summaryrefslogtreecommitdiffstats
path: root/src/seastar/demos/scheduling_group_demo.cc
blob: 8e1314c66a3fe264b0bc966af21c4a276646d74c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * This file is open source software, licensed to you under the terms
 * of the Apache License, Version 2.0 (the "License").  See the NOTICE file
 * distributed with this work for additional information regarding copyright
 * ownership.  You may not use this file except in compliance with the License.
 *
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
/*
 * Copyright (C) 2016 Scylla DB Ltd
 */


#include <seastar/core/app-template.hh>
#include <seastar/core/future.hh>
#include <seastar/core/scheduling.hh>
#include <seastar/core/thread.hh>
#include <seastar/core/loop.hh>
#include <seastar/core/when_all.hh>
#include <seastar/core/with_scheduling_group.hh>
#include <seastar/core/condition-variable.hh>
#include <seastar/util/defer.hh>
#include <fmt/printf.h>
#include <chrono>
#include <cmath>
#include <boost/range/irange.hpp>

using namespace seastar;
using namespace std::chrono_literals;

template <typename Func, typename Duration>
future<>
compute_intensive_task(Duration duration, unsigned& counter, Func func) {
    auto end = std::chrono::steady_clock::now() + duration;
    while (std::chrono::steady_clock::now() < end) {
        func();
    }
    ++counter;
    return make_ready_future<>();
}

future<>
heavy_task(unsigned& counter) {
    return compute_intensive_task(1ms, counter, [] {
        static thread_local double x = 1;
        x = std::exp(x) / 3;
    });
}

future<>
light_task(unsigned& counter) {
    return compute_intensive_task(100us, counter, [] {
        static thread_local double x = 0.1;
        x = std::log(x + 1);
    });
}

future<>
medium_task(unsigned& counter) {
    return compute_intensive_task(400us, counter, [] {
        static thread_local double x = 0.1;
        x = std::cos(x);
    });
}

using done_func = std::function<bool ()>;

future<>
run_compute_intensive_tasks(seastar::scheduling_group sg, done_func done, unsigned concurrency, unsigned& counter, std::function<future<> (unsigned& counter)> task) {
    return seastar::async([task = std::move(task), sg, concurrency, done, &counter] () mutable {
        while (!done()) {
            parallel_for_each(boost::irange(0u, concurrency), [task, sg, &counter] (unsigned i) mutable {
                return with_scheduling_group(sg, [task, &counter] {
                    return task(counter);
                });
            }).get();
            thread::maybe_yield();
        }
    });
}

future<>
run_compute_intensive_tasks_in_threads(seastar::scheduling_group sg, done_func done, unsigned concurrency, unsigned& counter, std::function<future<> (unsigned& counter)> task) {
    auto attr = seastar::thread_attributes();
    attr.sched_group = sg;
    return parallel_for_each(boost::irange(0u, concurrency), [attr, done, &counter, task] (unsigned i) {
        return seastar::async(attr, [done, &counter, task] {
            while (!done()) {
                task(counter).get();
                thread::maybe_yield();
            }
        });
    });
}

future<>
run_with_duty_cycle(float utilization, std::chrono::steady_clock::duration period, done_func done, std::function<future<> (done_func done)> task) {
    return seastar::async([=] {
        bool duty_toggle = true;
        auto t0 = std::chrono::steady_clock::now();
        condition_variable cv;
        timer<> tmr_on([&] { duty_toggle = true; cv.signal(); });
        timer<> tmr_off([&] { duty_toggle = false; });
        tmr_on.arm(t0, period);
        tmr_off.arm(t0 + std::chrono::duration_cast<decltype(t0)::duration>(period * utilization), period);
        auto combined_done = [&] {
            return done() || !duty_toggle;
        };
        while (!done()) {
            while (!combined_done()) {
                task(std::cref(combined_done)).get();
                thread::maybe_yield();
            }
            cv.wait([&] {
                return done() || duty_toggle;
            }).get();
        }
        tmr_on.cancel();
        tmr_off.cancel();
    });
}

#include <fenv.h>

template <typename T>
auto var_fn(T& var) {
    return [&var] { return var; };
}

int main(int ac, char** av) {
    app_template app;
    return app.run(ac, av, [] {
        return seastar::async([] {
            auto sg100 = seastar::create_scheduling_group("sg100", 100).get0();
            auto ksg100 = seastar::defer([&] { seastar::destroy_scheduling_group(sg100).get(); });
            auto sg20 = seastar::create_scheduling_group("sg20", 20).get0();
            auto ksg20 = seastar::defer([&] { seastar::destroy_scheduling_group(sg20).get(); });
            auto sg50 = seastar::create_scheduling_group("sg50", 50).get0();
            auto ksg50 = seastar::defer([&] { seastar::destroy_scheduling_group(sg50).get(); });

            bool done = false;
            auto end = timer<>([&done] {
                done = true;
            });

            end.arm(10s);
            unsigned ctr100 = 0, ctr20 = 0, ctr50 = 0;
            fmt::print("running three scheduling groups with 100% duty cycle each:\n");
            when_all(
                    run_compute_intensive_tasks(sg100, var_fn(done), 5, ctr100, heavy_task),
                    run_compute_intensive_tasks(sg20, var_fn(done), 3, ctr20, light_task),
                    run_compute_intensive_tasks_in_threads(sg50, var_fn(done), 2, ctr50, medium_task)
                    ).get();
            fmt::print("{:10} {:15} {:10} {:12} {:8}\n", "shares", "task_time (us)", "executed", "runtime (ms)", "vruntime");
            fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 100, 1000, ctr100, ctr100 * 1000 / 1000, ctr100 * 1000 / 1000 / 100.);
            fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 20, 100, ctr20, ctr20 * 100 / 1000, ctr20 * 100 / 1000 / 20.);
            fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 50, 400, ctr50, ctr50 * 400 / 1000, ctr50 * 400 / 1000 / 50.);
            fmt::print("\n");

            fmt::print("running two scheduling groups with 100%/50% duty cycles (period=1s:\n");
            unsigned ctr100_2 = 0, ctr50_2 = 0;
            done = false;
            end.arm(10s);
            when_all(
                    run_compute_intensive_tasks(sg50, var_fn(done), 5, ctr50_2, heavy_task),
                    run_with_duty_cycle(0.5, 1s, var_fn(done), [=, &ctr100_2] (done_func done) {
                        return run_compute_intensive_tasks(sg100, done, 4, ctr100_2, heavy_task);
                    })
            ).get();
            fmt::print("{:10} {:10} {:15} {:10} {:12} {:8}\n", "shares", "duty", "task_time (us)", "executed", "runtime (ms)", "vruntime");
            fmt::print("{:10d} {:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 100, 50, 1000, ctr100_2, ctr100_2 * 1000 / 1000, ctr100_2 * 1000 / 1000 / 100.);
            fmt::print("{:10d} {:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 50, 100, 400, ctr50_2, ctr50_2 * 1000 / 1000, ctr50_2 * 1000 / 1000 / 50.);

            return 0;
        });
    });
}