1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include <assert.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_spinlock.h>
#include <rte_random.h>
#include <rte_pause.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_errno.h>
#include "rte_timer.h"
/**
* Per-lcore info for timers.
*/
struct priv_timer {
struct rte_timer pending_head; /**< dummy timer instance to head up list */
rte_spinlock_t list_lock; /**< lock to protect list access */
/** per-core variable that true if a timer was updated on this
* core since last reset of the variable */
int updated;
/** track the current depth of the skiplist */
unsigned curr_skiplist_depth;
unsigned prev_lcore; /**< used for lcore round robin */
/** running timer on this lcore now */
struct rte_timer *running_tim;
#ifdef RTE_LIBRTE_TIMER_DEBUG
/** per-lcore statistics */
struct rte_timer_debug_stats stats;
#endif
} __rte_cache_aligned;
#define FL_ALLOCATED (1 << 0)
struct rte_timer_data {
struct priv_timer priv_timer[RTE_MAX_LCORE];
uint8_t internal_flags;
};
#define RTE_MAX_DATA_ELS 64
static const struct rte_memzone *rte_timer_data_mz;
static int *volatile rte_timer_mz_refcnt;
static struct rte_timer_data *rte_timer_data_arr;
static const uint32_t default_data_id;
static uint32_t rte_timer_subsystem_initialized;
/* when debug is enabled, store some statistics */
#ifdef RTE_LIBRTE_TIMER_DEBUG
#define __TIMER_STAT_ADD(priv_timer, name, n) do { \
unsigned __lcore_id = rte_lcore_id(); \
if (__lcore_id < RTE_MAX_LCORE) \
priv_timer[__lcore_id].stats.name += (n); \
} while(0)
#else
#define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0)
#endif
static inline int
timer_data_valid(uint32_t id)
{
return rte_timer_data_arr &&
(rte_timer_data_arr[id].internal_flags & FL_ALLOCATED);
}
/* validate ID and retrieve timer data pointer, or return error value */
#define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \
if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \
return retval; \
timer_data = &rte_timer_data_arr[id]; \
} while (0)
int
rte_timer_data_alloc(uint32_t *id_ptr)
{
int i;
struct rte_timer_data *data;
if (!rte_timer_subsystem_initialized)
return -ENOMEM;
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
data = &rte_timer_data_arr[i];
if (!(data->internal_flags & FL_ALLOCATED)) {
data->internal_flags |= FL_ALLOCATED;
if (id_ptr)
*id_ptr = i;
return 0;
}
}
return -ENOSPC;
}
int
rte_timer_data_dealloc(uint32_t id)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL);
timer_data->internal_flags &= ~(FL_ALLOCATED);
return 0;
}
/* Init the timer library. Allocate an array of timer data structs in shared
* memory, and allocate the zeroth entry for use with original timer
* APIs. Since the intersection of the sets of lcore ids in primary and
* secondary processes should be empty, the zeroth entry can be shared by
* multiple processes.
*/
int
rte_timer_subsystem_init(void)
{
const struct rte_memzone *mz;
struct rte_timer_data *data;
int i, lcore_id;
static const char *mz_name = "rte_timer_mz";
const size_t data_arr_size =
RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr);
const size_t mem_size = data_arr_size + sizeof(*rte_timer_mz_refcnt);
bool do_full_init = true;
rte_mcfg_timer_lock();
if (rte_timer_subsystem_initialized) {
rte_mcfg_timer_unlock();
return -EALREADY;
}
mz = rte_memzone_lookup(mz_name);
if (mz == NULL) {
mz = rte_memzone_reserve_aligned(mz_name, mem_size,
SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE);
if (mz == NULL) {
rte_mcfg_timer_unlock();
return -ENOMEM;
}
do_full_init = true;
} else
do_full_init = false;
rte_timer_data_mz = mz;
rte_timer_data_arr = mz->addr;
rte_timer_mz_refcnt = (void *)((char *)mz->addr + data_arr_size);
if (do_full_init) {
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
data = &rte_timer_data_arr[i];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE;
lcore_id++) {
rte_spinlock_init(
&data->priv_timer[lcore_id].list_lock);
data->priv_timer[lcore_id].prev_lcore =
lcore_id;
}
}
}
rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED;
(*rte_timer_mz_refcnt)++;
rte_timer_subsystem_initialized = 1;
rte_mcfg_timer_unlock();
return 0;
}
void
rte_timer_subsystem_finalize(void)
{
rte_mcfg_timer_lock();
if (!rte_timer_subsystem_initialized) {
rte_mcfg_timer_unlock();
return;
}
if (--(*rte_timer_mz_refcnt) == 0)
rte_memzone_free(rte_timer_data_mz);
rte_timer_subsystem_initialized = 0;
rte_mcfg_timer_unlock();
}
/* Initialize the timer handle tim for use */
void
rte_timer_init(struct rte_timer *tim)
{
union rte_timer_status status;
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELAXED);
}
/*
* if timer is pending or stopped (or running on the same core than
* us), mark timer as configuring, and on success return the previous
* status of the timer
*/
static int
timer_set_config_state(struct rte_timer *tim,
union rte_timer_status *ret_prev_status,
struct priv_timer *priv_timer)
{
union rte_timer_status prev_status, status;
int success = 0;
unsigned lcore_id;
lcore_id = rte_lcore_id();
/* wait that the timer is in correct status before update,
* and mark it as being configured */
prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
while (success == 0) {
/* timer is running on another core
* or ready to run on local core, exit
*/
if (prev_status.state == RTE_TIMER_RUNNING &&
(prev_status.owner != (uint16_t)lcore_id ||
tim != priv_timer[lcore_id].running_tim))
return -1;
/* timer is being configured on another core */
if (prev_status.state == RTE_TIMER_CONFIG)
return -1;
/* here, we know that timer is stopped or pending,
* mark it atomically as being configured */
status.state = RTE_TIMER_CONFIG;
status.owner = (int16_t)lcore_id;
/* CONFIG states are acting as locked states. If the
* timer is in CONFIG state, the state cannot be changed
* by other threads. So, we should use ACQUIRE here.
*/
success = __atomic_compare_exchange_n(&tim->status.u32,
&prev_status.u32,
status.u32, 0,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED);
}
ret_prev_status->u32 = prev_status.u32;
return 0;
}
/*
* if timer is pending, mark timer as running
*/
static int
timer_set_running_state(struct rte_timer *tim)
{
union rte_timer_status prev_status, status;
unsigned lcore_id = rte_lcore_id();
int success = 0;
/* wait that the timer is in correct status before update,
* and mark it as running */
prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
while (success == 0) {
/* timer is not pending anymore */
if (prev_status.state != RTE_TIMER_PENDING)
return -1;
/* we know that the timer will be pending at this point
* mark it atomically as being running
*/
status.state = RTE_TIMER_RUNNING;
status.owner = (int16_t)lcore_id;
/* RUNNING states are acting as locked states. If the
* timer is in RUNNING state, the state cannot be changed
* by other threads. So, we should use ACQUIRE here.
*/
success = __atomic_compare_exchange_n(&tim->status.u32,
&prev_status.u32,
status.u32, 0,
__ATOMIC_ACQUIRE,
__ATOMIC_RELAXED);
}
return 0;
}
/*
* Return a skiplist level for a new entry.
* This probabilistically gives a level with p=1/4 that an entry at level n
* will also appear at level n+1.
*/
static uint32_t
timer_get_skiplist_level(unsigned curr_depth)
{
#ifdef RTE_LIBRTE_TIMER_DEBUG
static uint32_t i, count = 0;
static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
#endif
/* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
* 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
* bit position of a (pseudo)random number.
*/
uint32_t rand = rte_rand() & (UINT32_MAX - 1);
uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
/* limit the levels used to one above our current level, so we don't,
* for instance, have a level 0 and a level 7 without anything between
*/
if (level > curr_depth)
level = curr_depth;
if (level >= MAX_SKIPLIST_DEPTH)
level = MAX_SKIPLIST_DEPTH-1;
#ifdef RTE_LIBRTE_TIMER_DEBUG
count ++;
levels[level]++;
if (count % 10000 == 0)
for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
#endif
return level;
}
/*
* For a given time value, get the entries at each level which
* are <= that time value.
*/
static void
timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
struct rte_timer **prev, struct priv_timer *priv_timer)
{
unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
prev[lvl] = &priv_timer[tim_lcore].pending_head;
while(lvl != 0) {
lvl--;
prev[lvl] = prev[lvl+1];
while (prev[lvl]->sl_next[lvl] &&
prev[lvl]->sl_next[lvl]->expire <= time_val)
prev[lvl] = prev[lvl]->sl_next[lvl];
}
}
/*
* Given a timer node in the skiplist, find the previous entries for it at
* all skiplist levels.
*/
static void
timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
struct rte_timer **prev,
struct priv_timer *priv_timer)
{
int i;
/* to get a specific entry in the list, look for just lower than the time
* values, and then increment on each level individually if necessary
*/
timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer);
for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
while (prev[i]->sl_next[i] != NULL &&
prev[i]->sl_next[i] != tim &&
prev[i]->sl_next[i]->expire <= tim->expire)
prev[i] = prev[i]->sl_next[i];
}
}
/* call with lock held as necessary
* add in list
* timer must be in config state
* timer must not be in a list
*/
static void
timer_add(struct rte_timer *tim, unsigned int tim_lcore,
struct priv_timer *priv_timer)
{
unsigned lvl;
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
/* find where exactly this element goes in the list of elements
* for each depth. */
timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer);
/* now assign it a new level and add at that level */
const unsigned tim_level = timer_get_skiplist_level(
priv_timer[tim_lcore].curr_skiplist_depth);
if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
priv_timer[tim_lcore].curr_skiplist_depth++;
lvl = tim_level;
while (lvl > 0) {
tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
prev[lvl]->sl_next[lvl] = tim;
lvl--;
}
tim->sl_next[0] = prev[0]->sl_next[0];
prev[0]->sl_next[0] = tim;
/* save the lowest list entry into the expire field of the dummy hdr
* NOTE: this is not atomic on 32-bit*/
priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
pending_head.sl_next[0]->expire;
}
/*
* del from list, lock if needed
* timer must be in config state
* timer must be in a list
*/
static void
timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
int local_is_locked, struct priv_timer *priv_timer)
{
unsigned lcore_id = rte_lcore_id();
unsigned prev_owner = prev_status.owner;
int i;
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
/* if timer needs is pending another core, we need to lock the
* list; if it is on local core, we need to lock if we are not
* called from rte_timer_manage() */
if (prev_owner != lcore_id || !local_is_locked)
rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
/* save the lowest list entry into the expire field of the dummy hdr.
* NOTE: this is not atomic on 32-bit */
if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
priv_timer[prev_owner].pending_head.expire =
((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
/* adjust pointers from previous entries to point past this */
timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer);
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
if (prev[i]->sl_next[i] == tim)
prev[i]->sl_next[i] = tim->sl_next[i];
}
/* in case we deleted last entry at a level, adjust down max level */
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
priv_timer[prev_owner].curr_skiplist_depth --;
else
break;
if (prev_owner != lcore_id || !local_is_locked)
rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
}
/* Reset and start the timer associated with the timer handle (private func) */
static int
__rte_timer_reset(struct rte_timer *tim, uint64_t expire,
uint64_t period, unsigned tim_lcore,
rte_timer_cb_t fct, void *arg,
int local_is_locked,
struct rte_timer_data *timer_data)
{
union rte_timer_status prev_status, status;
int ret;
unsigned lcore_id = rte_lcore_id();
struct priv_timer *priv_timer = timer_data->priv_timer;
/* round robin for tim_lcore */
if (tim_lcore == (unsigned)LCORE_ID_ANY) {
if (lcore_id < RTE_MAX_LCORE) {
/* EAL thread with valid lcore_id */
tim_lcore = rte_get_next_lcore(
priv_timer[lcore_id].prev_lcore,
0, 1);
priv_timer[lcore_id].prev_lcore = tim_lcore;
} else
/* non-EAL thread do not run rte_timer_manage(),
* so schedule the timer on the first enabled lcore. */
tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
}
/* wait that the timer is in correct status before update,
* and mark it as being configured */
ret = timer_set_config_state(tim, &prev_status, priv_timer);
if (ret < 0)
return -1;
__TIMER_STAT_ADD(priv_timer, reset, 1);
if (prev_status.state == RTE_TIMER_RUNNING &&
lcore_id < RTE_MAX_LCORE) {
priv_timer[lcore_id].updated = 1;
}
/* remove it from list */
if (prev_status.state == RTE_TIMER_PENDING) {
timer_del(tim, prev_status, local_is_locked, priv_timer);
__TIMER_STAT_ADD(priv_timer, pending, -1);
}
tim->period = period;
tim->expire = expire;
tim->f = fct;
tim->arg = arg;
/* if timer needs to be scheduled on another core, we need to
* lock the destination list; if it is on local core, we need to lock if
* we are not called from rte_timer_manage()
*/
if (tim_lcore != lcore_id || !local_is_locked)
rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
__TIMER_STAT_ADD(priv_timer, pending, 1);
timer_add(tim, tim_lcore, priv_timer);
/* update state: as we are in CONFIG state, only us can modify
* the state so we don't need to use cmpset() here */
status.state = RTE_TIMER_PENDING;
status.owner = (int16_t)tim_lcore;
/* The "RELEASE" ordering guarantees the memory operations above
* the status update are observed before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
if (tim_lcore != lcore_id || !local_is_locked)
rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
return 0;
}
/* Reset and start the timer associated with the timer handle tim */
int
rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
enum rte_timer_type type, unsigned int tim_lcore,
rte_timer_cb_t fct, void *arg)
{
return rte_timer_alt_reset(default_data_id, tim, ticks, type,
tim_lcore, fct, arg);
}
int
rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
uint64_t ticks, enum rte_timer_type type,
unsigned int tim_lcore, rte_timer_cb_t fct, void *arg)
{
uint64_t cur_time = rte_get_timer_cycles();
uint64_t period;
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
if (type == PERIODICAL)
period = ticks;
else
period = 0;
return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
fct, arg, 0, timer_data);
}
/* loop until rte_timer_reset() succeed */
void
rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
enum rte_timer_type type, unsigned tim_lcore,
rte_timer_cb_t fct, void *arg)
{
while (rte_timer_reset(tim, ticks, type, tim_lcore,
fct, arg) != 0)
rte_pause();
}
static int
__rte_timer_stop(struct rte_timer *tim, int local_is_locked,
struct rte_timer_data *timer_data)
{
union rte_timer_status prev_status, status;
unsigned lcore_id = rte_lcore_id();
int ret;
struct priv_timer *priv_timer = timer_data->priv_timer;
/* wait that the timer is in correct status before update,
* and mark it as being configured */
ret = timer_set_config_state(tim, &prev_status, priv_timer);
if (ret < 0)
return -1;
__TIMER_STAT_ADD(priv_timer, stop, 1);
if (prev_status.state == RTE_TIMER_RUNNING &&
lcore_id < RTE_MAX_LCORE) {
priv_timer[lcore_id].updated = 1;
}
/* remove it from list */
if (prev_status.state == RTE_TIMER_PENDING) {
timer_del(tim, prev_status, local_is_locked, priv_timer);
__TIMER_STAT_ADD(priv_timer, pending, -1);
}
/* mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory operations above
* the status update are observed before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
return 0;
}
/* Stop the timer associated with the timer handle tim */
int
rte_timer_stop(struct rte_timer *tim)
{
return rte_timer_alt_stop(default_data_id, tim);
}
int
rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
return __rte_timer_stop(tim, 0, timer_data);
}
/* loop until rte_timer_stop() succeed */
void
rte_timer_stop_sync(struct rte_timer *tim)
{
while (rte_timer_stop(tim) != 0)
rte_pause();
}
/* Test the PENDING status of the timer handle tim */
int
rte_timer_pending(struct rte_timer *tim)
{
return __atomic_load_n(&tim->status.state,
__ATOMIC_RELAXED) == RTE_TIMER_PENDING;
}
/* must be called periodically, run all timer that expired */
static void
__rte_timer_manage(struct rte_timer_data *timer_data)
{
union rte_timer_status status;
struct rte_timer *tim, *next_tim;
struct rte_timer *run_first_tim, **pprev;
unsigned lcore_id = rte_lcore_id();
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
uint64_t cur_time;
int i, ret;
struct priv_timer *priv_timer = timer_data->priv_timer;
/* timer manager only runs on EAL thread with valid lcore_id */
assert(lcore_id < RTE_MAX_LCORE);
__TIMER_STAT_ADD(priv_timer, manage, 1);
/* optimize for the case where per-cpu list is empty */
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
return;
cur_time = rte_get_timer_cycles();
#ifdef RTE_ARCH_64
/* on 64-bit the value cached in the pending_head.expired will be
* updated atomically, so we can consult that for a quick check here
* outside the lock */
if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
return;
#endif
/* browse ordered list, add expired timers in 'expired' list */
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
/* if nothing to do just unlock and return */
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
return;
}
/* save start of list of expired timers */
tim = priv_timer[lcore_id].pending_head.sl_next[0];
/* break the existing list at current time point */
timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer);
for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
if (prev[i] == &priv_timer[lcore_id].pending_head)
continue;
priv_timer[lcore_id].pending_head.sl_next[i] =
prev[i]->sl_next[i];
if (prev[i]->sl_next[i] == NULL)
priv_timer[lcore_id].curr_skiplist_depth--;
prev[i] ->sl_next[i] = NULL;
}
/* transition run-list from PENDING to RUNNING */
run_first_tim = tim;
pprev = &run_first_tim;
for ( ; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
ret = timer_set_running_state(tim);
if (likely(ret == 0)) {
pprev = &tim->sl_next[0];
} else {
/* another core is trying to re-config this one,
* remove it from local expired list
*/
*pprev = next_tim;
}
}
/* update the next to expire timer value */
priv_timer[lcore_id].pending_head.expire =
(priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
priv_timer[lcore_id].pending_head.sl_next[0]->expire;
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
/* now scan expired list and call callbacks */
for (tim = run_first_tim; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
priv_timer[lcore_id].updated = 0;
priv_timer[lcore_id].running_tim = tim;
/* execute callback function with list unlocked */
tim->f(tim, tim->arg);
__TIMER_STAT_ADD(priv_timer, pending, -1);
/* the timer was stopped or reloaded by the callback
* function, we have nothing to do here */
if (priv_timer[lcore_id].updated == 1)
continue;
if (tim->period == 0) {
/* remove from done list and mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
}
else {
/* keep it in list and mark timer as pending */
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
status.state = RTE_TIMER_PENDING;
__TIMER_STAT_ADD(priv_timer, pending, 1);
status.owner = (int16_t)lcore_id;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
__rte_timer_reset(tim, tim->expire + tim->period,
tim->period, lcore_id, tim->f, tim->arg, 1,
timer_data);
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
}
}
priv_timer[lcore_id].running_tim = NULL;
}
int
rte_timer_manage(void)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
__rte_timer_manage(timer_data);
return 0;
}
int
rte_timer_alt_manage(uint32_t timer_data_id,
unsigned int *poll_lcores,
int nb_poll_lcores,
rte_timer_alt_manage_cb_t f)
{
unsigned int default_poll_lcores[] = {rte_lcore_id()};
union rte_timer_status status;
struct rte_timer *tim, *next_tim, **pprev;
struct rte_timer *run_first_tims[RTE_MAX_LCORE];
unsigned int this_lcore = rte_lcore_id();
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
uint64_t cur_time;
int i, j, ret;
int nb_runlists = 0;
struct rte_timer_data *data;
struct priv_timer *privp;
uint32_t poll_lcore;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL);
/* timer manager only runs on EAL thread with valid lcore_id */
assert(this_lcore < RTE_MAX_LCORE);
__TIMER_STAT_ADD(data->priv_timer, manage, 1);
if (poll_lcores == NULL) {
poll_lcores = default_poll_lcores;
nb_poll_lcores = RTE_DIM(default_poll_lcores);
}
for (i = 0; i < nb_poll_lcores; i++) {
poll_lcore = poll_lcores[i];
privp = &data->priv_timer[poll_lcore];
/* optimize for the case where per-cpu list is empty */
if (privp->pending_head.sl_next[0] == NULL)
continue;
cur_time = rte_get_timer_cycles();
#ifdef RTE_ARCH_64
/* on 64-bit the value cached in the pending_head.expired will
* be updated atomically, so we can consult that for a quick
* check here outside the lock
*/
if (likely(privp->pending_head.expire > cur_time))
continue;
#endif
/* browse ordered list, add expired timers in 'expired' list */
rte_spinlock_lock(&privp->list_lock);
/* if nothing to do just unlock and return */
if (privp->pending_head.sl_next[0] == NULL ||
privp->pending_head.sl_next[0]->expire > cur_time) {
rte_spinlock_unlock(&privp->list_lock);
continue;
}
/* save start of list of expired timers */
tim = privp->pending_head.sl_next[0];
/* break the existing list at current time point */
timer_get_prev_entries(cur_time, poll_lcore, prev,
data->priv_timer);
for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) {
if (prev[j] == &privp->pending_head)
continue;
privp->pending_head.sl_next[j] =
prev[j]->sl_next[j];
if (prev[j]->sl_next[j] == NULL)
privp->curr_skiplist_depth--;
prev[j]->sl_next[j] = NULL;
}
/* transition run-list from PENDING to RUNNING */
run_first_tims[nb_runlists] = tim;
pprev = &run_first_tims[nb_runlists];
nb_runlists++;
for ( ; tim != NULL; tim = next_tim) {
next_tim = tim->sl_next[0];
ret = timer_set_running_state(tim);
if (likely(ret == 0)) {
pprev = &tim->sl_next[0];
} else {
/* another core is trying to re-config this one,
* remove it from local expired list
*/
*pprev = next_tim;
}
}
/* update the next to expire timer value */
privp->pending_head.expire =
(privp->pending_head.sl_next[0] == NULL) ? 0 :
privp->pending_head.sl_next[0]->expire;
rte_spinlock_unlock(&privp->list_lock);
}
/* Now process the run lists */
while (1) {
bool done = true;
uint64_t min_expire = UINT64_MAX;
int min_idx = 0;
/* Find the next oldest timer to process */
for (i = 0; i < nb_runlists; i++) {
tim = run_first_tims[i];
if (tim != NULL && tim->expire < min_expire) {
min_expire = tim->expire;
min_idx = i;
done = false;
}
}
if (done)
break;
tim = run_first_tims[min_idx];
/* Move down the runlist from which we picked a timer to
* execute
*/
run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0];
data->priv_timer[this_lcore].updated = 0;
data->priv_timer[this_lcore].running_tim = tim;
/* Call the provided callback function */
f(tim);
__TIMER_STAT_ADD(data->priv_timer, pending, -1);
/* the timer was stopped or reloaded by the callback
* function, we have nothing to do here
*/
if (data->priv_timer[this_lcore].updated == 1)
continue;
if (tim->period == 0) {
/* remove from done list and mark timer as stopped */
status.state = RTE_TIMER_STOP;
status.owner = RTE_TIMER_NO_OWNER;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
} else {
/* keep it in list and mark timer as pending */
rte_spinlock_lock(
&data->priv_timer[this_lcore].list_lock);
status.state = RTE_TIMER_PENDING;
__TIMER_STAT_ADD(data->priv_timer, pending, 1);
status.owner = (int16_t)this_lcore;
/* The "RELEASE" ordering guarantees the memory
* operations above the status update are observed
* before the update by all threads
*/
__atomic_store_n(&tim->status.u32, status.u32,
__ATOMIC_RELEASE);
__rte_timer_reset(tim, tim->expire + tim->period,
tim->period, this_lcore, tim->f, tim->arg, 1,
data);
rte_spinlock_unlock(
&data->priv_timer[this_lcore].list_lock);
}
data->priv_timer[this_lcore].running_tim = NULL;
}
return 0;
}
/* Walk pending lists, stopping timers and calling user-specified function */
int
rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
int nb_walk_lcores,
rte_timer_stop_all_cb_t f, void *f_arg)
{
int i;
struct priv_timer *priv_timer;
uint32_t walk_lcore;
struct rte_timer *tim, *next_tim;
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
for (i = 0; i < nb_walk_lcores; i++) {
walk_lcore = walk_lcores[i];
priv_timer = &timer_data->priv_timer[walk_lcore];
rte_spinlock_lock(&priv_timer->list_lock);
for (tim = priv_timer->pending_head.sl_next[0];
tim != NULL;
tim = next_tim) {
next_tim = tim->sl_next[0];
/* Call timer_stop with lock held */
__rte_timer_stop(tim, 1, timer_data);
if (f)
f(tim, f_arg);
}
rte_spinlock_unlock(&priv_timer->list_lock);
}
return 0;
}
int64_t
rte_timer_next_ticks(void)
{
unsigned int lcore_id = rte_lcore_id();
struct rte_timer_data *timer_data;
struct priv_timer *priv_timer;
const struct rte_timer *tm;
uint64_t cur_time;
int64_t left = -ENOENT;
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
priv_timer = timer_data->priv_timer;
cur_time = rte_get_timer_cycles();
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
tm = priv_timer[lcore_id].pending_head.sl_next[0];
if (tm) {
left = tm->expire - cur_time;
if (left < 0)
left = 0;
}
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
return left;
}
/* dump statistics about timers */
static void
__rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f)
{
#ifdef RTE_LIBRTE_TIMER_DEBUG
struct rte_timer_debug_stats sum;
unsigned lcore_id;
struct priv_timer *priv_timer = timer_data->priv_timer;
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.reset += priv_timer[lcore_id].stats.reset;
sum.stop += priv_timer[lcore_id].stats.stop;
sum.manage += priv_timer[lcore_id].stats.manage;
sum.pending += priv_timer[lcore_id].stats.pending;
}
fprintf(f, "Timer statistics:\n");
fprintf(f, " reset = %"PRIu64"\n", sum.reset);
fprintf(f, " stop = %"PRIu64"\n", sum.stop);
fprintf(f, " manage = %"PRIu64"\n", sum.manage);
fprintf(f, " pending = %"PRIu64"\n", sum.pending);
#else
fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
#endif
}
int
rte_timer_dump_stats(FILE *f)
{
return rte_timer_alt_dump_stats(default_data_id, f);
}
int
rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f)
{
struct rte_timer_data *timer_data;
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
__rte_timer_dump_stats(timer_data, f);
return 0;
}
|