summaryrefslogtreecommitdiffstats
path: root/lib/crypto_backend/argon2/opt.c
blob: 6c5e403fcfdc06e462838f5e66543df1fa962669 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
 * Argon2 reference source code package - reference C implementations
 *
 * Copyright 2015
 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
 *
 * You may use this work under the terms of a Creative Commons CC0 1.0
 * License/Waiver or the Apache Public License 2.0, at your option. The terms of
 * these licenses can be found at:
 *
 * - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
 * - Apache 2.0        : https://www.apache.org/licenses/LICENSE-2.0
 *
 * You should have received a copy of both of these licenses along with this
 * software. If not, they may be obtained at the above URLs.
 */

#include <stdint.h>
#include <string.h>
#include <stdlib.h>

#include "argon2.h"
#include "core.h"

#include "blake2/blake2.h"
#include "blake2/blamka-round-opt.h"

/*
 * Function fills a new memory block and optionally XORs the old block over the new one.
 * Memory must be initialized.
 * @param state Pointer to the just produced block. Content will be updated(!)
 * @param ref_block Pointer to the reference block
 * @param next_block Pointer to the block to be XORed over. May coincide with @ref_block
 * @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
 * @pre all block pointers must be valid
 */
#if defined(__AVX512F__)
static void fill_block(__m512i *state, const block *ref_block,
                       block *next_block, int with_xor) {
    __m512i block_XY[ARGON2_512BIT_WORDS_IN_BLOCK];
    unsigned int i;

    if (with_xor) {
        for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
            state[i] = _mm512_xor_si512(
                state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
            block_XY[i] = _mm512_xor_si512(
                state[i], _mm512_loadu_si512((const __m512i *)next_block->v + i));
        }
    } else {
        for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
            block_XY[i] = state[i] = _mm512_xor_si512(
                state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
        }
    }

    for (i = 0; i < 2; ++i) {
        BLAKE2_ROUND_1(
            state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3],
            state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]);
    }

    for (i = 0; i < 2; ++i) {
        BLAKE2_ROUND_2(
            state[2 * 0 + i], state[2 * 1 + i], state[2 * 2 + i], state[2 * 3 + i],
            state[2 * 4 + i], state[2 * 5 + i], state[2 * 6 + i], state[2 * 7 + i]);
    }

    for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
        state[i] = _mm512_xor_si512(state[i], block_XY[i]);
        _mm512_storeu_si512((__m512i *)next_block->v + i, state[i]);
    }
}
#elif defined(__AVX2__)
static void fill_block(__m256i *state, const block *ref_block,
                       block *next_block, int with_xor) {
    __m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
    unsigned int i;

    if (with_xor) {
        for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
            state[i] = _mm256_xor_si256(
                state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
            block_XY[i] = _mm256_xor_si256(
                state[i], _mm256_loadu_si256((const __m256i *)next_block->v + i));
        }
    } else {
        for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
            block_XY[i] = state[i] = _mm256_xor_si256(
                state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
        }
    }

    for (i = 0; i < 4; ++i) {
        BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
                       state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
    }

    for (i = 0; i < 4; ++i) {
        BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
                       state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
    }

    for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
        state[i] = _mm256_xor_si256(state[i], block_XY[i]);
        _mm256_storeu_si256((__m256i *)next_block->v + i, state[i]);
    }
}
#else
static void fill_block(__m128i *state, const block *ref_block,
                       block *next_block, int with_xor) {
    __m128i block_XY[ARGON2_OWORDS_IN_BLOCK];
    unsigned int i;

    if (with_xor) {
        for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
            state[i] = _mm_xor_si128(
                state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
            block_XY[i] = _mm_xor_si128(
                state[i], _mm_loadu_si128((const __m128i *)next_block->v + i));
        }
    } else {
        for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
            block_XY[i] = state[i] = _mm_xor_si128(
                state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
        }
    }

    for (i = 0; i < 8; ++i) {
        BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
            state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
            state[8 * i + 6], state[8 * i + 7]);
    }

    for (i = 0; i < 8; ++i) {
        BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
            state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
            state[8 * 6 + i], state[8 * 7 + i]);
    }

    for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
        state[i] = _mm_xor_si128(state[i], block_XY[i]);
        _mm_storeu_si128((__m128i *)next_block->v + i, state[i]);
    }
}
#endif

static void next_addresses(block *address_block, block *input_block) {
    /*Temporary zero-initialized blocks*/
#if defined(__AVX512F__)
    __m512i zero_block[ARGON2_512BIT_WORDS_IN_BLOCK];
    __m512i zero2_block[ARGON2_512BIT_WORDS_IN_BLOCK];
#elif defined(__AVX2__)
    __m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
    __m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
#else
    __m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
    __m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
#endif

    memset(zero_block, 0, sizeof(zero_block));
    memset(zero2_block, 0, sizeof(zero2_block));

    /*Increasing index counter*/
    input_block->v[6]++;

    /*First iteration of G*/
    fill_block(zero_block, input_block, address_block, 0);

    /*Second iteration of G*/
    fill_block(zero2_block, address_block, address_block, 0);
}

void fill_segment(const argon2_instance_t *instance,
                  argon2_position_t position) {
    block *ref_block = NULL, *curr_block = NULL;
    block address_block, input_block;
    uint64_t pseudo_rand, ref_index, ref_lane;
    uint32_t prev_offset, curr_offset;
    uint32_t starting_index, i;
#if defined(__AVX512F__)
    __m512i state[ARGON2_512BIT_WORDS_IN_BLOCK];
#elif defined(__AVX2__)
    __m256i state[ARGON2_HWORDS_IN_BLOCK];
#else
    __m128i state[ARGON2_OWORDS_IN_BLOCK];
#endif
    int data_independent_addressing;

    if (instance == NULL) {
        return;
    }

    data_independent_addressing =
        (instance->type == Argon2_i) ||
        (instance->type == Argon2_id && (position.pass == 0) &&
         (position.slice < ARGON2_SYNC_POINTS / 2));

    if (data_independent_addressing) {
        init_block_value(&input_block, 0);

        input_block.v[0] = position.pass;
        input_block.v[1] = position.lane;
        input_block.v[2] = position.slice;
        input_block.v[3] = instance->memory_blocks;
        input_block.v[4] = instance->passes;
        input_block.v[5] = instance->type;
    }

    starting_index = 0;

    if ((0 == position.pass) && (0 == position.slice)) {
        starting_index = 2; /* we have already generated the first two blocks */

        /* Don't forget to generate the first block of addresses: */
        if (data_independent_addressing) {
            next_addresses(&address_block, &input_block);
        }
    }

    /* Offset of the current block */
    curr_offset = position.lane * instance->lane_length +
                  position.slice * instance->segment_length + starting_index;

    if (0 == curr_offset % instance->lane_length) {
        /* Last block in this lane */
        prev_offset = curr_offset + instance->lane_length - 1;
    } else {
        /* Previous block */
        prev_offset = curr_offset - 1;
    }

    memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);

    for (i = starting_index; i < instance->segment_length;
         ++i, ++curr_offset, ++prev_offset) {
        /*1.1 Rotating prev_offset if needed */
        if (curr_offset % instance->lane_length == 1) {
            prev_offset = curr_offset - 1;
        }

        /* 1.2 Computing the index of the reference block */
        /* 1.2.1 Taking pseudo-random value from the previous block */
        if (data_independent_addressing) {
            if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
                next_addresses(&address_block, &input_block);
            }
            pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
        } else {
            pseudo_rand = instance->memory[prev_offset].v[0];
        }

        /* 1.2.2 Computing the lane of the reference block */
        ref_lane = ((pseudo_rand >> 32)) % instance->lanes;

        if ((position.pass == 0) && (position.slice == 0)) {
            /* Can not reference other lanes yet */
            ref_lane = position.lane;
        }

        /* 1.2.3 Computing the number of possible reference block within the
         * lane.
         */
        position.index = i;
        ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
                                ref_lane == position.lane);

        /* 2 Creating a new block */
        ref_block =
            instance->memory + instance->lane_length * ref_lane + ref_index;
        curr_block = instance->memory + curr_offset;
        if (ARGON2_VERSION_10 == instance->version) {
            /* version 1.2.1 and earlier: overwrite, not XOR */
            fill_block(state, ref_block, curr_block, 0);
        } else {
            if(0 == position.pass) {
                fill_block(state, ref_block, curr_block, 0);
            } else {
                fill_block(state, ref_block, curr_block, 1);
            }
        }
    }
}