        leader_ = nullptr;

        // Notify the header of queue if current leader is going away
        if (r.granted) {
          // Current leader already got granted with quota. Notify header
          // of waiting queue to participate next round of election.
          assert((queue_[Env::IO_HIGH].empty() ||
                    &r != queue_[Env::IO_HIGH].front()) &&
                 (queue_[Env::IO_LOW].empty() ||
                    &r != queue_[Env::IO_LOW].front()));
          if (!queue_[Env::IO_HIGH].empty()) {
            queue_[Env::IO_HIGH].front()->cv.Signal();
          } else if (!queue_[Env::IO_LOW].empty()) {
            queue_[Env::IO_LOW].front()->cv.Signal();
          }
          // Done
          break;
        }
      } else {
        // Spontaneous wake up, need to continue to wait
        assert(!r.granted);
        leader_ = nullptr;
      }
    } else {
      // Waken up by previous leader:
      // (1) if requested quota is granted, it is done.
      // (2) if requested quota is not granted, this means current thread
      // was picked as a new leader candidate (previous leader got quota).
      // It needs to participate leader election because a new request may
      // come in before this thread gets waken up. So it may actually need
      // to do Wait() again.
      assert(!timedout);
    }
  } while (!r.granted);
}

void GenericRateLimiter::Refill() {
  TEST_SYNC_POINT("GenericRateLimiter::Refill");
  next_refill_us_ = NowMicrosMonotonic(env_) + refill_period_us_;
  // Carry over the left over quota from the last period
  auto refill_bytes_per_period =
      refill_bytes_per_period_.load(std::memory_order_relaxed);
  if (available_bytes_ < refill_bytes_per_period) {
    available_bytes_ += refill_bytes_per_period;
  }

  int use_low_pri_first = rnd_.OneIn(fairness_) ? 0 : 1;
  for (int q = 0; q < 2; ++q) {
    auto use_pri = (use_low_pri_first == q) ? Env::IO_LOW : Env::IO_HIGH;
    auto* queue = &queue_[use_pri];
    while (!queue->empty()) {
      auto* next_req = queue->front();
      if (available_bytes_ < next_req->request_bytes) {
        // avoid starvation
        next_req->request_bytes -= available_bytes_;
        available_bytes_ = 0;
        break;
      }
      available_bytes_ -= next_req->request_bytes;
      next_req->request_bytes = 0;
      total_bytes_through_[use_pri] += next_req->bytes;
      queue->pop_front();

      next_req->granted = true;
      if (next_req != leader_) {
        // Quota granted, signal the thread
        next_req->cv.Signal();
      }
    }
  }
}

int64_t GenericRateLimiter::CalculateRefillBytesPerPeriod(
    int64_t rate_bytes_per_sec) {
  if (port::kMaxInt64 / rate_bytes_per_sec < refill_period_us_) {
    // Avoid unexpected result in the overflow case. The result now is still
    // inaccurate but is a number that is large enough.
    return port::kMaxInt64 / 1000000;
  } else {
    return std::max(kMinRefillBytesPerPeriod,
                    rate_bytes_per_sec * refill_period_us_ / 1000000);
  }
}

Status GenericRateLimiter::Tune() {
  const int kLowWatermarkPct = 50;
  const int kHighWatermarkPct = 90;
  const int kAdjustFactorPct = 5;
  // computed rate limit will be in
  // `[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]`.
  const int kAllowedRangeFactor = 20;

  std::chrono::microseconds prev_tuned_time = tuned_time_;
  tuned_time_ = std::chrono::microseconds(NowMicrosMonotonic(env_));

  int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
                               std::chrono::microseconds(refill_period_us_) -
                               std::chrono::microseconds(1)) /
                              std::chrono::microseconds(refill_period_us_);
  // We tune every kRefillsPerTune intervals, so the overflow and division-by-
  // zero conditions should never happen.
  assert(num_drains_ - prev_num_drains_ <= port::kMaxInt64 / 100);
  assert(elapsed_intervals > 0);
  int64_t drained_pct =
      (num_drains_ - prev_num_drains_) * 100 / elapsed_intervals;

  int64_t prev_bytes_per_sec = GetBytesPerSecond();
  int64_t new_bytes_per_sec;
  if (drained_pct == 0) {
    new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;
  } else if (drained_pct < kLowWatermarkPct) {
    // sanitize to prevent overflow
    int64_t sanitized_prev_bytes_per_sec =
        std::min(prev_bytes_per_sec, port::kMaxInt64 / 100);
    new_bytes_per_sec =
        std::max(max_bytes_per_sec_ / kAllowedRangeFactor,
                 sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
  } else if (drained_pct > kHighWatermarkPct) {
    // sanitize to prevent overflow
    int64_t sanitized_prev_bytes_per_sec = std::min(
        prev_bytes_per_sec, port::kMaxInt64 / (100 + kAdjustFactorPct));
    new_bytes_per_sec =
        std::min(max_bytes_per_sec_,
                 sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
  } else {
    new_bytes_per_sec = prev_bytes_per_sec;
  }
  if (new_bytes_per_sec != prev_bytes_per_sec) {
    SetBytesPerSecond(new_bytes_per_sec);
  }
  num_drains_ = prev_num_drains_;
  return Status::OK();
}

RateLimiter* NewGenericRateLimiter(
    int64_t rate_bytes_per_sec, int64_t refill_period_us /* = 100 * 1000 */,
    int32_t fairness /* = 10 */,
    RateLimiter::Mode mode /* = RateLimiter::Mode::kWritesOnly */,
    bool auto_tuned /* = false */) {
  assert(rate_bytes_per_sec > 0);
  assert(refill_period_us > 0);
  assert(fairness > 0);
  return new GenericRateLimiter(rate_bytes_per_sec, refill_period_us, fairness,
                                mode, Env::Default(), auto_tuned);
}

}  // namespace ROCKSDB_NAMESPACE