summaryrefslogtreecommitdiffstats
path: root/regress.c
blob: e767e2f1a2d8a0fdb5864e2c565afd3189efbfdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
  chronyd/chronyc - Programs for keeping computer clocks accurate.

 **********************************************************************
 * Copyright (C) Richard P. Curnow  1997-2003
 * Copyright (C) Miroslav Lichvar  2011, 2016-2017
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 * 
 **********************************************************************

  =======================================================================

  Regression algorithms.

  */

#include "config.h"

#include "sysincl.h"

#include "regress.h"
#include "logging.h"
#include "util.h"

#define MAX_POINTS 64

void
RGR_WeightedRegression
(double *x,                     /* independent variable */
 double *y,                     /* measured data */
 double *w,                     /* weightings (large => data
                                   less reliable) */
 
 int n,                         /* number of data points */

 /* And now the results */

 double *b0,                    /* estimated y axis intercept */
 double *b1,                    /* estimated slope */
 double *s2,                    /* estimated variance of data points */
 
 double *sb0,                   /* estimated standard deviation of
                                   intercept */
 double *sb1                    /* estimated standard deviation of
                                   slope */

 /* Could add correlation stuff later if required */
)
{
  double P, Q, U, V, W;
  double diff;
  double u, ui, aa;
  int i;

  assert(n >= 3);

  W = U = 0;
  for (i=0; i<n; i++) {
    U += x[i]        / w[i];
    W += 1.0         / w[i];
  }

  u = U / W;

  /* Calculate statistics from data */
  P = Q = V = 0.0;
  for (i=0; i<n; i++) {
    ui = x[i] - u;
    P += y[i]        / w[i];
    Q += y[i] * ui   / w[i];
    V += ui   * ui   / w[i];
  }

  *b1 = Q / V;
  *b0 = (P / W) - (*b1) * u;

  *s2 = 0.0;
  for (i=0; i<n; i++) {
    diff = y[i] - *b0 - *b1*x[i];
    *s2 += diff*diff / w[i];
  }

  *s2 /= (double)(n-2);

  *sb1 = sqrt(*s2 / V);
  aa = u * (*sb1);
  *sb0 = sqrt(*s2 / W + aa * aa);

  *s2 *= (n / W); /* Giving weighted average of variances */
}

/* ================================================== */
/* Get the coefficient to multiply the standard deviation by, to get a
   particular size of confidence interval (assuming a t-distribution) */
  
double
RGR_GetTCoef(int dof)
{
  /* Assuming now the 99.95% quantile */
  static const float coefs[] =
  { 636.6, 31.6, 12.92, 8.61, 6.869,
    5.959, 5.408, 5.041, 4.781, 4.587,
    4.437, 4.318, 4.221, 4.140, 4.073,
    4.015, 3.965, 3.922, 3.883, 3.850,
    3.819, 3.792, 3.768, 3.745, 3.725,
    3.707, 3.690, 3.674, 3.659, 3.646,
    3.633, 3.622, 3.611, 3.601, 3.591,
    3.582, 3.574, 3.566, 3.558, 3.551};

  if (dof <= 40) {
    return coefs[dof-1];
  } else {
    return 3.5; /* Until I can be bothered to do something better */
  }
}

/* ================================================== */
/* Get 90% quantile of chi-square distribution */

double
RGR_GetChi2Coef(int dof)
{
  static const float coefs[] = {
    2.706, 4.605, 6.251, 7.779, 9.236, 10.645, 12.017, 13.362,
    14.684, 15.987, 17.275, 18.549, 19.812, 21.064, 22.307, 23.542,
    24.769, 25.989, 27.204, 28.412, 29.615, 30.813, 32.007, 33.196,
    34.382, 35.563, 36.741, 37.916, 39.087, 40.256, 41.422, 42.585,
    43.745, 44.903, 46.059, 47.212, 48.363, 49.513, 50.660, 51.805,
    52.949, 54.090, 55.230, 56.369, 57.505, 58.641, 59.774, 60.907,
    62.038, 63.167, 64.295, 65.422, 66.548, 67.673, 68.796, 69.919,
    71.040, 72.160, 73.279, 74.397, 75.514, 76.630, 77.745, 78.860
  };

  if (dof <= 64) {
    return coefs[dof-1];
  } else {
    return 1.2 * dof; /* Until I can be bothered to do something better */
  }
}

/* ================================================== */
/* Critical value for number of runs of residuals with same sign.
   5% critical region for now. */

static char critical_runs[] = {
  0,  0,  0,  0,  0,  0,  0,  0,  2,  3,
  3,  3,  4,  4,  5,  5,  5,  6,  6,  7,
  7,  7,  8,  8,  9,  9,  9, 10, 10, 11,
 11, 11, 12, 12, 13, 13, 14, 14, 14, 15,
 15, 16, 16, 17, 17, 18, 18, 18, 19, 19,
 20, 20, 21, 21, 21, 22, 22, 23, 23, 24,
 24, 25, 25, 26, 26, 26, 27, 27, 28, 28,
 29, 29, 30, 30, 30, 31, 31, 32, 32, 33,
 33, 34, 34, 35, 35, 35, 36, 36, 37, 37,
 38, 38, 39, 39, 40, 40, 40, 41, 41, 42,
 42, 43, 43, 44, 44, 45, 45, 46, 46, 46,
 47, 47, 48, 48, 49, 49, 50, 50, 51, 51,
 52, 52, 52, 53, 53, 54, 54, 55, 55, 56
};

/* ================================================== */

static int
n_runs_from_residuals(double *resid, int n)
{
  int nruns;
  int i;
  
  nruns = 1;
  for (i=1; i<n; i++) {
    if (((resid[i-1] < 0.0) && (resid[i] < 0.0)) ||
        ((resid[i-1] > 0.0) && (resid[i] > 0.0))) {
      /* Nothing to do */
    } else {
      nruns++;
    }
  }
  
  return nruns;
}

/* ================================================== */
/* Return a boolean indicating whether we had enough points for
   regression */

int
RGR_FindBestRegression 
(double *x,                     /* independent variable */
 double *y,                     /* measured data */
 double *w,                     /* weightings (large => data
                                   less reliable) */
 
 int n,                         /* number of data points */
 int m,                         /* number of extra samples in x and y arrays
                                   (negative index) which can be used to
                                   extend runs test */
 int min_samples,               /* minimum number of samples to be kept after
                                   changing the starting index to pass the runs
                                   test */

 /* And now the results */

 double *b0,                    /* estimated y axis intercept */
 double *b1,                    /* estimated slope */
 double *s2,                    /* estimated variance of data points */
 
 double *sb0,                   /* estimated standard deviation of
                                   intercept */
 double *sb1,                   /* estimated standard deviation of
                                   slope */

 int *new_start,                /* the new starting index to make the
                                   residuals pass the two tests */
 
 int *n_runs,                   /* number of runs amongst the residuals */

 int *dof                       /* degrees of freedom in statistics (needed
                                   to get confidence intervals later) */

)
{
  double P, Q, U, V, W; /* total */
  double resid[MAX_POINTS * REGRESS_RUNS_RATIO];
  double ss;
  double a, b, u, ui, aa;

  int start, resid_start, nruns, npoints;
  int i;

  assert(n <= MAX_POINTS && m >= 0);
  assert(n * REGRESS_RUNS_RATIO < sizeof (critical_runs) / sizeof (critical_runs[0]));

  if (n < MIN_SAMPLES_FOR_REGRESS) {
    return 0;
  }

  start = 0;
  do {

    W = U = 0;
    for (i=start; i<n; i++) {
      U += x[i]        / w[i];
      W += 1.0         / w[i];
    }

    u = U / W;

    P = Q = V = 0.0;
    for (i=start; i<n; i++) {
      ui = x[i] - u;
      P += y[i]        / w[i];
      Q += y[i] * ui   / w[i];
      V += ui   * ui   / w[i];
    }

    b = Q / V;
    a = (P / W) - (b * u);

    /* Get residuals also for the extra samples before start */
    resid_start = n - (n - start) * REGRESS_RUNS_RATIO;
    if (resid_start < -m)
      resid_start = -m;

    for (i=resid_start; i<n; i++) {
      resid[i - resid_start] = y[i] - a - b*x[i];
    }

    /* Count number of runs */
    nruns = n_runs_from_residuals(resid, n - resid_start); 

    if (nruns > critical_runs[n - resid_start] ||
        n - start <= MIN_SAMPLES_FOR_REGRESS ||
        n - start <= min_samples) {
      if (start != resid_start) {
        /* Ignore extra samples in returned nruns */
        nruns = n_runs_from_residuals(resid + (start - resid_start), n - start);
      }
      break;
    } else {
      /* Try dropping one sample at a time until the runs test passes. */
      ++start;
    }

  } while (1);

  /* Work out statistics from full dataset */
  *b1 = b;
  *b0 = a;

  ss = 0.0;
  for (i=start; i<n; i++) {
    ss += resid[i - resid_start]*resid[i - resid_start] / w[i];
  }

  npoints = n - start;
  ss /= (double)(npoints - 2);
  *sb1 = sqrt(ss / V);
  aa = u * (*sb1);
  *sb0 = sqrt((ss / W) + (aa * aa));
  *s2 = ss * (double) npoints / W;

  *new_start = start;
  *dof = npoints - 2;
  *n_runs = nruns;

  return 1;

}

/* ================================================== */

#define EXCH(a,b) temp=(a); (a)=(b); (b)=temp

/* ================================================== */
/* Find the index'th biggest element in the array x of n elements.
   flags is an array where a 1 indicates that the corresponding entry
   in x is known to be sorted into its correct position and a 0
   indicates that the corresponding entry is not sorted.  However, if
   flags[m] = flags[n] = 1 with m<n, then x[m] must be <= x[n] and for
   all i with m<i<n, x[m] <= x[i] <= x[n].  In practice, this means
   flags[] has to be the result of a previous call to this routine
   with the same array x, and is used to remember which parts of the
   x[] array we have already sorted.

   The approach used is a cut-down quicksort, where we only bother to
   keep sorting the partition that contains the index we are after.
   The approach comes from Numerical Recipes in C (ISBN
   0-521-43108-5). */

static double
find_ordered_entry_with_flags(double *x, int n, int index, char *flags)
{
  int u, v, l, r;
  double temp;
  double piv;
  int pivind;

  assert(index >= 0);

  /* If this bit of the array is already sorted, simple! */
  if (flags[index]) {
    return x[index];
  }
  
  /* Find subrange to look at */
  u = v = index;
  while (u > 0 && !flags[u]) u--;
  if (flags[u]) u++;

  while (v < (n-1) && !flags[v]) v++;
  if (flags[v]) v--;

  do {
    if (v - u < 2) {
      if (x[v] < x[u]) {
        EXCH(x[v], x[u]);
      }
      flags[v] = flags[u] = 1;
      return x[index];
    } else { 
      pivind = (u + v) >> 1;
      EXCH(x[u], x[pivind]);
      piv = x[u]; /* New value */
      l = u + 1;
      r = v;
      do {
        while (l < v && x[l] < piv) l++;
        while (x[r] > piv) r--;
        if (r <= l) break;
        EXCH(x[l], x[r]);
        l++;
        r--;
      } while (1);
      EXCH(x[u], x[r]);
      flags[r] = 1; /* Pivot now in correct place */
      if (index == r) {
        return x[r];
      } else if (index < r) {
        v = r - 1;
      } else if (index > r) {
        u = l;
      }
    }
  } while (1);
}

/* ================================================== */

#if 0
/* Not used, but this is how it can be done */
static double
find_ordered_entry(double *x, int n, int index)
{
  char flags[MAX_POINTS];

  memset(flags, 0, n * sizeof (flags[0]));
  return find_ordered_entry_with_flags(x, n, index, flags);
}
#endif

/* ================================================== */
/* Find the median entry of an array x[] with n elements. */

static double
find_median(double *x, int n)
{
  int k;
  char flags[MAX_POINTS];

  memset(flags, 0, n * sizeof (flags[0]));
  k = n>>1;
  if (n&1) {
    return find_ordered_entry_with_flags(x, n, k, flags);
  } else {
    return 0.5 * (find_ordered_entry_with_flags(x, n, k, flags) +
                  find_ordered_entry_with_flags(x, n, k-1, flags));
  }
}

/* ================================================== */

double
RGR_FindMedian(double *x, int n)
{
  double tmp[MAX_POINTS];

  assert(n > 0 && n <= MAX_POINTS);
  memcpy(tmp, x, n * sizeof (tmp[0]));

  return find_median(tmp, n);
}

/* ================================================== */
/* This function evaluates the equation

   \sum_{i=0}^{n-1} x_i sign(y_i - a - b x_i)

   and chooses the value of a that minimises the absolute value of the
   result.  (See pp703-704 of Numerical Recipes in C). */

static void
eval_robust_residual
(double *x,                     /* The independent points */
 double *y,                     /* The dependent points */
 int n,                         /* Number of points */
 double b,                      /* Slope */
 double *aa,                    /* Intercept giving smallest absolute
                                   value for the above equation */
 double *rr                     /* Corresponding value of equation */
)
{
  int i;
  double a, res, del;
  double d[MAX_POINTS];

  for (i=0; i<n; i++) {
    d[i] = y[i] - b * x[i];
  }
  
  a = find_median(d, n);

  res = 0.0;
  for (i=0; i<n; i++) {
    del = y[i] - a - b * x[i];
    if (del > 0.0) {
      res += x[i];
    } else if (del < 0.0) {
      res -= x[i];
    }
  }

  *aa = a;
  *rr = res;
}

/* ================================================== */
/* This routine performs a 'robust' regression, i.e. one which has low
   susceptibility to outliers amongst the data.  If one thinks of a
   normal (least squares) linear regression in 2D being analogous to
   the arithmetic mean in 1D, this algorithm in 2D is roughly
   analogous to the median in 1D.  This algorithm seems to work quite
   well until the number of outliers is approximately half the number
   of data points.

   The return value is a status indicating whether there were enough
   data points to run the routine or not. */

int
RGR_FindBestRobustRegression
(double *x,                     /* The independent axis points */
 double *y,                     /* The dependent axis points (which
                                   may contain outliers). */
 int n,                         /* The number of points */
 double tol,                    /* The tolerance required in
                                   determining the value of b1 */
 double *b0,                    /* The estimated Y-axis intercept */
 double *b1,                    /* The estimated slope */
 int *n_runs,                   /* The number of runs of residuals */
 int *best_start                /* The best starting index */
)
{
  int i;
  int start;
  int n_points;
  double a, b;
  double P, U, V, W, X;
  double resid, resids[MAX_POINTS];
  double blo, bhi, bmid, rlo, rhi, rmid;
  double s2, sb, incr;
  double mx, dx, my, dy;
  int nruns = 0;

  assert(n <= MAX_POINTS);

  if (n < 2) {
    return 0;
  } else if (n == 2) {
    /* Just a straight line fit (we need this for the manual mode) */
    *b1 = (y[1] - y[0]) / (x[1] - x[0]);
    *b0 = y[0] - (*b1) * x[0];
    *n_runs = 0;
    *best_start = 0;
    return 1;
  }

  /* else at least 3 points, apply normal algorithm */

  start = 0;

  /* Loop to strip oldest points that cause the regression residuals
     to fail the number of runs test */
  do {

    n_points = n - start;

    /* Use standard least squares regression to get starting estimate */

    P = U = 0.0;
    for (i=start; i<n; i++) {
      P += y[i];
      U += x[i];
    }

    W = (double) n_points;

    my = P/W;
    mx = U/W;

    X = V = 0.0;
    for (i=start; i<n; i++) {
      dy = y[i] - my;
      dx = x[i] - mx;
      X += dy * dx;
      V += dx * dx;
    }

    b = X / V;
    a = my - b*mx;

    s2 = 0.0;
    for (i=start; i<n; i++) {
      resid = y[i] - a - b * x[i];
      s2 += resid * resid;
    }

    /* Need to expand range of b to get a root in the interval.
       Estimate standard deviation of b and expand range about b based
       on that. */
    sb = sqrt(s2 * W/V);
    incr = MAX(sb, tol);
  
    do {
      incr *= 2.0;

      /* Give up if the interval is too large */
      if (incr > 100.0)
        return 0;

      blo = b - incr;
      bhi = b + incr;

      /* We don't want 'a' yet */
      eval_robust_residual(x + start, y + start, n_points, blo, &a, &rlo);
      eval_robust_residual(x + start, y + start, n_points, bhi, &a, &rhi);

    } while (rlo * rhi >= 0.0); /* fn vals have same sign or one is zero,
                                   i.e. root not in interval (rlo, rhi). */

    /* OK, so the root for b lies in (blo, bhi). Start bisecting */
    do {
      bmid = 0.5 * (blo + bhi);
      if (!(blo < bmid && bmid < bhi))
        break;
      eval_robust_residual(x + start, y + start, n_points, bmid, &a, &rmid);
      if (rmid == 0.0) {
        break;
      } else if (rmid * rlo > 0.0) {
        blo = bmid;
        rlo = rmid;
      } else if (rmid * rhi > 0.0) {
        bhi = bmid;
        rhi = rmid;
      } else {
        assert(0);
      }
    } while (bhi - blo > tol);

    *b0 = a;
    *b1 = bmid;

    /* Number of runs test, but not if we're already down to the
       minimum number of points */
    if (n_points == MIN_SAMPLES_FOR_REGRESS) {
      break;
    }

    for (i=start; i<n; i++) {
      resids[i] = y[i] - a - bmid * x[i];
    }

    nruns = n_runs_from_residuals(resids + start, n_points);

    if (nruns > critical_runs[n_points]) {
      break;
    } else {
      start++;
    }

  } while (1);

  *n_runs = nruns;
  *best_start = start;

  return 1;

}

/* ================================================== */
/* This routine performs linear regression with two independent variables.
   It returns non-zero status if there were enough data points and there
   was a solution. */

int
RGR_MultipleRegress
(double *x1,                    /* first independent variable */
 double *x2,                    /* second independent variable */
 double *y,                     /* measured data */

 int n,                         /* number of data points */

 /* The results */
 double *b2                     /* estimated second slope */
                                /* other values are not needed yet */
)
{
  double Sx1, Sx2, Sx1x1, Sx1x2, Sx2x2, Sx1y, Sx2y, Sy;
  double U, V, V1, V2, V3;
  int i;

  if (n < 4)
    return 0;

  Sx1 = Sx2 = Sx1x1 = Sx1x2 = Sx2x2 = Sx1y = Sx2y = Sy = 0.0;

  for (i = 0; i < n; i++) {
    Sx1 += x1[i];
    Sx2 += x2[i];
    Sx1x1 += x1[i] * x1[i];
    Sx1x2 += x1[i] * x2[i];
    Sx2x2 += x2[i] * x2[i];
    Sx1y += x1[i] * y[i];
    Sx2y += x2[i] * y[i];
    Sy += y[i];
  }

  U = n * (Sx1x2 * Sx1y - Sx1x1 * Sx2y) +
      Sx1 * Sx1 * Sx2y - Sx1 * Sx2 * Sx1y +
      Sy * (Sx2 * Sx1x1 - Sx1 * Sx1x2);

  V1 = n * (Sx1x2 * Sx1x2 - Sx1x1 * Sx2x2);
  V2 = Sx1 * Sx1 * Sx2x2 + Sx2 * Sx2 * Sx1x1;
  V3 = -2.0 * Sx1 * Sx2 * Sx1x2;
  V = V1 + V2 + V3;

  /* Check if there is a (numerically stable) solution */
  if (fabs(V) * 1.0e10 <= -V1 + V2 + fabs(V3))
    return 0;

  *b2 = U / V;

  return 1;
}