1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Ericsson AB
*/
#include "dsw_evdev.h"
#ifdef DSW_SORT_DEQUEUED
#include "dsw_sort.h"
#endif
#include <stdbool.h>
#include <string.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_memcpy.h>
#include <rte_random.h>
static bool
dsw_port_acquire_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
int32_t inflight_credits = port->inflight_credits;
int32_t missing_credits = credits - inflight_credits;
int32_t total_on_loan;
int32_t available;
int32_t acquired_credits;
int32_t new_total_on_loan;
if (likely(missing_credits <= 0)) {
port->inflight_credits -= credits;
return true;
}
total_on_loan = rte_atomic32_read(&dsw->credits_on_loan);
available = dsw->max_inflight - total_on_loan;
acquired_credits = RTE_MAX(missing_credits, DSW_PORT_MIN_CREDITS);
if (available < acquired_credits)
return false;
/* This is a race, no locks are involved, and thus some other
* thread can allocate tokens in between the check and the
* allocation.
*/
new_total_on_loan = rte_atomic32_add_return(&dsw->credits_on_loan,
acquired_credits);
if (unlikely(new_total_on_loan > dsw->max_inflight)) {
/* Some other port took the last credits */
rte_atomic32_sub(&dsw->credits_on_loan, acquired_credits);
return false;
}
DSW_LOG_DP_PORT(DEBUG, port->id, "Acquired %d tokens from pool.\n",
acquired_credits);
port->inflight_credits += acquired_credits;
port->inflight_credits -= credits;
return true;
}
static void
dsw_port_return_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
port->inflight_credits += credits;
if (unlikely(port->inflight_credits > DSW_PORT_MAX_CREDITS)) {
int32_t leave_credits = DSW_PORT_MIN_CREDITS;
int32_t return_credits =
port->inflight_credits - leave_credits;
port->inflight_credits = leave_credits;
rte_atomic32_sub(&dsw->credits_on_loan, return_credits);
DSW_LOG_DP_PORT(DEBUG, port->id,
"Returned %d tokens to pool.\n",
return_credits);
}
}
static void
dsw_port_enqueue_stats(struct dsw_port *port, uint16_t num_new,
uint16_t num_forward, uint16_t num_release)
{
port->new_enqueued += num_new;
port->forward_enqueued += num_forward;
port->release_enqueued += num_release;
}
static void
dsw_port_queue_enqueue_stats(struct dsw_port *source_port, uint8_t queue_id)
{
source_port->queue_enqueued[queue_id]++;
}
static void
dsw_port_dequeue_stats(struct dsw_port *port, uint16_t num)
{
port->dequeued += num;
}
static void
dsw_port_queue_dequeued_stats(struct dsw_port *source_port, uint8_t queue_id)
{
source_port->queue_dequeued[queue_id]++;
}
static void
dsw_port_load_record(struct dsw_port *port, unsigned int dequeued)
{
if (dequeued > 0 && port->busy_start == 0)
/* work period begins */
port->busy_start = rte_get_timer_cycles();
else if (dequeued == 0 && port->busy_start > 0) {
/* work period ends */
uint64_t work_period =
rte_get_timer_cycles() - port->busy_start;
port->busy_cycles += work_period;
port->busy_start = 0;
}
}
static int16_t
dsw_port_load_close_period(struct dsw_port *port, uint64_t now)
{
uint64_t passed = now - port->measurement_start;
uint64_t busy_cycles = port->busy_cycles;
if (port->busy_start > 0) {
busy_cycles += (now - port->busy_start);
port->busy_start = now;
}
int16_t load = (DSW_MAX_LOAD * busy_cycles) / passed;
port->measurement_start = now;
port->busy_cycles = 0;
port->total_busy_cycles += busy_cycles;
return load;
}
static void
dsw_port_load_update(struct dsw_port *port, uint64_t now)
{
int16_t old_load;
int16_t period_load;
int16_t new_load;
old_load = rte_atomic16_read(&port->load);
period_load = dsw_port_load_close_period(port, now);
new_load = (period_load + old_load*DSW_OLD_LOAD_WEIGHT) /
(DSW_OLD_LOAD_WEIGHT+1);
rte_atomic16_set(&port->load, new_load);
}
static void
dsw_port_consider_load_update(struct dsw_port *port, uint64_t now)
{
if (now < port->next_load_update)
return;
port->next_load_update = now + port->load_update_interval;
dsw_port_load_update(port, now);
}
static void
dsw_port_ctl_enqueue(struct dsw_port *port, struct dsw_ctl_msg *msg)
{
void *raw_msg;
memcpy(&raw_msg, msg, sizeof(*msg));
/* there's always room on the ring */
while (rte_ring_enqueue(port->ctl_in_ring, raw_msg) != 0)
rte_pause();
}
static int
dsw_port_ctl_dequeue(struct dsw_port *port, struct dsw_ctl_msg *msg)
{
void *raw_msg;
int rc;
rc = rte_ring_dequeue(port->ctl_in_ring, &raw_msg);
if (rc == 0)
memcpy(msg, &raw_msg, sizeof(*msg));
return rc;
}
static void
dsw_port_ctl_broadcast(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t type, uint8_t queue_id, uint16_t flow_hash)
{
uint16_t port_id;
struct dsw_ctl_msg msg = {
.type = type,
.originating_port_id = source_port->id,
.queue_id = queue_id,
.flow_hash = flow_hash
};
for (port_id = 0; port_id < dsw->num_ports; port_id++)
if (port_id != source_port->id)
dsw_port_ctl_enqueue(&dsw->ports[port_id], &msg);
}
static bool
dsw_port_is_flow_paused(struct dsw_port *port, uint8_t queue_id,
uint16_t flow_hash)
{
uint16_t i;
for (i = 0; i < port->paused_flows_len; i++) {
struct dsw_queue_flow *qf = &port->paused_flows[i];
if (qf->queue_id == queue_id &&
qf->flow_hash == flow_hash)
return true;
}
return false;
}
static void
dsw_port_add_paused_flow(struct dsw_port *port, uint8_t queue_id,
uint16_t paused_flow_hash)
{
port->paused_flows[port->paused_flows_len] = (struct dsw_queue_flow) {
.queue_id = queue_id,
.flow_hash = paused_flow_hash
};
port->paused_flows_len++;
}
static void
dsw_port_remove_paused_flow(struct dsw_port *port, uint8_t queue_id,
uint16_t paused_flow_hash)
{
uint16_t i;
for (i = 0; i < port->paused_flows_len; i++) {
struct dsw_queue_flow *qf = &port->paused_flows[i];
if (qf->queue_id == queue_id &&
qf->flow_hash == paused_flow_hash) {
uint16_t last_idx = port->paused_flows_len-1;
if (i != last_idx)
port->paused_flows[i] =
port->paused_flows[last_idx];
port->paused_flows_len--;
break;
}
}
}
static void
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port);
static void
dsw_port_handle_pause_flow(struct dsw_evdev *dsw, struct dsw_port *port,
uint8_t originating_port_id, uint8_t queue_id,
uint16_t paused_flow_hash)
{
struct dsw_ctl_msg cfm = {
.type = DSW_CTL_CFM,
.originating_port_id = port->id,
.queue_id = queue_id,
.flow_hash = paused_flow_hash
};
DSW_LOG_DP_PORT(DEBUG, port->id, "Pausing queue_id %d flow_hash %d.\n",
queue_id, paused_flow_hash);
/* There might be already-scheduled events belonging to the
* paused flow in the output buffers.
*/
dsw_port_flush_out_buffers(dsw, port);
dsw_port_add_paused_flow(port, queue_id, paused_flow_hash);
/* Make sure any stores to the original port's in_ring is seen
* before the ctl message.
*/
rte_smp_wmb();
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
}
static void
dsw_find_lowest_load_port(uint8_t *port_ids, uint16_t num_port_ids,
uint8_t exclude_port_id, int16_t *port_loads,
uint8_t *target_port_id, int16_t *target_load)
{
int16_t candidate_port_id = -1;
int16_t candidate_load = DSW_MAX_LOAD;
uint16_t i;
for (i = 0; i < num_port_ids; i++) {
uint8_t port_id = port_ids[i];
if (port_id != exclude_port_id) {
int16_t load = port_loads[port_id];
if (candidate_port_id == -1 ||
load < candidate_load) {
candidate_port_id = port_id;
candidate_load = load;
}
}
}
*target_port_id = candidate_port_id;
*target_load = candidate_load;
}
struct dsw_queue_flow_burst {
struct dsw_queue_flow queue_flow;
uint16_t count;
};
static inline int
dsw_cmp_burst(const void *v_burst_a, const void *v_burst_b)
{
const struct dsw_queue_flow_burst *burst_a = v_burst_a;
const struct dsw_queue_flow_burst *burst_b = v_burst_b;
int a_count = burst_a->count;
int b_count = burst_b->count;
return a_count - b_count;
}
#define DSW_QF_TO_INT(_qf) \
((int)((((_qf)->queue_id)<<16)|((_qf)->flow_hash)))
static inline int
dsw_cmp_qf(const void *v_qf_a, const void *v_qf_b)
{
const struct dsw_queue_flow *qf_a = v_qf_a;
const struct dsw_queue_flow *qf_b = v_qf_b;
return DSW_QF_TO_INT(qf_a) - DSW_QF_TO_INT(qf_b);
}
static uint16_t
dsw_sort_qfs_to_bursts(struct dsw_queue_flow *qfs, uint16_t qfs_len,
struct dsw_queue_flow_burst *bursts)
{
uint16_t i;
struct dsw_queue_flow_burst *current_burst = NULL;
uint16_t num_bursts = 0;
/* We don't need the stable property, and the list is likely
* large enough for qsort() to outperform dsw_stable_sort(),
* so we use qsort() here.
*/
qsort(qfs, qfs_len, sizeof(qfs[0]), dsw_cmp_qf);
/* arrange the (now-consecutive) events into bursts */
for (i = 0; i < qfs_len; i++) {
if (i == 0 ||
dsw_cmp_qf(&qfs[i], ¤t_burst->queue_flow) != 0) {
current_burst = &bursts[num_bursts];
current_burst->queue_flow = qfs[i];
current_burst->count = 0;
num_bursts++;
}
current_burst->count++;
}
qsort(bursts, num_bursts, sizeof(bursts[0]), dsw_cmp_burst);
return num_bursts;
}
static bool
dsw_retrieve_port_loads(struct dsw_evdev *dsw, int16_t *port_loads,
int16_t load_limit)
{
bool below_limit = false;
uint16_t i;
for (i = 0; i < dsw->num_ports; i++) {
int16_t load = rte_atomic16_read(&dsw->ports[i].load);
if (load < load_limit)
below_limit = true;
port_loads[i] = load;
}
return below_limit;
}
static bool
dsw_select_migration_target(struct dsw_evdev *dsw,
struct dsw_port *source_port,
struct dsw_queue_flow_burst *bursts,
uint16_t num_bursts, int16_t *port_loads,
int16_t max_load, struct dsw_queue_flow *target_qf,
uint8_t *target_port_id)
{
uint16_t source_load = port_loads[source_port->id];
uint16_t i;
for (i = 0; i < num_bursts; i++) {
struct dsw_queue_flow *qf = &bursts[i].queue_flow;
if (dsw_port_is_flow_paused(source_port, qf->queue_id,
qf->flow_hash))
continue;
struct dsw_queue *queue = &dsw->queues[qf->queue_id];
int16_t target_load;
dsw_find_lowest_load_port(queue->serving_ports,
queue->num_serving_ports,
source_port->id, port_loads,
target_port_id, &target_load);
if (target_load < source_load &&
target_load < max_load) {
*target_qf = *qf;
return true;
}
}
DSW_LOG_DP_PORT(DEBUG, source_port->id, "For the %d flows considered, "
"no target port found with load less than %d.\n",
num_bursts, DSW_LOAD_TO_PERCENT(max_load));
return false;
}
static uint8_t
dsw_schedule(struct dsw_evdev *dsw, uint8_t queue_id, uint16_t flow_hash)
{
struct dsw_queue *queue = &dsw->queues[queue_id];
uint8_t port_id;
if (queue->num_serving_ports > 1)
port_id = queue->flow_to_port_map[flow_hash];
else
/* A single-link queue, or atomic/ordered/parallel but
* with just a single serving port.
*/
port_id = queue->serving_ports[0];
DSW_LOG_DP(DEBUG, "Event with queue_id %d flow_hash %d is scheduled "
"to port %d.\n", queue_id, flow_hash, port_id);
return port_id;
}
static void
dsw_port_transmit_buffered(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id)
{
struct dsw_port *dest_port = &(dsw->ports[dest_port_id]);
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t enqueued = 0;
if (*buffer_len == 0)
return;
/* The rings are dimensioned to fit all in-flight events (even
* on a single ring), so looping will work.
*/
do {
enqueued +=
rte_event_ring_enqueue_burst(dest_port->in_ring,
buffer+enqueued,
*buffer_len-enqueued,
NULL);
} while (unlikely(enqueued != *buffer_len));
(*buffer_len) = 0;
}
static uint16_t
dsw_port_get_parallel_flow_id(struct dsw_port *port)
{
uint16_t flow_id = port->next_parallel_flow_id;
port->next_parallel_flow_id =
(port->next_parallel_flow_id + 1) % DSW_PARALLEL_FLOWS;
return flow_id;
}
static void
dsw_port_buffer_paused(struct dsw_port *port,
const struct rte_event *paused_event)
{
port->paused_events[port->paused_events_len] = *paused_event;
port->paused_events_len++;
}
static void
dsw_port_buffer_non_paused(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id, const struct rte_event *event)
{
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
if (*buffer_len == DSW_MAX_PORT_OUT_BUFFER)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
buffer[*buffer_len] = *event;
(*buffer_len)++;
}
#define DSW_FLOW_ID_BITS (24)
static uint16_t
dsw_flow_id_hash(uint32_t flow_id)
{
uint16_t hash = 0;
uint16_t offset = 0;
do {
hash ^= ((flow_id >> offset) & DSW_MAX_FLOWS_MASK);
offset += DSW_MAX_FLOWS_BITS;
} while (offset < DSW_FLOW_ID_BITS);
return hash;
}
static void
dsw_port_buffer_parallel(struct dsw_evdev *dsw, struct dsw_port *source_port,
struct rte_event event)
{
uint8_t dest_port_id;
event.flow_id = dsw_port_get_parallel_flow_id(source_port);
dest_port_id = dsw_schedule(dsw, event.queue_id,
dsw_flow_id_hash(event.flow_id));
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, &event);
}
static void
dsw_port_buffer_event(struct dsw_evdev *dsw, struct dsw_port *source_port,
const struct rte_event *event)
{
uint16_t flow_hash;
uint8_t dest_port_id;
if (unlikely(dsw->queues[event->queue_id].schedule_type ==
RTE_SCHED_TYPE_PARALLEL)) {
dsw_port_buffer_parallel(dsw, source_port, *event);
return;
}
flow_hash = dsw_flow_id_hash(event->flow_id);
if (unlikely(dsw_port_is_flow_paused(source_port, event->queue_id,
flow_hash))) {
dsw_port_buffer_paused(source_port, event);
return;
}
dest_port_id = dsw_schedule(dsw, event->queue_id, flow_hash);
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, event);
}
static void
dsw_port_flush_paused_events(struct dsw_evdev *dsw,
struct dsw_port *source_port,
uint8_t queue_id, uint16_t paused_flow_hash)
{
uint16_t paused_events_len = source_port->paused_events_len;
struct rte_event paused_events[paused_events_len];
uint8_t dest_port_id;
uint16_t i;
if (paused_events_len == 0)
return;
if (dsw_port_is_flow_paused(source_port, queue_id, paused_flow_hash))
return;
rte_memcpy(paused_events, source_port->paused_events,
paused_events_len * sizeof(struct rte_event));
source_port->paused_events_len = 0;
dest_port_id = dsw_schedule(dsw, queue_id, paused_flow_hash);
for (i = 0; i < paused_events_len; i++) {
struct rte_event *event = &paused_events[i];
uint16_t flow_hash;
flow_hash = dsw_flow_id_hash(event->flow_id);
if (event->queue_id == queue_id &&
flow_hash == paused_flow_hash)
dsw_port_buffer_non_paused(dsw, source_port,
dest_port_id, event);
else
dsw_port_buffer_paused(source_port, event);
}
}
static void
dsw_port_migration_stats(struct dsw_port *port)
{
uint64_t migration_latency;
migration_latency = (rte_get_timer_cycles() - port->migration_start);
port->migration_latency += migration_latency;
port->migrations++;
}
static void
dsw_port_end_migration(struct dsw_evdev *dsw, struct dsw_port *port)
{
uint8_t queue_id = port->migration_target_qf.queue_id;
uint16_t flow_hash = port->migration_target_qf.flow_hash;
port->migration_state = DSW_MIGRATION_STATE_IDLE;
port->seen_events_len = 0;
dsw_port_migration_stats(port);
if (dsw->queues[queue_id].schedule_type != RTE_SCHED_TYPE_PARALLEL) {
dsw_port_remove_paused_flow(port, queue_id, flow_hash);
dsw_port_flush_paused_events(dsw, port, queue_id, flow_hash);
}
DSW_LOG_DP_PORT(DEBUG, port->id, "Migration completed for queue_id "
"%d flow_hash %d.\n", queue_id, flow_hash);
}
static void
dsw_port_consider_migration(struct dsw_evdev *dsw,
struct dsw_port *source_port,
uint64_t now)
{
bool any_port_below_limit;
struct dsw_queue_flow *seen_events = source_port->seen_events;
uint16_t seen_events_len = source_port->seen_events_len;
struct dsw_queue_flow_burst bursts[DSW_MAX_EVENTS_RECORDED];
uint16_t num_bursts;
int16_t source_port_load;
int16_t port_loads[dsw->num_ports];
if (now < source_port->next_migration)
return;
if (dsw->num_ports == 1)
return;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Considering migration.\n");
/* Randomize interval to avoid having all threads considering
* migration at the same in point in time, which might lead to
* all choosing the same target port.
*/
source_port->next_migration = now +
source_port->migration_interval / 2 +
rte_rand() % source_port->migration_interval;
if (source_port->migration_state != DSW_MIGRATION_STATE_IDLE) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Migration already in progress.\n");
return;
}
/* For simplicity, avoid migration in the unlikely case there
* is still events to consume in the in_buffer (from the last
* migration).
*/
if (source_port->in_buffer_len > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "There are still "
"events in the input buffer.\n");
return;
}
source_port_load = rte_atomic16_read(&source_port->load);
if (source_port_load < DSW_MIN_SOURCE_LOAD_FOR_MIGRATION) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Load %d is below threshold level %d.\n",
DSW_LOAD_TO_PERCENT(source_port_load),
DSW_LOAD_TO_PERCENT(DSW_MIN_SOURCE_LOAD_FOR_MIGRATION));
return;
}
/* Avoid starting any expensive operations (sorting etc), in
* case of a scenario with all ports above the load limit.
*/
any_port_below_limit =
dsw_retrieve_port_loads(dsw, port_loads,
DSW_MAX_TARGET_LOAD_FOR_MIGRATION);
if (!any_port_below_limit) {
DSW_LOG_DP_PORT(DEBUG, source_port->id,
"Candidate target ports are all too highly "
"loaded.\n");
return;
}
/* Sort flows into 'bursts' to allow attempting to migrating
* small (but still active) flows first - this it to avoid
* having large flows moving around the worker cores too much
* (to avoid cache misses, among other things). Of course, the
* number of recorded events (queue+flow ids) are limited, and
* provides only a snapshot, so only so many conclusions can
* be drawn from this data.
*/
num_bursts = dsw_sort_qfs_to_bursts(seen_events, seen_events_len,
bursts);
/* For non-big-little systems, there's no point in moving the
* only (known) flow.
*/
if (num_bursts < 2) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Only a single flow "
"queue_id %d flow_hash %d has been seen.\n",
bursts[0].queue_flow.queue_id,
bursts[0].queue_flow.flow_hash);
return;
}
/* The strategy is to first try to find a flow to move to a
* port with low load (below the migration-attempt
* threshold). If that fails, we try to find a port which is
* below the max threshold, and also less loaded than this
* port is.
*/
if (!dsw_select_migration_target(dsw, source_port, bursts, num_bursts,
port_loads,
DSW_MIN_SOURCE_LOAD_FOR_MIGRATION,
&source_port->migration_target_qf,
&source_port->migration_target_port_id)
&&
!dsw_select_migration_target(dsw, source_port, bursts, num_bursts,
port_loads,
DSW_MAX_TARGET_LOAD_FOR_MIGRATION,
&source_port->migration_target_qf,
&source_port->migration_target_port_id))
return;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Migrating queue_id %d "
"flow_hash %d from port %d to port %d.\n",
source_port->migration_target_qf.queue_id,
source_port->migration_target_qf.flow_hash,
source_port->id, source_port->migration_target_port_id);
/* We have a winner. */
source_port->migration_state = DSW_MIGRATION_STATE_PAUSING;
source_port->migration_start = rte_get_timer_cycles();
/* No need to go through the whole pause procedure for
* parallel queues, since atomic/ordered semantics need not to
* be maintained.
*/
if (dsw->queues[source_port->migration_target_qf.queue_id].schedule_type
== RTE_SCHED_TYPE_PARALLEL) {
uint8_t queue_id = source_port->migration_target_qf.queue_id;
uint16_t flow_hash = source_port->migration_target_qf.flow_hash;
uint8_t dest_port_id = source_port->migration_target_port_id;
/* Single byte-sized stores are always atomic. */
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
dest_port_id;
rte_smp_wmb();
dsw_port_end_migration(dsw, source_port);
return;
}
/* There might be 'loopback' events already scheduled in the
* output buffers.
*/
dsw_port_flush_out_buffers(dsw, source_port);
dsw_port_add_paused_flow(source_port,
source_port->migration_target_qf.queue_id,
source_port->migration_target_qf.flow_hash);
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_PAUS_REQ,
source_port->migration_target_qf.queue_id,
source_port->migration_target_qf.flow_hash);
source_port->cfm_cnt = 0;
}
static void
dsw_port_flush_paused_events(struct dsw_evdev *dsw,
struct dsw_port *source_port,
uint8_t queue_id, uint16_t paused_flow_hash);
static void
dsw_port_handle_unpause_flow(struct dsw_evdev *dsw, struct dsw_port *port,
uint8_t originating_port_id, uint8_t queue_id,
uint16_t paused_flow_hash)
{
struct dsw_ctl_msg cfm = {
.type = DSW_CTL_CFM,
.originating_port_id = port->id,
.queue_id = queue_id,
.flow_hash = paused_flow_hash
};
DSW_LOG_DP_PORT(DEBUG, port->id, "Un-pausing queue_id %d flow_hash %d.\n",
queue_id, paused_flow_hash);
dsw_port_remove_paused_flow(port, queue_id, paused_flow_hash);
rte_smp_rmb();
dsw_port_ctl_enqueue(&dsw->ports[originating_port_id], &cfm);
dsw_port_flush_paused_events(dsw, port, queue_id, paused_flow_hash);
}
#define FORWARD_BURST_SIZE (32)
static void
dsw_port_forward_migrated_flow(struct dsw_port *source_port,
struct rte_event_ring *dest_ring,
uint8_t queue_id,
uint16_t flow_hash)
{
uint16_t events_left;
/* Control ring message should been seen before the ring count
* is read on the port's in_ring.
*/
rte_smp_rmb();
events_left = rte_event_ring_count(source_port->in_ring);
while (events_left > 0) {
uint16_t in_burst_size =
RTE_MIN(FORWARD_BURST_SIZE, events_left);
struct rte_event in_burst[in_burst_size];
uint16_t in_len;
uint16_t i;
in_len = rte_event_ring_dequeue_burst(source_port->in_ring,
in_burst,
in_burst_size, NULL);
/* No need to care about bursting forwarded events (to
* the destination port's in_ring), since migration
* doesn't happen very often, and also the majority of
* the dequeued events will likely *not* be forwarded.
*/
for (i = 0; i < in_len; i++) {
struct rte_event *e = &in_burst[i];
if (e->queue_id == queue_id &&
dsw_flow_id_hash(e->flow_id) == flow_hash) {
while (rte_event_ring_enqueue_burst(dest_ring,
e, 1,
NULL) != 1)
rte_pause();
} else {
uint16_t last_idx = source_port->in_buffer_len;
source_port->in_buffer[last_idx] = *e;
source_port->in_buffer_len++;
}
}
events_left -= in_len;
}
}
static void
dsw_port_move_migrating_flow(struct dsw_evdev *dsw,
struct dsw_port *source_port)
{
uint8_t queue_id = source_port->migration_target_qf.queue_id;
uint16_t flow_hash = source_port->migration_target_qf.flow_hash;
uint8_t dest_port_id = source_port->migration_target_port_id;
struct dsw_port *dest_port = &dsw->ports[dest_port_id];
dsw_port_flush_out_buffers(dsw, source_port);
rte_smp_wmb();
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
dest_port_id;
dsw_port_forward_migrated_flow(source_port, dest_port->in_ring,
queue_id, flow_hash);
/* Flow table update and migration destination port's enqueues
* must be seen before the control message.
*/
rte_smp_wmb();
dsw_port_ctl_broadcast(dsw, source_port, DSW_CTL_UNPAUS_REQ, queue_id,
flow_hash);
source_port->cfm_cnt = 0;
source_port->migration_state = DSW_MIGRATION_STATE_UNPAUSING;
}
static void
dsw_port_handle_confirm(struct dsw_evdev *dsw, struct dsw_port *port)
{
port->cfm_cnt++;
if (port->cfm_cnt == (dsw->num_ports-1)) {
switch (port->migration_state) {
case DSW_MIGRATION_STATE_PAUSING:
DSW_LOG_DP_PORT(DEBUG, port->id, "Going into forwarding "
"migration state.\n");
port->migration_state = DSW_MIGRATION_STATE_FORWARDING;
break;
case DSW_MIGRATION_STATE_UNPAUSING:
dsw_port_end_migration(dsw, port);
break;
default:
RTE_ASSERT(0);
break;
}
}
}
static void
dsw_port_ctl_process(struct dsw_evdev *dsw, struct dsw_port *port)
{
struct dsw_ctl_msg msg;
/* So any table loads happens before the ring dequeue, in the
* case of a 'paus' message.
*/
rte_smp_rmb();
if (dsw_port_ctl_dequeue(port, &msg) == 0) {
switch (msg.type) {
case DSW_CTL_PAUS_REQ:
dsw_port_handle_pause_flow(dsw, port,
msg.originating_port_id,
msg.queue_id, msg.flow_hash);
break;
case DSW_CTL_UNPAUS_REQ:
dsw_port_handle_unpause_flow(dsw, port,
msg.originating_port_id,
msg.queue_id,
msg.flow_hash);
break;
case DSW_CTL_CFM:
dsw_port_handle_confirm(dsw, port);
break;
}
}
}
static void
dsw_port_note_op(struct dsw_port *port, uint16_t num_events)
{
/* To pull the control ring reasonbly often on busy ports,
* each dequeued/enqueued event is considered an 'op' too.
*/
port->ops_since_bg_task += (num_events+1);
}
static void
dsw_port_bg_process(struct dsw_evdev *dsw, struct dsw_port *port)
{
if (unlikely(port->migration_state == DSW_MIGRATION_STATE_FORWARDING &&
port->pending_releases == 0))
dsw_port_move_migrating_flow(dsw, port);
/* Polling the control ring is relatively inexpensive, and
* polling it often helps bringing down migration latency, so
* do this for every iteration.
*/
dsw_port_ctl_process(dsw, port);
/* To avoid considering migration and flushing output buffers
* on every dequeue/enqueue call, the scheduler only performs
* such 'background' tasks every nth
* (i.e. DSW_MAX_PORT_OPS_PER_BG_TASK) operation.
*/
if (unlikely(port->ops_since_bg_task >= DSW_MAX_PORT_OPS_PER_BG_TASK)) {
uint64_t now;
now = rte_get_timer_cycles();
port->last_bg = now;
/* Logic to avoid having events linger in the output
* buffer too long.
*/
dsw_port_flush_out_buffers(dsw, port);
dsw_port_consider_load_update(port, now);
dsw_port_consider_migration(dsw, port, now);
port->ops_since_bg_task = 0;
}
}
static void
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port)
{
uint16_t dest_port_id;
for (dest_port_id = 0; dest_port_id < dsw->num_ports; dest_port_id++)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
}
uint16_t
dsw_event_enqueue(void *port, const struct rte_event *ev)
{
return dsw_event_enqueue_burst(port, ev, unlikely(ev == NULL) ? 0 : 1);
}
static __rte_always_inline uint16_t
dsw_event_enqueue_burst_generic(void *port, const struct rte_event events[],
uint16_t events_len, bool op_types_known,
uint16_t num_new, uint16_t num_release,
uint16_t num_non_release)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
bool enough_credits;
uint16_t i;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Attempting to enqueue %d "
"events to port %d.\n", events_len, source_port->id);
dsw_port_bg_process(dsw, source_port);
/* XXX: For performance (=ring efficiency) reasons, the
* scheduler relies on internal non-ring buffers instead of
* immediately sending the event to the destination ring. For
* a producer that doesn't intend to produce or consume any
* more events, the scheduler provides a way to flush the
* buffer, by means of doing an enqueue of zero events. In
* addition, a port cannot be left "unattended" (e.g. unused)
* for long periods of time, since that would stall
* migration. Eventdev API extensions to provide a cleaner way
* to archieve both of these functions should be
* considered.
*/
if (unlikely(events_len == 0)) {
dsw_port_note_op(source_port, DSW_MAX_PORT_OPS_PER_BG_TASK);
return 0;
}
if (unlikely(events_len > source_port->enqueue_depth))
events_len = source_port->enqueue_depth;
dsw_port_note_op(source_port, events_len);
if (!op_types_known)
for (i = 0; i < events_len; i++) {
switch (events[i].op) {
case RTE_EVENT_OP_RELEASE:
num_release++;
break;
case RTE_EVENT_OP_NEW:
num_new++;
/* Falls through. */
default:
num_non_release++;
break;
}
}
/* Technically, we could allow the non-new events up to the
* first new event in the array into the system, but for
* simplicity reasons, we deny the whole burst if the port is
* above the water mark.
*/
if (unlikely(num_new > 0 && rte_atomic32_read(&dsw->credits_on_loan) >
source_port->new_event_threshold))
return 0;
enough_credits = dsw_port_acquire_credits(dsw, source_port,
num_non_release);
if (unlikely(!enough_credits))
return 0;
source_port->pending_releases -= num_release;
dsw_port_enqueue_stats(source_port, num_new,
num_non_release-num_new, num_release);
for (i = 0; i < events_len; i++) {
const struct rte_event *event = &events[i];
if (likely(num_release == 0 ||
event->op != RTE_EVENT_OP_RELEASE))
dsw_port_buffer_event(dsw, source_port, event);
dsw_port_queue_enqueue_stats(source_port, event->queue_id);
}
DSW_LOG_DP_PORT(DEBUG, source_port->id, "%d non-release events "
"accepted.\n", num_non_release);
return num_non_release;
}
uint16_t
dsw_event_enqueue_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, false,
0, 0, 0);
}
uint16_t
dsw_event_enqueue_new_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
events_len, 0, events_len);
}
uint16_t
dsw_event_enqueue_forward_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
0, 0, events_len);
}
uint16_t
dsw_event_dequeue(void *port, struct rte_event *events, uint64_t wait)
{
return dsw_event_dequeue_burst(port, events, 1, wait);
}
static void
dsw_port_record_seen_events(struct dsw_port *port, struct rte_event *events,
uint16_t num)
{
uint16_t i;
dsw_port_dequeue_stats(port, num);
for (i = 0; i < num; i++) {
uint16_t l_idx = port->seen_events_idx;
struct dsw_queue_flow *qf = &port->seen_events[l_idx];
struct rte_event *event = &events[i];
qf->queue_id = event->queue_id;
qf->flow_hash = dsw_flow_id_hash(event->flow_id);
port->seen_events_idx = (l_idx+1) % DSW_MAX_EVENTS_RECORDED;
dsw_port_queue_dequeued_stats(port, event->queue_id);
}
if (unlikely(port->seen_events_len != DSW_MAX_EVENTS_RECORDED))
port->seen_events_len =
RTE_MIN(port->seen_events_len + num,
DSW_MAX_EVENTS_RECORDED);
}
#ifdef DSW_SORT_DEQUEUED
#define DSW_EVENT_TO_INT(_event) \
((int)((((_event)->queue_id)<<16)|((_event)->flow_id)))
static inline int
dsw_cmp_event(const void *v_event_a, const void *v_event_b)
{
const struct rte_event *event_a = v_event_a;
const struct rte_event *event_b = v_event_b;
return DSW_EVENT_TO_INT(event_a) - DSW_EVENT_TO_INT(event_b);
}
#endif
static uint16_t
dsw_port_dequeue_burst(struct dsw_port *port, struct rte_event *events,
uint16_t num)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
dsw_port_ctl_process(dsw, source_port);
if (unlikely(port->in_buffer_len > 0)) {
uint16_t dequeued = RTE_MIN(num, port->in_buffer_len);
rte_memcpy(events, &port->in_buffer[port->in_buffer_start],
dequeued * sizeof(struct rte_event));
port->in_buffer_start += dequeued;
port->in_buffer_len -= dequeued;
if (port->in_buffer_len == 0)
port->in_buffer_start = 0;
return dequeued;
}
return rte_event_ring_dequeue_burst(port->in_ring, events, num, NULL);
}
uint16_t
dsw_event_dequeue_burst(void *port, struct rte_event *events, uint16_t num,
uint64_t wait __rte_unused)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
uint16_t dequeued;
source_port->pending_releases = 0;
dsw_port_bg_process(dsw, source_port);
if (unlikely(num > source_port->dequeue_depth))
num = source_port->dequeue_depth;
dequeued = dsw_port_dequeue_burst(source_port, events, num);
source_port->pending_releases = dequeued;
dsw_port_load_record(source_port, dequeued);
dsw_port_note_op(source_port, dequeued);
if (dequeued > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Dequeued %d events.\n",
dequeued);
dsw_port_return_credits(dsw, source_port, dequeued);
/* One potential optimization one might think of is to
* add a migration state (prior to 'pausing'), and
* only record seen events when the port is in this
* state (and transit to 'pausing' when enough events
* have been gathered). However, that schema doesn't
* seem to improve performance.
*/
dsw_port_record_seen_events(port, events, dequeued);
}
/* XXX: Assuming the port can't produce any more work,
* consider flushing the output buffer, on dequeued ==
* 0.
*/
#ifdef DSW_SORT_DEQUEUED
dsw_stable_sort(events, dequeued, sizeof(events[0]), dsw_cmp_event);
#endif
return dequeued;
}
|