summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/doc/guides/sample_app_ug/ipsec_secgw.rst
blob: 81c5d43606159a4cb62d29162f716eebfce2c6c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
..  SPDX-License-Identifier: BSD-3-Clause
    Copyright(c) 2016-2017 Intel Corporation.
    Copyright (C) 2020 Marvell International Ltd.

IPsec Security Gateway Sample Application
=========================================

The IPsec Security Gateway application is an example of a "real world"
application using DPDK cryptodev framework.

Overview
--------

The application demonstrates the implementation of a Security Gateway
(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
RFC4303, RFC3602 and RFC2404.

Internet Key Exchange (IKE) is not implemented, so only manual setting of
Security Policies and Security Associations is supported.

The Security Policies (SP) are implemented as ACL rules, the Security
Associations (SA) are stored in a table and the routing is implemented
using LPM.

The application classifies the ports as *Protected* and *Unprotected*.
Thus, traffic received on an Unprotected or Protected port is consider
Inbound or Outbound respectively.

The application also supports complete IPsec protocol offload to hardware
(Look aside crypto accelerator or using ethernet device). It also support
inline ipsec processing by the supported ethernet device during transmission.
These modes can be selected during the SA creation configuration.

In case of complete protocol offload, the processing of headers(ESP and outer
IP header) is done by the hardware and the application does not need to
add/remove them during outbound/inbound processing.

For inline offloaded outbound traffic, the application will not do the LPM
lookup for routing, as the port on which the packet has to be forwarded will be
part of the SA. Security parameters will be configured on that port only, and
sending the packet on other ports could result in unencrypted packets being
sent out.

The Path for IPsec Inbound traffic is:

*  Read packets from the port.
*  Classify packets between IPv4 and ESP.
*  Perform Inbound SA lookup for ESP packets based on their SPI.
*  Perform Verification/Decryption (Not needed in case of inline ipsec).
*  Remove ESP and outer IP header (Not needed in case of protocol offload).
*  Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
*  Routing.
*  Write packet to port.

The Path for the IPsec Outbound traffic is:

*  Read packets from the port.
*  Perform Outbound SP check using ACL of all IPv4 traffic.
*  Perform Outbound SA lookup for packets that need IPsec protection.
*  Add ESP and outer IP header (Not needed in case protocol offload).
*  Perform Encryption/Digest (Not needed in case of inline ipsec).
*  Routing.
*  Write packet to port.

The application supports two modes of operation: poll mode and event mode.

* In the poll mode a core receives packets from statically configured list
  of eth ports and eth ports' queues.

* In the event mode a core receives packets as events. After packet processing
  is done core submits them back as events to an event device. This enables
  multicore scaling and HW assisted scheduling by making use of the event device
  capabilities. The event mode configuration is predefined. All packets reaching
  given eth port will arrive at the same event queue. All event queues are mapped
  to all event ports. This allows all cores to receive traffic from all ports.
  Since the underlying event device might have varying capabilities, the worker
  threads can be drafted differently to maximize performance. For example, if an
  event device - eth device pair has Tx internal port, then application can call
  rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst().
  So a thread which assumes that the device pair has internal port will not be the
  right solution for another pair. The infrastructure added for the event mode aims
  to help application to have multiple worker threads by maximizing performance from
  every type of event device without affecting existing paths/use cases. The worker
  to be used will be determined by the operating conditions and the underlying device
  capabilities. **Currently the application provides non-burst, internal port worker
  threads and supports inline protocol only.** It also provides infrastructure for
  non-internal port however does not define any worker threads.

Additionally the event mode introduces two submodes of processing packets:

* Driver submode: This submode has bare minimum changes in the application to support
  IPsec. There are no lookups, no routing done in the application. And for inline
  protocol use case, the worker thread resembles l2fwd worker thread as the IPsec
  processing is done entirely in HW. This mode can be used to benchmark the raw
  performance of the HW. The driver submode is selected with --single-sa option
  (used also by poll mode). When --single-sa option is used in conjution with event
  mode then index passed to --single-sa is ignored.

* App submode: This submode has all the features currently implemented with the
  application (non librte_ipsec path). All the lookups, routing follows existing
  methods and report numbers that can be compared against regular poll mode
  benchmark numbers.

Constraints
-----------

*  No IPv6 options headers.
*  No AH mode.
*  Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL.
*  Each SA must be handle by a unique lcore (*1 RX queue per port*).

Compiling the Application
-------------------------

To compile the sample application see :doc:`compiling`.

The application is located in the ``ipsec-secgw`` sub-directory.

#. [Optional] Build the application for debugging:
   This option adds some extra flags, disables compiler optimizations and
   is verbose::

       make DEBUG=1


Running the Application
-----------------------

The application has a number of command line options::


   ./build/ipsec-secgw [EAL options] --
                        -p PORTMASK -P -u PORTMASK -j FRAMESIZE
                        -l -w REPLAY_WINOW_SIZE -e -a
                        -c SAD_CACHE_SIZE
                        -s NUMBER_OF_MBUFS_IN_PACKET_POOL
                        -f CONFIG_FILE_PATH
                        --config (port,queue,lcore)[,(port,queue,lcore)]
                        --single-sa SAIDX
                        --cryptodev_mask MASK
                        --transfer-mode MODE
                        --event-schedule-type TYPE
                        --rxoffload MASK
                        --txoffload MASK
                        --reassemble NUM
                        --mtu MTU
                        --frag-ttl FRAG_TTL_NS

Where:

*   ``-p PORTMASK``: Hexadecimal bitmask of ports to configure.

*   ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are
    accepted regardless of the packet's Ethernet MAC destination address.
    Without this option, only packets with the Ethernet MAC destination address
    set to the Ethernet address of the port are accepted (default is enabled).

*   ``-u PORTMASK``: hexadecimal bitmask of unprotected ports

*   ``-j FRAMESIZE``: *optional*. data buffer size (in bytes),
    in other words maximum data size for one segment.
    Packets with length bigger then FRAMESIZE still can be received,
    but will be segmented.
    Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
    Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
    Maximum value: UINT16_MAX (65535).

*   ``-l``: enables code-path that uses librte_ipsec.

*   ``-w REPLAY_WINOW_SIZE``: specifies the IPsec sequence number replay window
    size for each Security Association (available only with librte_ipsec
    code path).

*   ``-e``: enables Security Association extended sequence number processing
    (available only with librte_ipsec code path).

*   ``-a``: enables Security Association sequence number atomic behavior
    (available only with librte_ipsec code path).

*   ``-c``: specifies the SAD cache size. Stores the most recent SA in a per
    lcore cache. Cache represents flat array containing SA's indexed by SPI.
    Zero value disables cache.
    Default value: 128.

*   ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs
    will be calculated based on number of cores, eth ports and crypto queues.

*   ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all
    configuration items for running the application (See Configuration file
    syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified.
    **ONLY** the UNIX format configuration file is accepted.

*   ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines
    which queues from which ports are mapped to which cores. In event mode this
    option is not used as packets are dynamically scheduled to cores by HW.

*   ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic,
    bypassing the SP on both Inbound and Outbound. This option is meant for
    debugging/performance purposes. In event mode selects driver submode, SA index
    value is ignored.

*   ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices
    to configure.

*   ``--transfer-mode MODE``: sets operating mode of the application
    "poll"  : packet transfer via polling (default)
    "event" : Packet transfer via event device

*   ``--event-schedule-type TYPE``: queue schedule type, applies only when
    --transfer-mode is set to event.
    "ordered"  : Ordered (default)
    "atomic"   : Atomic
    "parallel" : Parallel
    When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event
    device will ensure the ordering. Ordering will be lost when tried in PARALLEL.

*   ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port
    (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and
    allows user to disable some of the RX HW offload capabilities.
    By default all HW RX offloads are enabled.

*   ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port
    (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and
    allows user to disable some of the TX HW offload capabilities.
    By default all HW TX offloads are enabled.

*   ``--reassemble NUM``: max number of entries in reassemble fragment table.
    Zero value disables reassembly functionality.
    Default value: 0.

*   ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports.
    Outgoing packets with length bigger then MTU will be fragmented.
    Incoming packets with length bigger then MTU will be discarded.
    Default value: 1500.

*   ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds).
    If packet is not reassembled within this time, received fragments
    will be discarded. Fragment lifetime should be decreased when
    there is a high fragmented traffic loss in high bandwidth networks.
    Should be lower for low number of reassembly buckets.
    Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s).


The mapping of lcores to port/queues is similar to other l3fwd applications.

For example, given the following command line to run application in poll mode::

    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048       \
           --vdev "crypto_null" -- -p 0xf -P -u 0x3             \
           --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"       \
           -f /path/to/config_file --transfer-mode poll         \

where each option means:

*   The ``-l`` option enables cores 20 and 21.

*   The ``-n`` option sets memory 4 channels.

*   The ``--socket-mem`` to use 2GB on socket 1.

*   The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD.

*   The ``-p`` option enables ports (detected) 0, 1, 2 and 3.

*   The ``-P`` option enables promiscuous mode.

*   The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected.

*   The ``--config`` option enables one queue per port with the following mapping:

    +----------+-----------+-----------+---------------------------------------+
    | **Port** | **Queue** | **lcore** | **Description**                       |
    |          |           |           |                                       |
    +----------+-----------+-----------+---------------------------------------+
    | 0        | 0         | 20        | Map queue 0 from port 0 to lcore 20.  |
    |          |           |           |                                       |
    +----------+-----------+-----------+---------------------------------------+
    | 1        | 0         | 20        | Map queue 0 from port 1 to lcore 20.  |
    |          |           |           |                                       |
    +----------+-----------+-----------+---------------------------------------+
    | 2        | 0         | 21        | Map queue 0 from port 2 to lcore 21.  |
    |          |           |           |                                       |
    +----------+-----------+-----------+---------------------------------------+
    | 3        | 0         | 21        | Map queue 0 from port 3 to lcore 21.  |
    |          |           |           |                                       |
    +----------+-----------+-----------+---------------------------------------+

*   The ``-f /path/to/config_file`` option enables the application read and
    parse the configuration file specified, and configures the application
    with a given set of SP, SA and Routing entries accordingly. The syntax of
    the configuration file will be explained below in more detail. Please
    **note** the parser only accepts UNIX format text file. Other formats
    such as DOS/MAC format will cause a parse error.

*   The ``--transfer-mode`` option selects poll mode for processing packets.

Similarly for example, given the following command line to run application in
event app mode::

    ./build/ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1       \
           -f /path/to/config_file --transfer-mode event \
           --event-schedule-type parallel                \

where each option means:

*   The ``-c`` option selects cores 0 and 1 to run on.

*   The ``-P`` option enables promiscuous mode.

*   The ``-p`` option enables ports (detected) 0 and 1.

*   The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected.

*   The ``-f /path/to/config_file`` option has the same behavior as in poll
    mode example.

*   The ``--transfer-mode`` option selects event mode for processing packets.

*   The ``--event-schedule-type`` option selects parallel ordering of event queues.


Refer to the *DPDK Getting Started Guide* for general information on running
applications and the Environment Abstraction Layer (EAL) options.

The application would do a best effort to "map" crypto devices to cores, with
hardware devices having priority. Basically, hardware devices if present would
be assigned to a core before software ones.
This means that if the application is using a single core and both hardware
and software crypto devices are detected, hardware devices will be used.

A way to achieve the case where you want to force the use of virtual crypto
devices is to whitelist the Ethernet devices needed and therefore implicitly
blacklisting all hardware crypto devices.

For example, something like the following command line:

.. code-block:: console

    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
            -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
            --vdev "crypto_aesni_mb" --vdev "crypto_null" \
	    -- \
            -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
            -f sample.cfg


Configurations
--------------

The following sections provide the syntax of configurations to initialize
your SP, SA, Routing and Neighbour tables.
Configurations shall be specified in the configuration file to be passed to
the application. The file is then parsed by the application. The successful
parsing will result in the appropriate rules being applied to the tables
accordingly.


Configuration File Syntax
~~~~~~~~~~~~~~~~~~~~~~~~~

As mention in the overview, the Security Policies are ACL rules.
The application parsers the rules specified in the configuration file and
passes them to the ACL table, and replicates them per socket in use.

Following are the configuration file syntax.

General rule syntax
^^^^^^^^^^^^^^^^^^^

The parse treats one line in the configuration file as one configuration
item (unless the line concatenation symbol exists). Every configuration
item shall follow the syntax of either SP, SA, Routing or Neighbour
rules specified below.

The configuration parser supports the following special symbols:

 * Comment symbol **#**. Any character from this symbol to the end of
   line is treated as comment and will not be parsed.

 * Line concatenation symbol **\\**. This symbol shall be placed in the end
   of the line to be concatenated to the line below. Multiple lines'
   concatenation is supported.


SP rule syntax
^^^^^^^^^^^^^^

The SP rule syntax is shown as follows:

.. code-block:: console

    sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
    <proto> <sport> <dport>


where each options means:

``<ip_ver>``

 * IP protocol version

 * Optional: No

 * Available options:

   * *ipv4*: IP protocol version 4
   * *ipv6*: IP protocol version 6

``<dir>``

 * The traffic direction

 * Optional: No

 * Available options:

   * *in*: inbound traffic
   * *out*: outbound traffic

``<action>``

 * IPsec action

 * Optional: No

 * Available options:

   * *protect <SA_idx>*: the specified traffic is protected by SA rule
     with id SA_idx
   * *bypass*: the specified traffic traffic is bypassed
   * *discard*: the specified traffic is discarded

``<priority>``

 * Rule priority

 * Optional: Yes, default priority 0 will be used

 * Syntax: *pri <id>*

``<src_ip>``

 * The source IP address and mask

 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

 * Syntax:

   * *src X.X.X.X/Y* for IPv4
   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6

``<dst_ip>``

 * The destination IP address and mask

 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

 * Syntax:

   * *dst X.X.X.X/Y* for IPv4
   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6

``<proto>``

 * The protocol start and end range

 * Optional: yes, default range of 0 to 0 will be used

 * Syntax: *proto X:Y*

``<sport>``

 * The source port start and end range

 * Optional: yes, default range of 0 to 0 will be used

 * Syntax: *sport X:Y*

``<dport>``

 * The destination port start and end range

 * Optional: yes, default range of 0 to 0 will be used

 * Syntax: *dport X:Y*

Example SP rules:

.. code-block:: console

    sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
    dport 0:65535

    sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
    0000:0000/96 sport 0:65535 dport 0:65535


SA rule syntax
^^^^^^^^^^^^^^

The successfully parsed SA rules will be stored in an array table.

The SA rule syntax is shown as follows:

.. code-block:: console

    sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
    <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback>
    <flow-direction> <port_id> <queue_id>

where each options means:

``<dir>``

 * The traffic direction

 * Optional: No

 * Available options:

   * *in*: inbound traffic
   * *out*: outbound traffic

``<spi>``

 * The SPI number

 * Optional: No

 * Syntax: unsigned integer number

``<cipher_algo>``

 * Cipher algorithm

 * Optional: Yes, unless <aead_algo> is not used

 * Available options:

   * *null*: NULL algorithm
   * *aes-128-cbc*: AES-CBC 128-bit algorithm
   * *aes-192-cbc*: AES-CBC 192-bit algorithm
   * *aes-256-cbc*: AES-CBC 256-bit algorithm
   * *aes-128-ctr*: AES-CTR 128-bit algorithm
   * *3des-cbc*: 3DES-CBC 192-bit algorithm

 * Syntax: *cipher_algo <your algorithm>*

``<cipher_key>``

 * Cipher key, NOT available when 'null' algorithm is used

 * Optional: Yes, unless <aead_algo> is not used.
   Must be followed by <cipher_algo> option

 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
   The number of bytes should be as same as the specified cipher algorithm
   key size.

   For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
   A1:B2:C3:D4*

``<auth_algo>``

 * Authentication algorithm

 * Optional: Yes, unless <aead_algo> is not used

 * Available options:

    * *null*: NULL algorithm
    * *sha1-hmac*: HMAC SHA1 algorithm

``<auth_key>``

 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm
   is used.

 * Optional: Yes, unless <aead_algo> is not used.
   Must be followed by <auth_algo> option

 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
   The number of bytes should be as same as the specified authentication
   algorithm key size.

   For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
   A1:B2:C3:D4*

``<aead_algo>``

 * AEAD algorithm

 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used

 * Available options:

   * *aes-128-gcm*: AES-GCM 128-bit algorithm
   * *aes-192-gcm*: AES-GCM 192-bit algorithm
   * *aes-256-gcm*: AES-GCM 256-bit algorithm

 * Syntax: *cipher_algo <your algorithm>*

``<aead_key>``

 * Cipher key, NOT available when 'null' algorithm is used

 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
   Must be followed by <aead_algo> option

 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
   Last 4 bytes of the provided key will be used as 'salt' and so, the
   number of bytes should be same as the sum of specified AEAD algorithm
   key size and salt size (4 bytes).

   For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
   A1:B2:C3:D4:A1:B2:C3:D4*

``<mode>``

 * The operation mode

 * Optional: No

 * Available options:

   * *ipv4-tunnel*: Tunnel mode for IPv4 packets
   * *ipv6-tunnel*: Tunnel mode for IPv6 packets
   * *transport*: transport mode

 * Syntax: mode XXX

``<src_ip>``

 * The source IP address. This option is not available when
   transport mode is used

 * Optional: Yes, default address 0.0.0.0 will be used

 * Syntax:

   * *src X.X.X.X* for IPv4
   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6

``<dst_ip>``

 * The destination IP address. This option is not available when
   transport mode is used

 * Optional: Yes, default address 0.0.0.0 will be used

 * Syntax:

   * *dst X.X.X.X* for IPv4
   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6

``<type>``

 * Action type to specify the security action. This option specify
   the SA to be performed with look aside protocol offload to HW
   accelerator or protocol offload on ethernet device or inline
   crypto processing on the ethernet device during transmission.

 * Optional: Yes, default type *no-offload*

 * Available options:

   * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator
   * *inline-protocol-offload*: inline protocol offload on ethernet device
   * *inline-crypto-offload*: inline crypto processing on ethernet device
   * *no-offload*: no offloading to hardware

 ``<port_id>``

 * Port/device ID of the ethernet/crypto accelerator for which the SA is
   configured. For *inline-crypto-offload* and *inline-protocol-offload*, this
   port will be used for routing. The routing table will not be referred in
   this case.

 * Optional: No, if *type* is not *no-offload*

 * Syntax:

   * *port_id X* X is a valid device number in decimal

 ``<fallback>``

 * Action type for ingress IPsec packets that inline processor failed to
   process. Only a combination of *inline-crypto-offload* as a primary
   session and *lookaside-none* as a fall-back session is supported at the
   moment.

   If used in conjunction with IPsec window, its width needs be increased
   due to different processing times of inline and lookaside modes which
   results in packet reordering.

 * Optional: Yes.

 * Available options:

   * *lookaside-none*: use automatically chosen cryptodev to process packets

 * Syntax:

   * *fallback lookaside-none*

``<flow-direction>``

 * Option for redirecting a specific inbound ipsec flow of a port to a specific
   queue of that port.

 * Optional: Yes.

 * Available options:

   * *port_id*: Port ID of the NIC for which the SA is configured.
   * *queue_id*: Queue ID to which traffic should be redirected.

Example SA rules:

.. code-block:: console

    sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
    src 172.16.1.5 dst 172.16.2.5

    sa out 25 cipher_algo aes-128-cbc \
    cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
    auth_algo sha1-hmac \
    auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
    mode ipv6-tunnel \
    src 1111:1111:1111:1111:1111:1111:1111:5555 \
    dst 2222:2222:2222:2222:2222:2222:2222:5555

    sa in 105 aead_algo aes-128-gcm \
    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5

    sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
    auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
    mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
    type lookaside-protocol-offload port_id 4

    sa in 35 aead_algo aes-128-gcm \
    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
    type inline-crypto-offload port_id 0

    sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \
    dst 172.16.1.7 flow-direction 0 2

Routing rule syntax
^^^^^^^^^^^^^^^^^^^

The Routing rule syntax is shown as follows:

.. code-block:: console

    rt <ip_ver> <src_ip> <dst_ip> <port>


where each options means:

``<ip_ver>``

 * IP protocol version

 * Optional: No

 * Available options:

   * *ipv4*: IP protocol version 4
   * *ipv6*: IP protocol version 6

``<src_ip>``

 * The source IP address and mask

 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

 * Syntax:

   * *src X.X.X.X/Y* for IPv4
   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6

``<dst_ip>``

 * The destination IP address and mask

 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

 * Syntax:

   * *dst X.X.X.X/Y* for IPv4
   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6

``<port>``

 * The traffic output port id

 * Optional: yes, default output port 0 will be used

 * Syntax: *port X*

Example SP rules:

.. code-block:: console

    rt ipv4 dst 172.16.1.5/32 port 0

    rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0

Neighbour rule syntax
^^^^^^^^^^^^^^^^^^^^^

The Neighbour rule syntax is shown as follows:

.. code-block:: console

    neigh <port> <dst_mac>


where each options means:

``<port>``

 * The output port id

 * Optional: No

 * Syntax: *port X*

``<dst_mac>``

 * The destination ethernet address to use for that port

 * Optional: No

 * Syntax:

   * XX:XX:XX:XX:XX:XX

Example Neighbour rules:

.. code-block:: console

    neigh port 0 DE:AD:BE:EF:01:02

Test directory
--------------

The test directory contains scripts for testing the various encryption
algorithms.

The purpose of the scripts is to automate ipsec-secgw testing
using another system running linux as a DUT.

The user must setup the following environment variables:

*   ``SGW_PATH``: path to the ipsec-secgw binary to test.

*   ``REMOTE_HOST``: IP address/hostname of the DUT.

*   ``REMOTE_IFACE``: interface name for the test-port on the DUT.

*   ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-w <pci-id>')

Also the user can optionally setup:

*   ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0)

*   ``CRYPTO_DEV``: crypto device to be used ('-w <pci-id>'). If none specified
    appropriate vdevs will be created by the script

Scripts can be used for multiple test scenarios. To check all available
options run:

.. code-block:: console

    /bin/bash run_test.sh -h

Note that most of the tests require the appropriate crypto PMD/device to be
available.

Server configuration
~~~~~~~~~~~~~~~~~~~~

Two servers are required for the tests, SUT and DUT.

Make sure the user from the SUT can ssh to the DUT without entering the password.
To enable this feature keys must be setup on the DUT.

``ssh-keygen`` will make a private & public key pair on the SUT.

``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public
key to the DUT. It will ask for credentials so that it can upload the public key.

The SUT and DUT are connected through at least 2 NIC ports.

One NIC port is expected to be managed by linux on both machines and will be
used as a control path.

The second NIC port (test-port) should be bound to DPDK on the SUT, and should
be managed by linux on the DUT.

The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and
``tap vdev``.

It then configures the local tap interface and the remote interface and IPsec
policies in the following way:

Traffic going over the test-port in both directions has to be protected by IPsec.

Traffic going over the TAP port in both directions does not have to be protected.

i.e:

DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS

SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS

It then tries to perform some data transfer using the scheme described above.

Usage
~~~~~

In the ipsec-secgw/test directory run

/bin/bash run_test.sh <options> <ipsec_mode>

Available options:

*   ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be
    selected.

*   ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be
    selected.

*   ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different
    than inner. Inner IP version will match selected option [-46].

*   ``-i`` Run tests in inline mode. Regular tests will not be invoked.

*   ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked.

*   ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc].
    On default library mode is used.

*   ``-s`` Run all tests with reassembly support. On default only tests for
    fallback mechanism use reassembly support.

*   ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be
    applied. On default lookaside-none is used.

*   ``-p`` Perform packet validation tests. Option [-46] is not required.

*   ``-h`` Show usage.

If <ipsec_mode> is specified, only tests for that mode will be invoked. For the
list of available modes please refer to run_test.sh.