1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2015-2019 Intel Corporation.
Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
==================================================
QAT documentation consists of three parts:
* Details of the symmetric and asymmetric crypto services below.
* Details of the :doc:`compression service <../compressdevs/qat_comp>`
in the compressdev drivers section.
* Details of building the common QAT infrastructure and the PMDs to support the
above services. See :ref:`building_qat` below.
Symmetric Crypto Service on QAT
-------------------------------
The QAT symmetric crypto PMD (hereafter referred to as `QAT SYM [PMD]`) provides
poll mode crypto driver support for the following hardware accelerator devices:
* ``Intel QuickAssist Technology DH895xCC``
* ``Intel QuickAssist Technology C62x``
* ``Intel QuickAssist Technology C3xxx``
* ``Intel QuickAssist Technology D15xx``
* ``Intel QuickAssist Technology P5xxx``
Features
~~~~~~~~
The QAT SYM PMD has support for:
Cipher algorithms:
* ``RTE_CRYPTO_CIPHER_3DES_CBC``
* ``RTE_CRYPTO_CIPHER_3DES_CTR``
* ``RTE_CRYPTO_CIPHER_AES128_CBC``
* ``RTE_CRYPTO_CIPHER_AES192_CBC``
* ``RTE_CRYPTO_CIPHER_AES256_CBC``
* ``RTE_CRYPTO_CIPHER_AES128_CTR``
* ``RTE_CRYPTO_CIPHER_AES192_CTR``
* ``RTE_CRYPTO_CIPHER_AES256_CTR``
* ``RTE_CRYPTO_CIPHER_AES_XTS``
* ``RTE_CRYPTO_CIPHER_SNOW3G_UEA2``
* ``RTE_CRYPTO_CIPHER_NULL``
* ``RTE_CRYPTO_CIPHER_KASUMI_F8``
* ``RTE_CRYPTO_CIPHER_DES_CBC``
* ``RTE_CRYPTO_CIPHER_AES_DOCSISBPI``
* ``RTE_CRYPTO_CIPHER_DES_DOCSISBPI``
* ``RTE_CRYPTO_CIPHER_ZUC_EEA3``
Hash algorithms:
* ``RTE_CRYPTO_AUTH_SHA1``
* ``RTE_CRYPTO_AUTH_SHA1_HMAC``
* ``RTE_CRYPTO_AUTH_SHA224``
* ``RTE_CRYPTO_AUTH_SHA224_HMAC``
* ``RTE_CRYPTO_AUTH_SHA256``
* ``RTE_CRYPTO_AUTH_SHA256_HMAC``
* ``RTE_CRYPTO_AUTH_SHA384``
* ``RTE_CRYPTO_AUTH_SHA384_HMAC``
* ``RTE_CRYPTO_AUTH_SHA512``
* ``RTE_CRYPTO_AUTH_SHA512_HMAC``
* ``RTE_CRYPTO_AUTH_AES_XCBC_MAC``
* ``RTE_CRYPTO_AUTH_SNOW3G_UIA2``
* ``RTE_CRYPTO_AUTH_MD5_HMAC``
* ``RTE_CRYPTO_AUTH_NULL``
* ``RTE_CRYPTO_AUTH_KASUMI_F9``
* ``RTE_CRYPTO_AUTH_AES_GMAC``
* ``RTE_CRYPTO_AUTH_ZUC_EIA3``
* ``RTE_CRYPTO_AUTH_AES_CMAC``
Supported AEAD algorithms:
* ``RTE_CRYPTO_AEAD_AES_GCM``
* ``RTE_CRYPTO_AEAD_AES_CCM``
Supported Chains
~~~~~~~~~~~~~~~~
All the usual chains are supported and also some mixed chains:
.. table:: Supported hash-cipher chains for wireless digest-encrypted cases
+------------------+-----------+-------------+----------+----------+
| Cipher algorithm | NULL AUTH | SNOW3G UIA2 | ZUC EIA3 | AES CMAC |
+==================+===========+=============+==========+==========+
| NULL CIPHER | Y | 2&3 | 2&3 | Y |
+------------------+-----------+-------------+----------+----------+
| SNOW3G UEA2 | 2&3 | Y | 2&3 | 2&3 |
+------------------+-----------+-------------+----------+----------+
| ZUC EEA3 | 2&3 | 2&3 | 2&3 | 2&3 |
+------------------+-----------+-------------+----------+----------+
| AES CTR | Y | 2&3 | 2&3 | Y |
+------------------+-----------+-------------+----------+----------+
* The combinations marked as "Y" are supported on all QAT hardware versions.
* The combinations marked as "2&3" are supported on GEN2/GEN3 QAT hardware only.
Limitations
~~~~~~~~~~~
* Only supports the session-oriented API implementation (session-less APIs are not supported).
* SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEA3) supported only if cipher length and offset fields are byte-multiple.
* SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are byte-multiple.
* No BSD support as BSD QAT kernel driver not available.
* ZUC EEA3/EIA3 is not supported by dh895xcc devices
* Maximum additional authenticated data (AAD) for GCM is 240 bytes long and must be passed to the device in a buffer rounded up to the nearest block-size multiple (x16) and padded with zeros.
* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single
queue-pair all enqueues to the TX queue must be done from one thread and all dequeues
from the RX queue must be done from one thread, but enqueues and dequeues may be done
in different threads.)
* A GCM limitation exists, but only in the case where there are multiple
generations of QAT devices on a single platform.
To optimise performance, the GCM crypto session should be initialised for the
device generation to which the ops will be enqueued. Specifically if a GCM
session is initialised on a GEN2 device, but then attached to an op enqueued
to a GEN3 device, it will work but cannot take advantage of hardware
optimisations in the GEN3 device. And if a GCM session is initialised on a
GEN3 device, then attached to an op sent to a GEN1/GEN2 device, it will not be
enqueued to the device and will be marked as failed. The simplest way to
mitigate this is to use the bdf whitelist to avoid mixing devices of different
generations in the same process if planning to use for GCM.
* The mixed algo feature on GEN2 is not supported by all kernel drivers. Check
the notes under the Available Kernel Drivers table below for specific details.
Extra notes on KASUMI F9
~~~~~~~~~~~~~~~~~~~~~~~~
When using KASUMI F9 authentication algorithm, the input buffer must be
constructed according to the
`3GPP KASUMI specification <http://cryptome.org/3gpp/35201-900.pdf>`_
(section 4.4, page 13). The input buffer has to have COUNT (4 bytes),
FRESH (4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION
bit, a single '1' bit is appended, followed by between 0 and 7 '0' bits, so that
the total length of the buffer is multiple of 8 bits. Note that the actual
message can be any length, specified in bits.
Once this buffer is passed this way, when creating the crypto operation,
length of data to authenticate "op.sym.auth.data.length" must be the length
of all the items described above, including the padding at the end.
Also, offset of data to authenticate "op.sym.auth.data.offset"
must be such that points at the start of the COUNT bytes.
Asymmetric Crypto Service on QAT
--------------------------------
The QAT asymmetric crypto PMD (hereafter referred to as `QAT ASYM [PMD]`) provides
poll mode crypto driver support for the following hardware accelerator devices:
* ``Intel QuickAssist Technology DH895xCC``
* ``Intel QuickAssist Technology C62x``
* ``Intel QuickAssist Technology C3xxx``
* ``Intel QuickAssist Technology D15xx``
* ``Intel QuickAssist Technology P5xxx``
The QAT ASYM PMD has support for:
* ``RTE_CRYPTO_ASYM_XFORM_MODEX``
* ``RTE_CRYPTO_ASYM_XFORM_MODINV``
Limitations
~~~~~~~~~~~
* Big integers longer than 4096 bits are not supported.
* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single
queue-pair all enqueues to the TX queue must be done from one thread and all dequeues
from the RX queue must be done from one thread, but enqueues and dequeues may be done
in different threads.)
* RSA-2560, RSA-3584 are not supported
.. _building_qat:
Building PMDs on QAT
--------------------
A QAT device can host multiple acceleration services:
* symmetric cryptography
* data compression
* asymmetric cryptography
These services are provided to DPDK applications via PMDs which register to
implement the corresponding cryptodev and compressdev APIs. The PMDs use
common QAT driver code which manages the QAT PCI device. They also depend on a
QAT kernel driver being installed on the platform, see :ref:`qat_kernel` below.
Configuring and Building the DPDK QAT PMDs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Further information on configuring, building and installing DPDK is described
:doc:`here <../linux_gsg/build_dpdk>`.
Quick instructions for QAT cryptodev PMD are as follows:
.. code-block:: console
cd to the top-level DPDK directory
make defconfig
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_SYM\)=n,\1=y,' build/.config
or/and
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_ASYM\)=n,\1=y,' build/.config
make
Quick instructions for QAT compressdev PMD are as follows:
.. code-block:: console
cd to the top-level DPDK directory
make defconfig
make
.. _building_qat_config:
Build Configuration
~~~~~~~~~~~~~~~~~~~
These are the build configuration options affecting QAT, and their default values:
.. code-block:: console
CONFIG_RTE_LIBRTE_PMD_QAT=y
CONFIG_RTE_LIBRTE_PMD_QAT_SYM=n
CONFIG_RTE_LIBRTE_PMD_QAT_ASYM=n
CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES=48
CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE=65536
CONFIG_RTE_LIBRTE_PMD_QAT must be enabled for any QAT PMD to be built.
Both QAT SYM PMD and QAT ASYM PMD have an external dependency on libcrypto, so are not
built by default. CONFIG_RTE_LIBRTE_PMD_QAT_SYM/ASYM should be enabled to build them.
The QAT compressdev PMD has no external dependencies, so needs no configuration
options and is built by default.
The number of VFs per PF varies - see table below. If multiple QAT packages are
installed on a platform then CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES should be
adjusted to the number of VFs which the QAT common code will need to handle.
.. Note::
There are separate config items (not QAT-specific) for max cryptodevs
CONFIG_RTE_CRYPTO_MAX_DEVS and max compressdevs CONFIG_RTE_COMPRESS_MAX_DEVS,
if necessary these should be adjusted to handle the total of QAT and other
devices which the process will use. In particular for crypto, where each
QAT VF may expose two crypto devices, sym and asym, it may happen that the
number of devices will be bigger than MAX_DEVS and the process will show an error
during PMD initialisation. To avoid this problem CONFIG_RTE_CRYPTO_MAX_DEVS may be
increased or -w, pci-whitelist domain:bus:devid:func option may be used.
QAT compression PMD needs intermediate buffers to support Deflate compression
with Dynamic Huffman encoding. CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE
specifies the size of a single buffer, the PMD will allocate a multiple of these,
plus some extra space for associated meta-data. For GEN2 devices, 20 buffers are
allocated while for GEN1 devices, 12 buffers are allocated, plus 1472 bytes overhead.
.. Note::
If the compressed output of a Deflate operation using Dynamic Huffman
Encoding is too big to fit in an intermediate buffer, then the
operation will be split into smaller operations and their results will
be merged afterwards.
This is not possible if any checksum calculation was requested - in such
case the code falls back to fixed compression.
To avoid this less performant case, applications should configure
the intermediate buffer size to be larger than the expected input data size
(compressed output size is usually unknown, so the only option is to make
larger than the input size).
Running QAT PMD with minimum threshold for burst size
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If only a small number or packets can be enqueued. Each enqueue causes an expensive MMIO write.
These MMIO write occurrences can be optimised by setting any of the following parameters:
- qat_sym_enq_threshold
- qat_asym_enq_threshold
- qat_comp_enq_threshold
When any of these parameters is set rte_cryptodev_enqueue_burst function will
return 0 (thereby avoiding an MMIO) if the device is congested and number of packets
possible to enqueue is smaller.
To use this feature the user must set the parameter on process start as a device additional parameter::
-w 03:01.1,qat_sym_enq_threshold=32,qat_comp_enq_threshold=16
All parameters can be used with the same device regardless of order. Parameters are separated
by comma. When the same parameter is used more than once first occurrence of the parameter
is used.
Maximum threshold that can be set is 32.
Device and driver naming
~~~~~~~~~~~~~~~~~~~~~~~~
* The qat cryptodev symmetric crypto driver name is "crypto_qat".
* The qat cryptodev asymmetric crypto driver name is "crypto_qat_asym".
The "rte_cryptodev_devices_get()" returns the devices exposed by either of these drivers.
* Each qat sym crypto device has a unique name, in format
"<pci bdf>_<service>", e.g. "0000:41:01.0_qat_sym".
* Each qat asym crypto device has a unique name, in format
"<pci bdf>_<service>", e.g. "0000:41:01.0_qat_asym".
This name can be passed to "rte_cryptodev_get_dev_id()" to get the device_id.
.. Note::
The cryptodev driver name is passed to the dpdk-test-crypto-perf tool in the "-devtype" parameter.
The qat crypto device name is in the format of the slave parameter passed to the crypto scheduler.
* The qat compressdev driver name is "compress_qat".
The rte_compressdev_devices_get() returns the devices exposed by this driver.
* Each qat compression device has a unique name, in format
<pci bdf>_<service>, e.g. "0000:41:01.0_qat_comp".
This name can be passed to rte_compressdev_get_dev_id() to get the device_id.
.. _qat_kernel:
Dependency on the QAT kernel driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To use QAT an SRIOV-enabled QAT kernel driver is required. The VF
devices created and initialised by this driver will be used by the QAT PMDs.
Instructions for installation are below, but first an explanation of the
relationships between the PF/VF devices and the PMDs visible to
DPDK applications.
Each QuickAssist PF device exposes a number of VF devices. Each VF device can
enable one symmetric cryptodev PMD and/or one asymmetric cryptodev PMD and/or
one compressdev PMD.
These QAT PMDs share the same underlying device and pci-mgmt code, but are
enumerated independently on their respective APIs and appear as independent
devices to applications.
.. Note::
Each VF can only be used by one DPDK process. It is not possible to share
the same VF across multiple processes, even if these processes are using
different acceleration services.
Conversely one DPDK process can use one or more QAT VFs and can expose both
cryptodev and compressdev instances on each of those VFs.
Available kernel drivers
~~~~~~~~~~~~~~~~~~~~~~~~
Kernel drivers for each device for each service are listed in the following table. (Scroll right
to see the full table)
.. _table_qat_pmds_drivers:
.. table:: QAT device generations, devices and drivers
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| S | A | C | Gen | Device | Driver/ver | Kernel Module | Pci Driver | PF Did | #PFs | VF Did | VFs/PF |
+=====+=====+=====+=====+==========+===============+===============+============+========+======+========+========+
| Yes | No | No | 1 | DH895xCC | linux/4.4+ | qat_dh895xcc | dh895xcc | 435 | 1 | 443 | 32 |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | Yes | No | " | " | 01.org/4.2.0+ | " | " | " | " | " | " |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | Yes | Yes | " | " | 01.org/4.3.0+ | " | " | " | " | " | " |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | No | No | 2 | C62x | linux/4.5+ | qat_c62x | c6xx | 37c8 | 3 | 37c9 | 16 |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | Yes | Yes | " | " | 01.org/4.2.0+ | " | " | " | " | " | " |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | No | No | 2 | C3xxx | linux/4.5+ | qat_c3xxx | c3xxx | 19e2 | 1 | 19e3 | 16 |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | Yes | Yes | " | " | 01.org/4.2.0+ | " | " | " | " | " | " |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | No | No | 2 | D15xx | p | qat_d15xx | d15xx | 6f54 | 1 | 6f55 | 16 |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
| Yes | No | No | 3 | P5xxx | p | qat_p5xxx | p5xxx | 18a0 | 1 | 18a1 | 128 |
+-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+
* Note: Symmetric mixed crypto algorithms feature on Gen 2 works only with 01.org driver version 4.9.0+
The first 3 columns indicate the service:
* S = Symmetric crypto service (via cryptodev API)
* A = Asymmetric crypto service (via cryptodev API)
* C = Compression service (via compressdev API)
The ``Driver`` column indicates either the Linux kernel version in which
support for this device was introduced or a driver available on Intel's 01.org
website. There are both linux in-tree and 01.org kernel drivers available for some
devices. p = release pending.
If you are running on a kernel which includes a driver for your device, see
`Installation using kernel.org driver`_ below. Otherwise see
`Installation using 01.org QAT driver`_.
Installation using kernel.org driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The examples below are based on the C62x device, if you have a different device
use the corresponding values in the above table.
In BIOS ensure that SRIOV is enabled and either:
* Disable VT-d or
* Enable VT-d and set ``"intel_iommu=on iommu=pt"`` in the grub file.
Check that the QAT driver is loaded on your system, by executing::
lsmod | grep qa
You should see the kernel module for your device listed, e.g.::
qat_c62x 5626 0
intel_qat 82336 1 qat_c62x
Next, you need to expose the Virtual Functions (VFs) using the sysfs file system.
First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of
your device, e.g.::
lspci -d:37c8
You should see output similar to::
1a:00.0 Co-processor: Intel Corporation Device 37c8
3d:00.0 Co-processor: Intel Corporation Device 37c8
3f:00.0 Co-processor: Intel Corporation Device 37c8
Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver::
echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3f:00.0/sriov_numvfs
Check that the VFs are available for use. For example ``lspci -d:37c9`` should
list 48 VF devices available for a ``C62x`` device.
To complete the installation follow the instructions in
`Binding the available VFs to the DPDK UIO driver`_.
.. Note::
If the QAT kernel modules are not loaded and you see an error like ``Failed
to load MMP firmware qat_895xcc_mmp.bin`` in kernel logs, this may be as a
result of not using a distribution, but just updating the kernel directly.
Download firmware from the `kernel firmware repo
<http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/>`_.
Copy qat binaries to ``/lib/firmware``::
cp qat_895xcc.bin /lib/firmware
cp qat_895xcc_mmp.bin /lib/firmware
Change to your linux source root directory and start the qat kernel modules::
insmod ./drivers/crypto/qat/qat_common/intel_qat.ko
insmod ./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko
.. Note::
If you see the following warning in ``/var/log/messages`` it can be ignored:
``IOMMU should be enabled for SR-IOV to work correctly``.
Installation using 01.org QAT driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Download the latest QuickAssist Technology Driver from `01.org
<https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches>`_.
Consult the *Getting Started Guide* at the same URL for further information.
The steps below assume you are:
* Building on a platform with one ``C62x`` device.
* Using package ``qat1.7.l.4.2.0-000xx.tar.gz``.
* On Fedora26 kernel ``4.11.11-300.fc26.x86_64``.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.
Uninstall any existing QAT driver, for example by running:
* ``./installer.sh uninstall`` in the directory where originally installed.
Build and install the SRIOV-enabled QAT driver::
mkdir /QAT
cd /QAT
# Copy the package to this location and unpack
tar zxof qat1.7.l.4.2.0-000xx.tar.gz
./configure --enable-icp-sriov=host
make install
You can use ``cat /sys/kernel/debug/qat<your device type and bdf>/version/fw`` to confirm the driver is correctly installed and is using firmware version 4.2.0.
You can use ``lspci -d:37c9`` to confirm the presence of the 16 VF devices available per ``C62x`` PF.
Confirm the driver is correctly installed and is using firmware version 4.2.0::
cat /sys/kernel/debug/qat<your device type and bdf>/version/fw
Confirm the presence of 48 VF devices - 16 per PF::
lspci -d:37c9
To complete the installation - follow instructions in `Binding the available VFs to the DPDK UIO driver`_.
.. Note::
If using a later kernel and the build fails with an error relating to
``strict_stroul`` not being available apply the following patch:
.. code-block:: diff
/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5)
+ #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64(str, base, num, endPtr) \
do { \
if (str[0] == '-') \
{ \
*(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \
}else { \
*(num) = simple_strtoull((str), &(endPtr), (base)); \
} \
} while(0)
+ #endif
#endif
#endif
.. Note::
If the build fails due to missing header files you may need to do following::
sudo yum install zlib-devel
sudo yum install openssl-devel
sudo yum install libudev-devel
.. Note::
If the build or install fails due to mismatching kernel sources you may need to do the following::
sudo yum install kernel-headers-`uname -r`
sudo yum install kernel-src-`uname -r`
sudo yum install kernel-devel-`uname -r`
Binding the available VFs to the DPDK UIO driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unbind the VFs from the stock driver so they can be bound to the uio driver.
For an Intel(R) QuickAssist Technology DH895xCC device
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The unbind command below assumes ``BDFs`` of ``03:01.00-03:04.07``, if your
VFs are different adjust the unbind command below::
for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo -n 0000:03:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done
For an Intel(R) QuickAssist Technology C62x device
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The unbind command below assumes ``BDFs`` of ``1a:01.00-1a:02.07``,
``3d:01.00-3d:02.07`` and ``3f:01.00-3f:02.07``, if your VFs are different
adjust the unbind command below::
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:1a:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \
echo -n 0000:3d:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \
echo -n 0000:3f:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \
done; \
done
For Intel(R) QuickAssist Technology C3xxx or D15xx device
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The unbind command below assumes ``BDFs`` of ``01:01.00-01:02.07``, if your
VFs are different adjust the unbind command below::
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:01:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:01\:0${device}.${fn}/driver/unbind; \
done; \
done
Bind to the DPDK uio driver
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use lspci
to confirm the VF devices are now in use by igb_uio kernel driver,
e.g. for the C62x device::
cd to the top-level DPDK directory
modprobe uio
insmod ./build/kmod/igb_uio.ko
echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vvd:37c9
Another way to bind the VFs to the DPDK UIO driver is by using the
``dpdk-devbind.py`` script::
cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1
Testing
~~~~~~~
QAT SYM crypto PMD can be tested by running the test application::
make defconfig
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>cryptodev_qat_autotest
QAT ASYM crypto PMD can be tested by running the test application::
make defconfig
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>cryptodev_qat_asym_autotest
QAT compression PMD can be tested by running the test application::
make defconfig
sed -i 's,\(CONFIG_RTE_COMPRESSDEV_TEST\)=n,\1=y,' build/.config
make -j
cd ./build/app
./test -l1 -n1 -w <your qat bdf>
RTE>>compressdev_autotest
Debugging
~~~~~~~~~
There are 2 sets of trace available via the dynamic logging feature:
* pmd.qat_dp exposes trace on the data-path.
* pmd.qat_general exposes all other trace.
pmd.qat exposes both sets of traces.
They can be enabled using the log-level option (where 8=maximum log level) on
the process cmdline, e.g. using any of the following::
--log-level="pmd.qat_general,8"
--log-level="pmd.qat_dp,8"
--log-level="pmd.qat,8"
.. Note::
The global RTE_LOG_DP_LEVEL overrides data-path trace so must be set to
RTE_LOG_DEBUG to see all the trace. This variable is in config/rte_config.h
for meson build and config/common_base for gnu make.
Also the dynamic global log level overrides both sets of trace, so e.g. no
QAT trace would display in this case::
--log-level="7" --log-level="pmd.qat_general,8"
|