summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/lib/librte_efd/rte_efd.c
blob: 6a799556d4bd0bd486937fe9f41514f006355bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2017 Intel Corporation
 */
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <stdarg.h>
#include <sys/queue.h>

#include <rte_string_fns.h>
#include <rte_log.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_memcpy.h>
#include <rte_ring.h>
#include <rte_jhash.h>
#include <rte_hash_crc.h>
#include <rte_tailq.h>

#include "rte_efd.h"
#if defined(RTE_ARCH_X86)
#include "rte_efd_x86.h"
#elif defined(RTE_ARCH_ARM64)
#include "rte_efd_arm64.h"
#endif

#define EFD_KEY(key_idx, table) (table->keys + ((key_idx) * table->key_len))
/** Hash function used to determine chunk_id and bin_id for a group */
#define EFD_HASH(key, table) \
	(uint32_t)(rte_jhash(key, table->key_len, 0xbc9f1d34))
/** Hash function used as constant component of perfect hash search */
#define EFD_HASHFUNCA(key, table) \
	(uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d35))
/** Hash function used as multiplicative component of perfect hash search */
#define EFD_HASHFUNCB(key, table) \
	(uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d36))

/*************************************************************************
 * Fixed constants
 *************************************************************************/

/* These parameters are fixed by the efd_bin_to_group balancing table */
#define EFD_CHUNK_NUM_GROUPS (64)
#define EFD_CHUNK_NUM_BINS   (256)
#define EFD_CHUNK_NUM_BIN_TO_GROUP_SETS \
	(EFD_CHUNK_NUM_BINS / EFD_CHUNK_NUM_GROUPS)

/*
 * Target number of rules that each chunk is created to handle.
 * Used when initially allocating the table
 */
#define EFD_TARGET_CHUNK_NUM_RULES  \
	(EFD_CHUNK_NUM_GROUPS * EFD_TARGET_GROUP_NUM_RULES)
/*
 * Max number of rules that each chunk is created to handle.
 * Used when initially allocating the table
 */
#define EFD_TARGET_CHUNK_MAX_NUM_RULES  \
	(EFD_CHUNK_NUM_GROUPS * EFD_MAX_GROUP_NUM_RULES)

/** This is fixed based on the bin_to_group permutation array */
#define EFD_MAX_GROUP_NUM_BINS (16)

/**
 * The end of the chunks array needs some extra padding to ensure
 * that vectorization over-reads on the last online chunk stay within
allocated memory
 */
#define EFD_NUM_CHUNK_PADDING_BYTES (256)

/* All different internal lookup functions */
enum efd_lookup_internal_function {
	EFD_LOOKUP_SCALAR = 0,
	EFD_LOOKUP_AVX2,
	EFD_LOOKUP_NEON,
	EFD_LOOKUP_NUM
};

TAILQ_HEAD(rte_efd_list, rte_tailq_entry);

static struct rte_tailq_elem rte_efd_tailq = {
	.name = "RTE_EFD",
};
EAL_REGISTER_TAILQ(rte_efd_tailq);

/** Internal permutation array used to shuffle bins into pseudorandom groups */
const uint32_t efd_bin_to_group[EFD_CHUNK_NUM_BIN_TO_GROUP_SETS][EFD_CHUNK_NUM_BINS] = {
	{
		0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
		4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
		8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11,
		12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15,
		16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19,
		20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
		24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27,
		28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31,
		32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35,
		36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39,
		40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43,
		44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47,
		48, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51,
		52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54, 54, 55, 55, 55, 55,
		56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59,
		60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63
	},
	{
		34, 33, 48, 59, 0, 21, 36, 18, 9, 49, 54, 38, 51, 23, 31, 5,
		44, 23, 37, 52, 11, 4, 58, 20, 38, 40, 38, 22, 26, 28, 42, 6,
		46, 16, 31, 28, 46, 14, 60, 0, 35, 53, 16, 58, 16, 29, 39, 7,
		1, 54, 15, 11, 48, 3, 62, 9, 58, 5, 30, 43, 17, 7, 36, 34,
		6, 36, 2, 14, 10, 1, 47, 47, 20, 45, 62, 56, 34, 25, 39, 18,
		51, 41, 61, 25, 56, 40, 41, 37, 52, 35, 30, 57, 11, 42, 37, 27,
		54, 19, 26, 13, 48, 31, 46, 15, 12, 10, 16, 20, 43, 17, 12, 55,
		45, 18, 8, 41, 7, 31, 42, 63, 12, 14, 21, 57, 24, 40, 5, 41,
		13, 44, 23, 59, 25, 57, 52, 50, 62, 1, 2, 49, 32, 57, 26, 43,
		56, 60, 55, 5, 49, 6, 3, 50, 46, 39, 27, 33, 17, 4, 53, 13,
		2, 19, 36, 51, 63, 0, 22, 33, 59, 28, 29, 23, 45, 33, 53, 27,
		22, 21, 40, 56, 4, 18, 44, 47, 28, 17, 4, 50, 21, 62, 8, 39,
		0, 8, 15, 24, 29, 24, 9, 11, 48, 61, 35, 55, 43, 1, 54, 42,
		53, 60, 22, 3, 32, 52, 25, 8, 15, 60, 7, 55, 27, 63, 19, 10,
		63, 24, 61, 19, 12, 38, 6, 29, 13, 37, 10, 3, 45, 32, 32, 30,
		49, 61, 44, 14, 20, 58, 35, 30, 2, 26, 34, 51, 9, 59, 47, 50
	},
	{
		32, 35, 32, 34, 55, 5, 6, 23, 49, 11, 6, 23, 52, 37, 29, 54,
		55, 40, 63, 50, 29, 52, 61, 25, 12, 56, 39, 38, 29, 11, 46, 1,
		40, 11, 19, 56, 7, 28, 51, 16, 15, 48, 21, 51, 60, 31, 14, 22,
		41, 47, 59, 56, 53, 28, 58, 26, 43, 27, 41, 33, 24, 52, 44, 38,
		13, 59, 48, 51, 60, 15, 3, 30, 15, 0, 10, 62, 44, 14, 28, 51,
		38, 2, 41, 26, 25, 49, 10, 12, 55, 57, 27, 35, 19, 33, 0, 30,
		5, 36, 47, 53, 5, 53, 20, 43, 34, 37, 52, 41, 21, 63, 59, 9,
		24, 1, 45, 24, 39, 44, 45, 16, 9, 17, 7, 50, 57, 22, 18, 28,
		25, 45, 2, 40, 58, 15, 17, 3, 1, 27, 61, 39, 19, 0, 19, 21,
		57, 62, 54, 60, 54, 40, 48, 33, 36, 37, 4, 42, 1, 43, 58, 8,
		13, 42, 10, 56, 35, 22, 48, 61, 63, 10, 49, 9, 24, 9, 25, 57,
		33, 18, 13, 31, 42, 36, 36, 55, 30, 37, 53, 34, 59, 4, 4, 23,
		8, 16, 58, 14, 30, 11, 12, 63, 49, 62, 2, 39, 47, 22, 2, 60,
		18, 8, 46, 31, 6, 20, 32, 29, 46, 42, 20, 31, 32, 61, 34, 4,
		47, 26, 20, 43, 26, 21, 7, 3, 16, 35, 18, 44, 27, 62, 13, 23,
		6, 50, 12, 8, 45, 17, 3, 46, 50, 7, 14, 5, 17, 54, 38, 0
	},
	{
		29, 56, 5, 7, 54, 48, 23, 37, 35, 44, 52, 40, 33, 49, 60, 0,
		59, 51, 28, 12, 41, 26, 2, 23, 34, 5, 59, 40, 3, 19, 6, 26,
		35, 53, 45, 49, 29, 57, 28, 62, 58, 59, 19, 53, 59, 62, 6, 54,
		13, 15, 48, 50, 45, 21, 41, 12, 34, 40, 24, 56, 19, 21, 35, 18,
		55, 45, 9, 61, 47, 61, 19, 15, 16, 39, 17, 31, 3, 51, 21, 50,
		17, 25, 25, 11, 44, 16, 18, 28, 14, 2, 37, 61, 58, 27, 62, 4,
		14, 17, 1, 9, 46, 28, 37, 0, 53, 43, 57, 7, 57, 46, 21, 41,
		39, 14, 52, 60, 44, 53, 49, 60, 49, 63, 13, 11, 29, 1, 55, 47,
		55, 12, 60, 43, 54, 37, 13, 6, 42, 10, 36, 13, 9, 8, 34, 51,
		31, 32, 12, 7, 57, 2, 26, 14, 3, 30, 63, 3, 32, 1, 5, 11,
		27, 24, 26, 44, 31, 23, 56, 38, 62, 0, 40, 30, 6, 23, 38, 2,
		47, 5, 15, 27, 16, 10, 31, 25, 22, 63, 30, 25, 20, 33, 32, 50,
		29, 43, 55, 10, 50, 45, 56, 20, 4, 7, 27, 46, 11, 16, 22, 52,
		35, 20, 41, 54, 46, 33, 42, 18, 63, 8, 22, 58, 36, 4, 51, 42,
		38, 32, 38, 22, 17, 0, 47, 8, 48, 8, 48, 1, 61, 36, 33, 20,
		24, 39, 39, 18, 30, 36, 9, 43, 42, 24, 10, 58, 4, 15, 34, 52
	},
};

/*************************************************************************
 * Offline region structures
 *************************************************************************/

/** Online group containing number of rules, values, keys and their bins
 * for EFD_MAX_GROUP_NUM_RULES rules.
 */
struct efd_offline_group_rules {
	uint32_t num_rules;
	/**< Sum of the number of rules in all bins assigned to this group. */

	uint32_t key_idx[EFD_MAX_GROUP_NUM_RULES];
	/**< Array with all keys of the group. */
	efd_value_t value[EFD_MAX_GROUP_NUM_RULES];
	/**< Array with all values of the keys of the group. */

	uint8_t bin_id[EFD_MAX_GROUP_NUM_RULES];
	/**< Stores the bin for each corresponding key to
	 * avoid having to recompute it
	 */
};

/** Offline chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
 * Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
 */
struct efd_offline_chunk_rules {
	uint16_t num_rules;
	/**< Number of rules in the entire chunk;
	 * used to detect unbalanced groups
	 */

	struct efd_offline_group_rules group_rules[EFD_CHUNK_NUM_GROUPS];
	/**< Array of all groups in the chunk. */
};

/*************************************************************************
 * Online region structures
 *************************************************************************/

/** Online group containing values for EFD_MAX_GROUP_NUM_RULES rules. */
struct efd_online_group_entry {
	efd_hashfunc_t hash_idx[RTE_EFD_VALUE_NUM_BITS];
	efd_lookuptbl_t lookup_table[RTE_EFD_VALUE_NUM_BITS];
} __rte_packed;

/**
 * A single chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
 * Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
 */
struct efd_online_chunk {
	uint8_t bin_choice_list[(EFD_CHUNK_NUM_BINS * 2 + 7) / 8];
	/**< This is a packed indirection index into the 'groups' array.
	 * Each byte contains four two-bit values which index into
	 * the efd_bin_to_group array.
	 * The efd_bin_to_group array returns the index into the groups array
	 */

	struct efd_online_group_entry groups[EFD_CHUNK_NUM_GROUPS];
	/**< Array of all the groups in the chunk. */
} __rte_packed;

/**
 * EFD table structure
 */
struct rte_efd_table {
	char name[RTE_EFD_NAMESIZE]; /**< Name of the efd table. */

	uint32_t key_len; /**< Length of the key stored offline */

	uint32_t max_num_rules;
	/**< Static maximum number of entries the table was constructed to hold. */

	uint32_t num_rules;
	/**< Number of entries currently in the table . */

	uint32_t num_chunks;
	/**< Number of chunks in the table needed to support num_rules. */

	uint32_t num_chunks_shift;
	/**< Bits to shift to get chunk id, instead of dividing by num_chunk. */

	enum efd_lookup_internal_function lookup_fn;
	/**< Indicates which lookup function to use. */

	struct efd_online_chunk *chunks[RTE_MAX_NUMA_NODES];
	/**< Dynamic array of size num_chunks of chunk records. */

	struct efd_offline_chunk_rules *offline_chunks;
	/**< Dynamic array of size num_chunks of key-value pairs. */

	struct rte_ring *free_slots;
	/**< Ring that stores all indexes of the free slots in the key table */

	uint8_t *keys; /**< Dynamic array of size max_num_rules of keys */
};

/**
 * Computes the chunk ID for a given key hash
 *
 * @param table
 *   EFD table to reference
 * @param hashed_key
 *   32-bit key hash returned by EFD_HASH
 *
 * @return
 *   chunk ID containing this key hash
 */
static inline uint32_t
efd_get_chunk_id(const struct rte_efd_table * const table,
		const uint32_t hashed_key)
{
	return hashed_key & (table->num_chunks - 1);
}

/**
 * Computes the bin ID for a given key hash
 *
 * @param table
 *   EFD table to reference
 * @param hashed_key
 *   32-bit key hash returned by EFD_HASH
 *
 * @return bin ID containing this key hash
 */
static inline uint32_t
efd_get_bin_id(const struct rte_efd_table * const table,
		const uint32_t hashed_key)
{
	return (hashed_key >> table->num_chunks_shift) & (EFD_CHUNK_NUM_BINS - 1);
}

/**
 * Looks up the current permutation choice for a particular bin in the online table
 *
 * @param table
 *  EFD table to reference
 * @param socket_id
 *   Socket ID to use to look up existing values (ideally caller's socket id)
 * @param chunk_id
 *   Chunk ID of bin to look up
 * @param bin_id
 *   Bin ID to look up
 *
 * @return
 *   Currently active permutation choice in the online table
 */
static inline uint8_t
efd_get_choice(const struct rte_efd_table * const table,
		const unsigned int socket_id, const uint32_t chunk_id,
		const uint32_t bin_id)
{
	struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];

	/*
	 * Grab the chunk (byte) that contains the choices
	 * for four neighboring bins.
	 */
	uint8_t choice_chunk =
			chunk->bin_choice_list[bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS];

	/*
	 * Compute the offset into the chunk that contains
	 * the group_id lookup position
	 */
	int offset = (bin_id & 0x3) * 2;

	/* Extract from the byte just the desired lookup position */
	return (uint8_t) ((choice_chunk >> offset) & 0x3);
}

/**
 * Compute the chunk_id and bin_id for a given key
 *
 * @param table
 *   EFD table to reference
 * @param key
 *   Key to hash and find location of
 * @param chunk_id
 *   Computed chunk ID
 * @param bin_id
 *   Computed bin ID
 *
 */
static inline void
efd_compute_ids(const struct rte_efd_table * const table,
		const void *key, uint32_t * const chunk_id, uint32_t * const bin_id)
{
	/* Compute the position of the entry in the hash table */
	uint32_t h = EFD_HASH(key, table);

	/* Compute the chunk_id where that entry can be found */
	*chunk_id = efd_get_chunk_id(table, h);

	/*
	 * Compute the bin within that chunk where the entry
	 * can be found (0 - 255)
	 */
	*bin_id = efd_get_bin_id(table, h);
}

/**
 * Search for a hash function for a group that satisfies all group results
 */
static inline int
efd_search_hash(struct rte_efd_table * const table,
		const struct efd_offline_group_rules * const off_group,
		struct efd_online_group_entry * const on_group)
{
	efd_hashfunc_t hash_idx;
	efd_hashfunc_t start_hash_idx[RTE_EFD_VALUE_NUM_BITS];
	efd_lookuptbl_t start_lookup_table[RTE_EFD_VALUE_NUM_BITS];

	uint32_t i, j, rule_id;
	uint32_t hash_val_a[EFD_MAX_GROUP_NUM_RULES];
	uint32_t hash_val_b[EFD_MAX_GROUP_NUM_RULES];
	uint32_t hash_val[EFD_MAX_GROUP_NUM_RULES];


	rte_prefetch0(off_group->value);

	/*
	 * Prepopulate the hash_val tables by running the two hash functions
	 * for each provided rule
	 */
	for (i = 0; i < off_group->num_rules; i++) {
		void *key_stored = EFD_KEY(off_group->key_idx[i], table);
		hash_val_b[i] = EFD_HASHFUNCB(key_stored, table);
		hash_val_a[i] = EFD_HASHFUNCA(key_stored, table);
	}

	for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
		hash_idx = on_group->hash_idx[i];
		start_hash_idx[i] = hash_idx;
		start_lookup_table[i] = on_group->lookup_table[i];

		do {
			efd_lookuptbl_t lookup_table = 0;
			efd_lookuptbl_t lookup_table_complement = 0;

			for (rule_id = 0; rule_id < off_group->num_rules; rule_id++)
				hash_val[rule_id] = hash_val_a[rule_id] + (hash_idx *
					hash_val_b[rule_id]);

			/*
			 * The goal here is to find a hash function for this
			 * particular bit entry that meets the following criteria:
			 * The most significant bits of the hash result define a
			 * shift into the lookup table where the bit will be stored
			 */

			/* Iterate over each provided rule */
			for (rule_id = 0; rule_id < off_group->num_rules;
					rule_id++) {
				/*
				 * Use the few most significant bits (number based on
				 * EFD_LOOKUPTBL_SIZE) to see what position the
				 * expected bit should be set in the lookup_table
				 */
				uint32_t bucket_idx = hash_val[rule_id] >>
						EFD_LOOKUPTBL_SHIFT;

				/*
				 * Get the current bit of interest.
				 * This only find an appropriate hash function
				 * for one bit at a time of the rule
				 */
				efd_lookuptbl_t expected =
						(off_group->value[rule_id] >> i) & 0x1;

				/*
				 * Add the expected bit (if set) to a map
				 * (lookup_table). Also set its complement
				 * in lookup_table_complement
				 */
				lookup_table |= expected << bucket_idx;
				lookup_table_complement |= (1 - expected)
						<< bucket_idx;

				/*
				 * If ever the hash function of two different
				 * elements result in different values at the
				 * same location in the lookup_table,
				 * the current hash_idx is not valid.
				 */
				if (lookup_table & lookup_table_complement)
					break;
			}

			/*
			 * Check if the previous loop completed without
			 * breaking early
			 */
			if (rule_id == off_group->num_rules) {
				/*
				 * Current hash function worked, store it
				 * for the current group
				 */
				on_group->hash_idx[i] = hash_idx;
				on_group->lookup_table[i] = lookup_table;

				/*
				 * Make sure that the hash function has changed
				 * from the starting value
				 */
				hash_idx = start_hash_idx[i] + 1;
				break;
			}
			hash_idx++;

		} while (hash_idx != start_hash_idx[i]);

		/* Failed to find perfect hash for this group */
		if (hash_idx == start_hash_idx[i]) {
			/*
			 * Restore previous hash_idx and lookup_table
			 * for all value bits
			 */
			for (j = 0; j < i; j++) {
				on_group->hash_idx[j] = start_hash_idx[j];
				on_group->lookup_table[j] = start_lookup_table[j];
			}
			return 1;
		}
	}

	return 0;
}

struct rte_efd_table *
rte_efd_create(const char *name, uint32_t max_num_rules, uint32_t key_len,
		uint8_t online_cpu_socket_bitmask, uint8_t offline_cpu_socket)
{
	struct rte_efd_table *table = NULL;
	uint8_t *key_array = NULL;
	uint32_t num_chunks, num_chunks_shift;
	uint8_t socket_id;
	struct rte_efd_list *efd_list = NULL;
	struct rte_tailq_entry *te;
	uint64_t offline_table_size;
	char ring_name[RTE_RING_NAMESIZE];
	struct rte_ring *r = NULL;
	unsigned int i;

	efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);

	if (online_cpu_socket_bitmask == 0) {
		RTE_LOG(ERR, EFD, "At least one CPU socket must be enabled "
				"in the bitmask\n");
		return NULL;
	}

	if (max_num_rules == 0) {
		RTE_LOG(ERR, EFD, "Max num rules must be higher than 0\n");
		return NULL;
	}

	/*
	 * Compute the minimum number of chunks (smallest power of 2)
	 * that can hold all of the rules
	 */
	if (max_num_rules % EFD_TARGET_CHUNK_NUM_RULES == 0)
		num_chunks = rte_align32pow2(max_num_rules /
			EFD_TARGET_CHUNK_NUM_RULES);
	else
		num_chunks = rte_align32pow2((max_num_rules /
			EFD_TARGET_CHUNK_NUM_RULES) + 1);

	num_chunks_shift = rte_bsf32(num_chunks);

	rte_mcfg_tailq_write_lock();

	/*
	 * Guarantee there's no existing: this is normally already checked
	 * by ring creation above
	 */
	TAILQ_FOREACH(te, efd_list, next)
	{
		table = (struct rte_efd_table *) te->data;
		if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
			break;
	}

	table = NULL;
	if (te != NULL) {
		rte_errno = EEXIST;
		te = NULL;
		goto error_unlock_exit;
	}

	te = rte_zmalloc("EFD_TAILQ_ENTRY", sizeof(*te), 0);
	if (te == NULL) {
		RTE_LOG(ERR, EFD, "tailq entry allocation failed\n");
		goto error_unlock_exit;
	}

	/* Create a new EFD table management structure */
	table = rte_zmalloc_socket(NULL,
			sizeof(struct rte_efd_table),
			RTE_CACHE_LINE_SIZE,
			offline_cpu_socket);
	if (table == NULL) {
		RTE_LOG(ERR, EFD, "Allocating EFD table management structure"
				" on socket %u failed\n",
				offline_cpu_socket);
		goto error_unlock_exit;
	}


	RTE_LOG(DEBUG, EFD, "Allocated EFD table management structure "
			"on socket %u\n", offline_cpu_socket);

	table->max_num_rules = num_chunks * EFD_TARGET_CHUNK_MAX_NUM_RULES;
	table->num_rules = 0;
	table->num_chunks = num_chunks;
	table->num_chunks_shift = num_chunks_shift;
	table->key_len = key_len;

	/* key_array */
	key_array = rte_zmalloc_socket(NULL,
			table->max_num_rules * table->key_len,
			RTE_CACHE_LINE_SIZE,
			offline_cpu_socket);
	if (key_array == NULL) {
		RTE_LOG(ERR, EFD, "Allocating key array"
				" on socket %u failed\n",
				offline_cpu_socket);
		goto error_unlock_exit;
	}
	table->keys = key_array;
	strlcpy(table->name, name, sizeof(table->name));

	RTE_LOG(DEBUG, EFD, "Creating an EFD table with %u chunks,"
			" which potentially supports %u entries\n",
			num_chunks, table->max_num_rules);

	/* Make sure all the allocatable table pointers are NULL initially */
	for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
		table->chunks[socket_id] = NULL;
	table->offline_chunks = NULL;

	/*
	 * Allocate one online table per socket specified
	 * in the user-supplied bitmask
	 */
	uint64_t online_table_size = num_chunks * sizeof(struct efd_online_chunk) +
			EFD_NUM_CHUNK_PADDING_BYTES;

	for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++) {
		if ((online_cpu_socket_bitmask >> socket_id) & 0x01) {
			/*
			 * Allocate all of the EFD table chunks (the online portion)
			 * as a continuous block
			 */
			table->chunks[socket_id] =
				rte_zmalloc_socket(
				NULL,
				online_table_size,
				RTE_CACHE_LINE_SIZE,
				socket_id);
			if (table->chunks[socket_id] == NULL) {
				RTE_LOG(ERR, EFD,
						"Allocating EFD online table on "
						"socket %u failed\n",
						socket_id);
				goto error_unlock_exit;
			}
			RTE_LOG(DEBUG, EFD,
					"Allocated EFD online table of size "
					"%"PRIu64" bytes (%.2f MB) on socket %u\n",
					online_table_size,
					(float) online_table_size /
						(1024.0F * 1024.0F),
					socket_id);
		}
	}

#if defined(RTE_ARCH_X86)
	/*
	 * For less than 4 bits, scalar function performs better
	 * than vectorised version
	 */
	if (RTE_EFD_VALUE_NUM_BITS > 3 && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
		table->lookup_fn = EFD_LOOKUP_AVX2;
	else
#endif
#if defined(RTE_ARCH_ARM64)
	/*
	 * For less than or equal to 16 bits, scalar function performs better
	 * than vectorised version
	 */
	if (RTE_EFD_VALUE_NUM_BITS > 16 &&
	    rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
		table->lookup_fn = EFD_LOOKUP_NEON;
	else
#endif
		table->lookup_fn = EFD_LOOKUP_SCALAR;

	/*
	 * Allocate the EFD table offline portion (with the actual rules
	 * mapping keys to values) as a continuous block.
	 * This could be several gigabytes of memory.
	 */
	offline_table_size = num_chunks * sizeof(struct efd_offline_chunk_rules);
	table->offline_chunks =
			rte_zmalloc_socket(NULL,
			offline_table_size,
			RTE_CACHE_LINE_SIZE,
			offline_cpu_socket);
	if (table->offline_chunks == NULL) {
		RTE_LOG(ERR, EFD, "Allocating EFD offline table on socket %u "
				"failed\n", offline_cpu_socket);
		goto error_unlock_exit;
	}

	RTE_LOG(DEBUG, EFD,
			"Allocated EFD offline table of size %"PRIu64" bytes "
			" (%.2f MB) on socket %u\n", offline_table_size,
			(float) offline_table_size / (1024.0F * 1024.0F),
			offline_cpu_socket);

	te->data = (void *) table;
	TAILQ_INSERT_TAIL(efd_list, te, next);
	rte_mcfg_tailq_write_unlock();

	snprintf(ring_name, sizeof(ring_name), "HT_%s", table->name);
	/* Create ring (Dummy slot index is not enqueued) */
	r = rte_ring_create(ring_name, rte_align32pow2(table->max_num_rules),
			offline_cpu_socket, 0);
	if (r == NULL) {
		RTE_LOG(ERR, EFD, "memory allocation failed\n");
		rte_efd_free(table);
		return NULL;
	}

	/* Populate free slots ring. Entry zero is reserved for key misses. */
	for (i = 0; i < table->max_num_rules; i++)
		rte_ring_sp_enqueue(r, (void *) ((uintptr_t) i));

	table->free_slots = r;
	return table;

error_unlock_exit:
	rte_mcfg_tailq_write_unlock();
	rte_efd_free(table);

	return NULL;
}

struct rte_efd_table *
rte_efd_find_existing(const char *name)
{
	struct rte_efd_table *table = NULL;
	struct rte_tailq_entry *te;
	struct rte_efd_list *efd_list;

	efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);

	rte_mcfg_tailq_read_lock();

	TAILQ_FOREACH(te, efd_list, next)
	{
		table = (struct rte_efd_table *) te->data;
		if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
			break;
	}
	rte_mcfg_tailq_read_unlock();

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}
	return table;
}

void
rte_efd_free(struct rte_efd_table *table)
{
	uint8_t socket_id;
	struct rte_efd_list *efd_list;
	struct rte_tailq_entry *te, *temp;

	if (table == NULL)
		return;

	for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
		rte_free(table->chunks[socket_id]);

	efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
	rte_mcfg_tailq_write_lock();

	TAILQ_FOREACH_SAFE(te, efd_list, next, temp) {
		if (te->data == (void *) table) {
			TAILQ_REMOVE(efd_list, te, next);
			rte_free(te);
			break;
		}
	}

	rte_mcfg_tailq_write_unlock();
	rte_ring_free(table->free_slots);
	rte_free(table->offline_chunks);
	rte_free(table->keys);
	rte_free(table);
}

/**
 * Applies a previously computed table entry to the specified table for all
 * socket-local copies of the online table.
 * Intended to apply an update for only a single change
 * to a key/value pair at a time
 *
 * @param table
 *   EFD table to reference
 * @param socket_id
 *   Socket ID to use to lookup existing values (ideally caller's socket id)
 * @param chunk_id
 *   Chunk index to update
 * @param group_id
 *   Group index to update
 * @param bin_id
 *   Bin within the group that this update affects
 * @param new_bin_choice
 *   Newly chosen permutation which this bin should use - only lower 2 bits
 * @param new_group_entry
 *   Previously computed updated chunk/group entry
 */
static inline void
efd_apply_update(struct rte_efd_table * const table, const unsigned int socket_id,
		const uint32_t chunk_id, const uint32_t group_id,
		const uint32_t bin_id, const uint8_t new_bin_choice,
		const struct efd_online_group_entry * const new_group_entry)
{
	int i;
	struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];
	uint8_t bin_index = bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;

	/*
	 * Grab the current byte that contains the choices
	 * for four neighboring bins
	 */
	uint8_t choice_chunk =
			chunk->bin_choice_list[bin_index];


	/* Compute the offset into the chunk that needs to be updated */
	int offset = (bin_id & 0x3) * 2;

	/* Zero the two bits of interest and set them to new_bin_choice */
	choice_chunk = (choice_chunk & (~(0x03 << offset)))
			| ((new_bin_choice & 0x03) << offset);

	/* Update the online table with the new data across all sockets */
	for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
		if (table->chunks[i] != NULL) {
			memcpy(&(table->chunks[i][chunk_id].groups[group_id]),
					new_group_entry,
					sizeof(struct efd_online_group_entry));
			table->chunks[i][chunk_id].bin_choice_list[bin_index] =
					choice_chunk;
		}
	}
}

/*
 * Move the bin from prev group to the new group
 */
static inline void
move_groups(uint32_t bin_id, uint8_t bin_size,
		struct efd_offline_group_rules *new_group,
		struct efd_offline_group_rules * const current_group)
{

	uint8_t empty_idx = 0;
	unsigned int i;

	if (new_group == current_group)
		return;

	for (i = 0; i < current_group->num_rules; i++) {
		/*
		 * Move keys that belong to the same bin
		 * to the new group
		 */
		if (current_group->bin_id[i] == bin_id) {
			new_group->key_idx[new_group->num_rules] =
					current_group->key_idx[i];
			new_group->value[new_group->num_rules] =
					current_group->value[i];
			new_group->bin_id[new_group->num_rules] =
					current_group->bin_id[i];
			new_group->num_rules++;
		} else {
			if (i != empty_idx) {
				/*
				 * Need to move this key towards
				 * the top of the array
				 */
				current_group->key_idx[empty_idx] =
						current_group->key_idx[i];
				current_group->value[empty_idx] =
						current_group->value[i];
				current_group->bin_id[empty_idx] =
						current_group->bin_id[i];
			}
			empty_idx++;
		}

	}
	current_group->num_rules -= bin_size;
}

/*
 * Revert group/s to their previous state before
 * trying to insert/add a new key
 */
static inline void
revert_groups(struct efd_offline_group_rules *previous_group,
		struct efd_offline_group_rules *current_group, uint8_t bin_size)
{
	unsigned int i;

	if (current_group == previous_group)
		return;

	/* Move keys back to previous group */
	for (i = current_group->num_rules - bin_size;
			i < current_group->num_rules; i++) {
		previous_group->key_idx[previous_group->num_rules] =
				current_group->key_idx[i];
		previous_group->value[previous_group->num_rules] =
				current_group->value[i];
		previous_group->bin_id[previous_group->num_rules] =
				current_group->bin_id[i];
		previous_group->num_rules++;
	}

	/*
	 * Decrease number of rules after the move
	 * in the new group
	 */
	current_group->num_rules -= bin_size;
}

/**
 * Computes an updated table entry where the supplied key points to a new host.
 * If no entry exists, one is inserted.
 *
 * This function does NOT modify the online table(s)
 * This function DOES modify the offline table
 *
 * @param table
 *   EFD table to reference
 * @param socket_id
 *   Socket ID to use to lookup existing values (ideally caller's socket id)
 * @param key
 *   Key to insert
 * @param value
 *   Value to associate with key
 * @param chunk_id
 *   Chunk ID of the chunk that was modified
 * @param group_id
 *   Group ID of the group that was modified
 * @param bin_id
 *   Bin ID that was modified
 * @param new_bin_choice
 *   Newly chosen permutation which this bin will use
 * @param entry
 *   Newly computed online entry to apply later with efd_apply_update
 *
 * @return
 *   RTE_EFD_UPDATE_WARN_GROUP_FULL
 *     Operation is insert, and the last available space in the
 *     key's group was just used. Future inserts may fail as groups fill up.
 *     This operation was still successful, and entry contains a valid update
 *   RTE_EFD_UPDATE_FAILED
 *     Either the EFD failed to find a suitable perfect hash or the group was full
 *     This is a fatal error, and the table is now in an indeterminate state
 *   RTE_EFD_UPDATE_NO_CHANGE
 *     Operation resulted in no change to the table (same value already exists)
 *   0
 *     Insert or update was successful, and the new efd_online_group_entry
 *     is stored in *entry
 *
 * @warning
 *   Note that entry will be UNCHANGED if the update has no effect, and thus any
 *   subsequent use of the entry content will likely be invalid
 */
static inline int
efd_compute_update(struct rte_efd_table * const table,
		const unsigned int socket_id, const void *key,
		const efd_value_t value, uint32_t * const chunk_id,
		uint32_t * const group_id, uint32_t * const bin_id,
		uint8_t * const new_bin_choice,
		struct efd_online_group_entry * const entry)
{
	unsigned int i;
	int ret;
	uint32_t new_idx;
	void *new_k, *slot_id = NULL;
	int status = EXIT_SUCCESS;
	unsigned int found = 0;

	efd_compute_ids(table, key, chunk_id, bin_id);

	struct efd_offline_chunk_rules * const chunk =
			&table->offline_chunks[*chunk_id];
	struct efd_offline_group_rules *new_group;

	uint8_t current_choice = efd_get_choice(table, socket_id,
			*chunk_id, *bin_id);
	uint32_t current_group_id = efd_bin_to_group[current_choice][*bin_id];
	struct efd_offline_group_rules * const current_group =
			&chunk->group_rules[current_group_id];
	uint8_t bin_size = 0;
	uint8_t key_changed_index = 0;
	efd_value_t key_changed_previous_value = 0;
	uint32_t key_idx_previous = 0;

	/* Scan the current group and see if the key is already present */
	for (i = 0; i < current_group->num_rules; i++) {
		if (current_group->bin_id[i] == *bin_id)
			bin_size++;
		else
			continue;

		void *key_stored = EFD_KEY(current_group->key_idx[i], table);
		if (found == 0 && unlikely(memcmp(key_stored, key,
				table->key_len) == 0)) {
			/* Key is already present */

			/*
			 * If previous value is same as new value,
			 * no additional work is required
			 */
			if (current_group->value[i] == value)
				return RTE_EFD_UPDATE_NO_CHANGE;

			key_idx_previous = current_group->key_idx[i];
			key_changed_previous_value = current_group->value[i];
			key_changed_index = i;
			current_group->value[i] = value;
			found = 1;
		}
	}

	if (found == 0) {
		/* Key does not exist. Insert the rule into the bin/group */
		if (unlikely(current_group->num_rules >= EFD_MAX_GROUP_NUM_RULES)) {
			RTE_LOG(ERR, EFD,
					"Fatal: No room remaining for insert into "
					"chunk %u group %u bin %u\n",
					*chunk_id,
					current_group_id, *bin_id);
			return RTE_EFD_UPDATE_FAILED;
		}

		if (unlikely(current_group->num_rules ==
				(EFD_MAX_GROUP_NUM_RULES - 1))) {
			RTE_LOG(INFO, EFD, "Warn: Insert into last "
					"available slot in chunk %u "
					"group %u bin %u\n", *chunk_id,
					current_group_id, *bin_id);
			status = RTE_EFD_UPDATE_WARN_GROUP_FULL;
		}

		if (rte_ring_sc_dequeue(table->free_slots, &slot_id) != 0)
			return RTE_EFD_UPDATE_FAILED;

		new_k = RTE_PTR_ADD(table->keys, (uintptr_t) slot_id *
					table->key_len);
		rte_prefetch0(new_k);
		new_idx = (uint32_t) ((uintptr_t) slot_id);

		rte_memcpy(EFD_KEY(new_idx, table), key, table->key_len);
		current_group->key_idx[current_group->num_rules] = new_idx;
		current_group->value[current_group->num_rules] = value;
		current_group->bin_id[current_group->num_rules] = *bin_id;
		current_group->num_rules++;
		table->num_rules++;
		bin_size++;
	} else {
		uint32_t last = current_group->num_rules - 1;
		/* Swap the key with the last key inserted*/
		current_group->key_idx[key_changed_index] =
				current_group->key_idx[last];
		current_group->value[key_changed_index] =
				current_group->value[last];
		current_group->bin_id[key_changed_index] =
				current_group->bin_id[last];

		/*
		 * Key to be updated will always be available
		 * at the end of the group
		 */
		current_group->key_idx[last] = key_idx_previous;
		current_group->value[last] = value;
		current_group->bin_id[last] = *bin_id;
	}

	*new_bin_choice = current_choice;
	*group_id = current_group_id;
	new_group = current_group;

	/* Group need to be rebalanced when it starts to get loaded */
	if (current_group->num_rules > EFD_MIN_BALANCED_NUM_RULES) {

		/*
		 * Subtract the number of entries in the bin from
		 * the original group
		 */
		current_group->num_rules -= bin_size;

		/*
		 * Figure out which of the available groups that this bin
		 * can map to is the smallest (using the current group
		 * as baseline)
		 */
		uint8_t smallest_choice = current_choice;
		uint8_t smallest_size = current_group->num_rules;
		uint32_t smallest_group_id = current_group_id;
		unsigned char choice;

		for (choice = 0; choice < EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;
				choice++) {
			uint32_t test_group_id =
					efd_bin_to_group[choice][*bin_id];
			uint32_t num_rules =
					chunk->group_rules[test_group_id].num_rules;
			if (num_rules < smallest_size) {
				smallest_choice = choice;
				smallest_size = num_rules;
				smallest_group_id = test_group_id;
			}
		}

		*new_bin_choice = smallest_choice;
		*group_id = smallest_group_id;
		new_group = &chunk->group_rules[smallest_group_id];
		current_group->num_rules += bin_size;

	}

	uint8_t choice = 0;
	for (;;) {
		if (current_group != new_group &&
				new_group->num_rules + bin_size >
					EFD_MAX_GROUP_NUM_RULES) {
			RTE_LOG(DEBUG, EFD,
					"Unable to move_groups to dest group "
					"containing %u entries."
					"bin_size:%u choice:%02x\n",
					new_group->num_rules, bin_size,
					choice - 1);
			goto next_choice;
		}
		move_groups(*bin_id, bin_size, new_group, current_group);
		/*
		 * Recompute the hash function for the modified group,
		 * and return it to the caller
		 */
		ret = efd_search_hash(table, new_group, entry);

		if (!ret)
			return status;

		RTE_LOG(DEBUG, EFD,
				"Failed to find perfect hash for group "
				"containing %u entries. bin_size:%u choice:%02x\n",
				new_group->num_rules, bin_size, choice - 1);
		/* Restore groups modified to their previous state */
		revert_groups(current_group, new_group, bin_size);

next_choice:
		if (choice == EFD_CHUNK_NUM_BIN_TO_GROUP_SETS)
			break;
		*new_bin_choice = choice;
		*group_id = efd_bin_to_group[choice][*bin_id];
		new_group = &chunk->group_rules[*group_id];
		choice++;
	}

	if (!found) {
		current_group->num_rules--;
		table->num_rules--;
	} else
		current_group->value[current_group->num_rules - 1] =
			key_changed_previous_value;
	return RTE_EFD_UPDATE_FAILED;
}

int
rte_efd_update(struct rte_efd_table * const table, const unsigned int socket_id,
		const void *key, const efd_value_t value)
{
	uint32_t chunk_id = 0, group_id = 0, bin_id = 0;
	uint8_t new_bin_choice = 0;
	struct efd_online_group_entry entry;

	int status = efd_compute_update(table, socket_id, key, value,
			&chunk_id, &group_id, &bin_id,
			&new_bin_choice, &entry);

	if (status == RTE_EFD_UPDATE_NO_CHANGE)
		return EXIT_SUCCESS;

	if (status == RTE_EFD_UPDATE_FAILED)
		return status;

	efd_apply_update(table, socket_id, chunk_id, group_id, bin_id,
			new_bin_choice, &entry);
	return status;
}

int
rte_efd_delete(struct rte_efd_table * const table, const unsigned int socket_id,
		const void *key, efd_value_t * const prev_value)
{
	unsigned int i;
	uint32_t chunk_id, bin_id;
	uint8_t not_found = 1;

	efd_compute_ids(table, key, &chunk_id, &bin_id);

	struct efd_offline_chunk_rules * const chunk =
			&table->offline_chunks[chunk_id];

	uint8_t current_choice = efd_get_choice(table, socket_id,
			chunk_id, bin_id);
	uint32_t current_group_id = efd_bin_to_group[current_choice][bin_id];
	struct efd_offline_group_rules * const current_group =
			&chunk->group_rules[current_group_id];

	/*
	 * Search the current group for the specified key.
	 * If it exists, remove it and re-pack the other values
	 */
	for (i = 0; i < current_group->num_rules; i++) {
		if (not_found) {
			/* Found key that needs to be removed */
			if (memcmp(EFD_KEY(current_group->key_idx[i], table),
					key, table->key_len) == 0) {
				/* Store previous value if requested by caller */
				if (prev_value != NULL)
					*prev_value = current_group->value[i];

				not_found = 0;
				rte_ring_sp_enqueue(table->free_slots,
					(void *)((uintptr_t)current_group->key_idx[i]));
			}
		} else {
			/*
			 * If the desired key has been found,
			 * need to shift other values up one
			 */

			/* Need to shift this entry back up one index */
			current_group->key_idx[i - 1] = current_group->key_idx[i];
			current_group->value[i - 1] = current_group->value[i];
			current_group->bin_id[i - 1] = current_group->bin_id[i];
		}
	}

	if (not_found == 0) {
		table->num_rules--;
		current_group->num_rules--;
	}

	return not_found;
}

static inline efd_value_t
efd_lookup_internal_scalar(const efd_hashfunc_t *group_hash_idx,
		const efd_lookuptbl_t *group_lookup_table,
		const uint32_t hash_val_a, const uint32_t hash_val_b)
{
	efd_value_t value = 0;
	uint32_t i;

	for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
		value <<= 1;
		uint32_t h = hash_val_a + (hash_val_b *
			group_hash_idx[RTE_EFD_VALUE_NUM_BITS - i - 1]);
		uint16_t bucket_idx = h >> EFD_LOOKUPTBL_SHIFT;
		value |= (group_lookup_table[
				RTE_EFD_VALUE_NUM_BITS - i - 1] >>
				bucket_idx) & 0x1;
	}

	return value;
}


static inline efd_value_t
efd_lookup_internal(const struct efd_online_group_entry * const group,
		const uint32_t hash_val_a, const uint32_t hash_val_b,
		enum efd_lookup_internal_function lookup_fn)
{
	efd_value_t value = 0;

	switch (lookup_fn) {

#if defined(RTE_ARCH_X86) && defined(CC_SUPPORT_AVX2)
	case EFD_LOOKUP_AVX2:
		return efd_lookup_internal_avx2(group->hash_idx,
					group->lookup_table,
					hash_val_a,
					hash_val_b);
		break;
#endif
#if defined(RTE_ARCH_ARM64)
	case EFD_LOOKUP_NEON:
		return efd_lookup_internal_neon(group->hash_idx,
					group->lookup_table,
					hash_val_a,
					hash_val_b);
		break;
#endif
	case EFD_LOOKUP_SCALAR:
	/* Fall-through */
	default:
		return efd_lookup_internal_scalar(group->hash_idx,
					group->lookup_table,
					hash_val_a,
					hash_val_b);
	}

	return value;
}

efd_value_t
rte_efd_lookup(const struct rte_efd_table * const table,
		const unsigned int socket_id, const void *key)
{
	uint32_t chunk_id, group_id, bin_id;
	uint8_t bin_choice;
	const struct efd_online_group_entry *group;
	const struct efd_online_chunk * const chunks = table->chunks[socket_id];

	/* Determine the chunk and group location for the given key */
	efd_compute_ids(table, key, &chunk_id, &bin_id);
	bin_choice = efd_get_choice(table, socket_id, chunk_id, bin_id);
	group_id = efd_bin_to_group[bin_choice][bin_id];
	group = &chunks[chunk_id].groups[group_id];

	return efd_lookup_internal(group,
			EFD_HASHFUNCA(key, table),
			EFD_HASHFUNCB(key, table),
			table->lookup_fn);
}

void rte_efd_lookup_bulk(const struct rte_efd_table * const table,
		const unsigned int socket_id, const int num_keys,
		const void **key_list, efd_value_t * const value_list)
{
	int i;
	uint32_t chunk_id_list[RTE_EFD_BURST_MAX];
	uint32_t bin_id_list[RTE_EFD_BURST_MAX];
	uint8_t bin_choice_list[RTE_EFD_BURST_MAX];
	uint32_t group_id_list[RTE_EFD_BURST_MAX];
	struct efd_online_group_entry *group;

	struct efd_online_chunk *chunks = table->chunks[socket_id];

	for (i = 0; i < num_keys; i++) {
		efd_compute_ids(table, key_list[i], &chunk_id_list[i],
				&bin_id_list[i]);
		rte_prefetch0(&chunks[chunk_id_list[i]].bin_choice_list);
	}

	for (i = 0; i < num_keys; i++) {
		bin_choice_list[i] = efd_get_choice(table, socket_id,
				chunk_id_list[i], bin_id_list[i]);
		group_id_list[i] =
				efd_bin_to_group[bin_choice_list[i]][bin_id_list[i]];
		group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
		rte_prefetch0(group);
	}

	for (i = 0; i < num_keys; i++) {
		group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
		value_list[i] = efd_lookup_internal(group,
				EFD_HASHFUNCA(key_list[i], table),
				EFD_HASHFUNCB(key_list[i], table),
				table->lookup_fn);
	}
}