1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* In memory space allocator benchmarks.
* Author: Igor Fedotov, ifedotov@suse.com
*/
#include <iostream>
#include <boost/scoped_ptr.hpp>
#include <gtest/gtest.h>
#include "common/Cond.h"
#include "common/errno.h"
#include "include/stringify.h"
#include "include/Context.h"
#include "os/bluestore/Allocator.h"
#include <boost/random/uniform_int.hpp>
typedef boost::mt11213b gen_type;
#include "common/debug.h"
#define dout_context g_ceph_context
#define dout_subsys ceph_subsys_
class AllocTest : public ::testing::TestWithParam<const char*> {
public:
boost::scoped_ptr<Allocator> alloc;
AllocTest(): alloc(0) { }
void init_alloc(int64_t size, uint64_t min_alloc_size) {
std::cout << "Creating alloc type " << string(GetParam()) << " \n";
alloc.reset(Allocator::create(g_ceph_context, string(GetParam()), size,
min_alloc_size));
}
void init_close() {
alloc.reset(0);
}
void doOverwriteTest(uint64_t capacity, uint64_t prefill,
uint64_t overwrite);
};
const uint64_t _1m = 1024 * 1024;
void dump_mempools()
{
ostringstream ostr;
Formatter* f = Formatter::create("json-pretty", "json-pretty", "json-pretty");
ostr << "Mempools: ";
f->open_object_section("mempools");
mempool::dump(f);
f->close_section();
f->flush(ostr);
delete f;
ldout(g_ceph_context, 0) << ostr.str() << dendl;
}
class AllocTracker
{
std::vector<uint64_t> allocations;
uint64_t head = 0;
uint64_t tail = 0;
uint64_t size = 0;
boost::uniform_int<> u1;
public:
AllocTracker(uint64_t capacity, uint64_t alloc_unit)
: u1(0, capacity)
{
ceph_assert(alloc_unit >= 0x100);
ceph_assert(capacity <= (uint64_t(1) << 48)); // we use 5 octets (bytes 1 - 5) to store
// offset to save the required space.
// This supports capacity up to 281 TB
allocations.resize(capacity / alloc_unit);
}
inline uint64_t get_head() const
{
return head;
}
inline uint64_t get_tail() const
{
return tail;
}
bool push(uint64_t offs, uint32_t len)
{
ceph_assert((len & 0xff) == 0);
ceph_assert((offs & 0xff) == 0);
ceph_assert((offs & 0xffff000000000000) == 0);
if (head + 1 == tail)
return false;
uint64_t val = (offs << 16) | (len >> 8);
allocations[head++] = val;
head %= allocations.size();
++size;
return true;
}
bool pop(uint64_t* offs, uint32_t* len)
{
if (size == 0)
return false;
uint64_t val = allocations[tail++];
*len = uint64_t((val & 0xffffff) << 8);
*offs = (val >> 16) & ~uint64_t(0xff);
tail %= allocations.size();
--size;
return true;
}
bool pop_random(gen_type& rng, uint64_t* offs, uint32_t* len,
uint32_t max_len = 0)
{
if (size == 0)
return false;
uint64_t pos = (u1(rng) % size) + tail;
pos %= allocations.size();
uint64_t val = allocations[pos];
*len = uint64_t((val & 0xffffff) << 8);
*offs = (val >> 16) & ~uint64_t(0xff);
if (max_len && *len > max_len) {
val = ((*offs + max_len) << 16) | ((*len - max_len) >> 8);
allocations[pos] = val;
*len = max_len;
} else {
allocations[pos] = allocations[tail++];
tail %= allocations.size();
--size;
}
return true;
}
};
TEST_P(AllocTest, test_alloc_bench_seq)
{
uint64_t capacity = uint64_t(1024) * 1024 * 1024 * 1024;
uint64_t alloc_unit = 4096;
uint64_t want_size = alloc_unit;
PExtentVector allocated, tmp;
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
utime_t start = ceph_clock_now();
for (uint64_t i = 0; i < capacity; i += want_size)
{
tmp.clear();
EXPECT_EQ(static_cast<int64_t>(want_size),
alloc->allocate(want_size, alloc_unit, 0, 0, &tmp));
if (0 == (i % (1 * 1024 * _1m))) {
std::cout << "alloc " << i / 1024 / 1024 << " mb of "
<< capacity / 1024 / 1024 << std::endl;
}
}
std::cout << "releasing..." << std::endl;
for (size_t i = 0; i < capacity; i += want_size)
{
interval_set<uint64_t> release_set;
release_set.insert(i, want_size);
alloc->release(release_set);
if (0 == (i % (1 * 1024 * _1m))) {
std::cout << "release " << i / 1024 / 1024 << " mb of "
<< capacity / 1024 / 1024 << std::endl;
}
}
std::cout<<"Executed in "<< ceph_clock_now() - start << std::endl;
dump_mempools();
}
TEST_P(AllocTest, test_alloc_bench)
{
uint64_t capacity = uint64_t(1024) * 1024 * 1024 * 1024;
uint64_t alloc_unit = 4096;
PExtentVector allocated, tmp;
AllocTracker at(capacity, alloc_unit);
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
gen_type rng(time(NULL));
boost::uniform_int<> u1(0, 9); // 4K-2M
boost::uniform_int<> u2(0, 7); // 4K-512K
utime_t start = ceph_clock_now();
for (uint64_t i = 0; i < capacity * 2; )
{
uint32_t want = alloc_unit << u1(rng);
tmp.clear();
auto r = alloc->allocate(want, alloc_unit, 0, 0, &tmp);
if (r < want) {
break;
}
i += r;
for(auto a : tmp) {
bool full = !at.push(a.offset, a.length);
EXPECT_EQ(full, false);
}
uint64_t want_release = alloc_unit << u2(rng);
uint64_t released = 0;
do {
uint64_t o = 0;
uint32_t l = 0;
interval_set<uint64_t> release_set;
if (!at.pop_random(rng, &o, &l, want_release - released)) {
break;
}
release_set.insert(o, l);
alloc->release(release_set);
released += l;
} while (released < want_release);
if (0 == (i % (1 * 1024 * _1m))) {
std::cout << "alloc " << i / 1024 / 1024 << " mb of "
<< capacity / 1024 / 1024 << std::endl;
}
}
std::cout<<"Executed in "<< ceph_clock_now() - start << std::endl;
std::cout<<"Avail "<< alloc->get_free() / _1m << " MB" << std::endl;
dump_mempools();
}
void AllocTest::doOverwriteTest(uint64_t capacity, uint64_t prefill,
uint64_t overwrite)
{
uint64_t alloc_unit = 4096;
PExtentVector allocated, tmp;
AllocTracker at(capacity, alloc_unit);
init_alloc(capacity, alloc_unit);
alloc->init_add_free(0, capacity);
gen_type rng(time(NULL));
boost::uniform_int<> u1(0, 9); // 4K-2M
boost::uniform_int<> u2(0, 9); // 4K-512K
utime_t start = ceph_clock_now();
// allocate 90% of the capacity
auto cap = prefill;
for (uint64_t i = 0; i < cap; )
{
uint32_t want = alloc_unit << u1(rng);
tmp.clear();
auto r = alloc->allocate(want, alloc_unit, 0, 0, &tmp);
if (r < want) {
break;
}
i += r;
for(auto a : tmp) {
bool full = !at.push(a.offset, a.length);
EXPECT_EQ(full, false);
}
if (0 == (i % (1 * 1024 * _1m))) {
std::cout << "alloc " << i / 1024 / 1024 << " mb of "
<< cap / 1024 / 1024 << std::endl;
}
}
cap = overwrite;
for (uint64_t i = 0; i < cap; )
{
uint64_t want_release = alloc_unit << u2(rng);
uint64_t released = 0;
do {
uint64_t o = 0;
uint32_t l = 0;
interval_set<uint64_t> release_set;
if (!at.pop_random(rng, &o, &l, want_release - released)) {
break;
}
release_set.insert(o, l);
alloc->release(release_set);
released += l;
} while (released < want_release);
uint32_t want = alloc_unit << u1(rng);
tmp.clear();
auto r = alloc->allocate(want, alloc_unit, 0, 0, &tmp);
if (r != want) {
std::cout<<"Can't allocate more space, stopping."<< std::endl;
break;
}
i += r;
for(auto a : tmp) {
bool full = !at.push(a.offset, a.length);
EXPECT_EQ(full, false);
}
if (0 == (i % (1 * 1024 * _1m))) {
std::cout << "reuse " << i / 1024 / 1024 << " mb of "
<< cap / 1024 / 1024 << std::endl;
}
}
std::cout<<"Executed in "<< ceph_clock_now() - start << std::endl;
std::cout<<"Avail "<< alloc->get_free() / _1m << " MB" << std::endl;
dump_mempools();
}
TEST_P(AllocTest, test_alloc_bench_90_300)
{
uint64_t capacity = uint64_t(1024) * 1024 * 1024 * 1024;
auto prefill = capacity - capacity / 10;
auto overwrite = capacity * 3;
doOverwriteTest(capacity, prefill, overwrite);
}
TEST_P(AllocTest, test_alloc_bench_50_300)
{
uint64_t capacity = uint64_t(1024) * 1024 * 1024 * 1024;
auto prefill = capacity / 2;
auto overwrite = capacity * 3;
doOverwriteTest(capacity, prefill, overwrite);
}
TEST_P(AllocTest, test_alloc_bench_10_300)
{
uint64_t capacity = uint64_t(1024) * 1024 * 1024 * 1024;
auto prefill = capacity / 10;
auto overwrite = capacity * 3;
doOverwriteTest(capacity, prefill, overwrite);
}
TEST_P(AllocTest, mempoolAccounting)
{
uint64_t bytes = mempool::bluestore_alloc::allocated_bytes();
uint64_t items = mempool::bluestore_alloc::allocated_items();
uint64_t alloc_size = 4 * 1024;
uint64_t capacity = 512ll * 1024 * 1024 * 1024;
Allocator* alloc = Allocator::create(g_ceph_context, string(GetParam()),
capacity, alloc_size);
ASSERT_NE(alloc, nullptr);
alloc->init_add_free(0, capacity);
std::map<uint32_t, PExtentVector> all_allocs;
for (size_t i = 0; i < 10000; i++) {
PExtentVector tmp;
alloc->allocate(alloc_size, alloc_size, 0, 0, &tmp);
all_allocs[rand()] = tmp;
alloc->allocate(alloc_size, alloc_size, 0, 0, &tmp);
all_allocs[rand()] = tmp;
auto it = all_allocs.upper_bound(rand());
if (it != all_allocs.end()) {
alloc->release(it->second);
all_allocs.erase(it);
}
}
delete(alloc);
ASSERT_EQ(mempool::bluestore_alloc::allocated_bytes(), bytes);
ASSERT_EQ(mempool::bluestore_alloc::allocated_items(), items);
}
INSTANTIATE_TEST_SUITE_P(
Allocator,
AllocTest,
::testing::Values("stupid", "bitmap", "avl", "hybrid"));
|