1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/*
* LUKS keyslot entropy tester. Works only for header version 1.
*
* Functionality: Determines sample entropy (symbols: bytes) for
* each (by default) 512B sector in each used keyslot. If it
* is lower than a threshold, the sector address is printed
* as it is suspected of having non-"random" data in it, indicating
* damage by overwriting. This can obviously not find overwriting
* with random or random-like data (encrypted, compressed).
*
* Version history:
* v0.1: 09.09.2012 Initial release
* v0.2: 08.10.2012 Converted to use libcryptsetup
*
* Copyright (C) 2012, Arno Wagner <arno@wagner.name>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <ctype.h>
#include <math.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libcryptsetup.h>
const char *help =
"Version 0.2 [8.10.2012]\n"
"\n"
" chk_luks_keyslots [options] luks-device \n"
"\n"
"This tool checks all keyslots of a LUKS device for \n"
"low entropy sections. If any are found, they are reported. \n"
"This allows one to find areas damaged by things like filesystem \n"
"creation or RAID superblocks. \n"
"\n"
"Options: \n"
" -t <num> Entropy threshold. Possible values 0.0 ... 1.0 \n"
" Default: 0.90, which works well for 512B sectors.\n"
" For 512B sectors, you will get frequent misdetections\n"
" at thresholds around 0.94\n"
" Higher value: more sensitive but more false detections.\n"
" -s <num> Sector size. Must divide keyslot-size.\n"
" Default: 512 Bytes.\n"
" Values smaller than 128 are generally not very useful.\n"
" For values smaller than the default, you need to adjust\n"
" the threshold down to reduce misdetection. For values\n"
" larger than the default you need to adjust the threshold\n"
" up to retain sensitivity.\n"
" -v Print found suspicious sectors verbosely. \n"
" -d Print decimal addresses instead of hex ones.\n"
"\n";
/* Config defaults */
static int sector_size = 512;
static double threshold = 0.90;
static int print_decimal = 0;
static int verbose = 0;
/* tools */
/* Calculates and returns sample entropy on byte level for
* The argument.
*/
static double ent_samp(unsigned char * buf, int len)
{
int freq[256]; /* stores symbol frequencies */
int i;
double e, f;
/* 0. Plausibility checks */
if (len <= 0)
return 0.0;
/* 1. count all frequencies */
for (i = 0; i < 256; i++) {
freq[i] = 0.0;
}
for (i = 0; i < len; i ++)
freq[buf[i]]++;
/* 2. calculate sample entropy */
e = 0.0;
for (i = 0; i < 256; i++) {
f = freq[i];
if (f > 0) {
f = f / (double)len;
e += f * log2(f);
}
}
if (e != 0.0)
e = -1.0 * e;
e = e / 8.0;
return e;
}
static void print_address(FILE *out, uint64_t value)
{
if (print_decimal) {
fprintf(out,"%08" PRIu64 " ", value);
} else {
fprintf(out,"%#08" PRIx64 " ", value);
}
}
/* uses default "hd" style, i.e. 16 bytes followed by ASCII */
static void hexdump_line(FILE *out, uint64_t address, unsigned char *buf) {
int i;
static char tbl[16] = "0123456789ABCDEF";
fprintf(out," ");
print_address(out, address);
fprintf(out," ");
/* hex */
for (i = 0; i < 16; i++) {
fprintf(out, "%c%c",
tbl[(unsigned char)buf[i]>> 4],
tbl[(unsigned char)buf[i] & 0x0f]);
fprintf(out," ");
if (i == 7)
fprintf(out," ");
}
fprintf(out," ");
/* ascii */
for (i = 0; i < 16; i++) {
if (isprint(buf[i])) {
fprintf(out, "%c", buf[i]);
} else {
fprintf(out, ".");
}
}
fprintf(out, "\n");
}
static void hexdump_sector(FILE *out, unsigned char *buf, uint64_t address, int len)
{
int done;
done = 0;
while (len - done >= 16) {
hexdump_line(out, address + done, buf + done);
done += 16;
}
}
static int check_keyslots(FILE *out, struct crypt_device *cd, int f_luks)
{
int i;
double ent;
off_t ofs;
uint64_t start, length, end;
crypt_keyslot_info ki;
unsigned char buffer[sector_size];
for (i = 0; i < crypt_keyslot_max(CRYPT_LUKS1) ; i++) {
fprintf(out, "- processing keyslot %d:", i);
ki = crypt_keyslot_status(cd, i);
if (ki == CRYPT_SLOT_INACTIVE) {
fprintf(out, " keyslot not in use\n");
continue;
}
if (ki == CRYPT_SLOT_INVALID) {
fprintf(out, "\nError: keyslot invalid.\n");
return EXIT_FAILURE;
}
if (crypt_keyslot_area(cd, i, &start, &length) < 0) {
fprintf(stderr,"\nError: querying keyslot area failed for slot %d\n", i);
perror(NULL);
return EXIT_FAILURE;
}
end = start + length;
fprintf(out, " start: ");
print_address(out, start);
fprintf(out, " end: ");
print_address(out, end);
fprintf(out, "\n");
/* check whether sector-size divides size */
if (length % sector_size != 0) {
fprintf(stderr,"\nError: Argument to -s does not divide keyslot size\n");
return EXIT_FAILURE;
}
for (ofs = start; (uint64_t)ofs < end; ofs += sector_size) {
if (lseek(f_luks, ofs, SEEK_SET) != ofs) {
fprintf(stderr,"\nCannot seek to keyslot area.\n");
return EXIT_FAILURE;
}
if (read(f_luks, buffer, sector_size) != sector_size) {
fprintf(stderr,"\nCannot read keyslot area.\n");
return EXIT_FAILURE;
}
ent = ent_samp(buffer, sector_size);
if (ent < threshold) {
fprintf(out, " low entropy at: ");
print_address(out, ofs);
fprintf(out, " entropy: %f\n", ent);
if (verbose) {
fprintf(out, " Binary dump:\n");
hexdump_sector(out, buffer, (uint64_t)ofs, sector_size);
fprintf(out,"\n");
}
}
}
}
return EXIT_SUCCESS;
}
/* Main */
int main(int argc, char **argv)
{
/* for option processing */
int c, r;
char *device;
/* for use of libcryptsetup */
struct crypt_device *cd;
/* Other vars */
int f_luks; /* device file for the luks device */
FILE *out;
/* temporary helper vars */
int res;
/* getopt values */
char *s, *end;
double tvalue;
int svalue;
/* global initializations */
out = stdout;
/* get commandline parameters */
while ((c = getopt (argc, argv, "t:s:vd")) != -1) {
switch (c) {
case 't':
s = optarg;
tvalue = strtod(s, &end);
if (s == end) {
fprintf(stderr, "\nError: Parsing of argument to -t failed.\n");
exit(EXIT_FAILURE);
}
if (tvalue < 0.0 || tvalue > 1.0) {
fprintf(stderr,"\nError: Argument to -t must be in 0.0 ... 1.0\n");
exit(EXIT_FAILURE);
}
threshold = tvalue;
break;
case 's':
s = optarg;
svalue = strtol(s, &end, 10);
if (s == end) {
fprintf(stderr, "\nError: Parsing of argument to -s failed.\n");
exit(EXIT_FAILURE);
}
if (svalue < 1) {
fprintf(stderr,"\nError: Argument to -s must be >= 1 \n");
exit(EXIT_FAILURE);
}
sector_size = svalue;
break;
case 'v':
verbose = 1;
break;
case 'd':
print_decimal = 1;
break;
case '?':
if (optopt == 't' || optopt == 's')
fprintf (stderr,"\nError: Option -%c requires an argument.\n",
optopt);
else if (isprint (optopt)) {
fprintf(stderr,"\nError: Unknown option `-%c'.\n", optopt);
fprintf(stderr,"\n\n%s", help);
} else {
fprintf (stderr, "\nError: Unknown option character `\\x%x'.\n",
optopt);
fprintf(stderr,"\n\n%s", help);
}
exit(EXIT_SUCCESS);
default:
exit(EXIT_FAILURE);
}
}
/* parse non-option stuff. Should be exactly one, the device. */
if (optind+1 != argc) {
fprintf(stderr,"\nError: exactly one non-option argument expected!\n");
fprintf(stderr,"\n\n%s", help);
exit(EXIT_FAILURE);
}
device = argv[optind];
/* test whether we can open and read device */
/* This is needed as we are reading the actual data
* in the keyslots directly from the LUKS container.
*/
f_luks = open(device, O_RDONLY);
if (f_luks == -1) {
fprintf(stderr,"\nError: Opening of device %s failed:\n", device);
perror(NULL);
exit(EXIT_FAILURE);
}
/* now get the parameters we need via libcryptsetup */
/* Basically we need all active keyslots and their placement on disk */
/* first init. This does the following:
* - gets us a crypt_device struct with some values filled in
* Note: This does some init stuff we do not need, but that
* should not cause trouble.
*/
res = crypt_init(&cd, device);
if (res < 0) {
fprintf(stderr, "crypt_init() failed. Maybe not running as root?\n");
close(f_luks);
exit(EXIT_FAILURE);
}
/* now load LUKS header into the crypt_device
* This should also make sure a valid LUKS1 header is on disk
* and hence we should be able to skip magic and version checks.
*/
res = crypt_load(cd, CRYPT_LUKS1, NULL);
if (res < 0) {
fprintf(stderr, "crypt_load() failed. LUKS header too broken/absent?\n");
crypt_free(cd);
close(f_luks);
exit(EXIT_FAILURE);
}
fprintf(out, "\nparameters (commandline and LUKS header):\n");
fprintf(out, " sector size: %d\n", sector_size);
fprintf(out, " threshold: %0f\n\n", threshold);
r = check_keyslots(out, cd, f_luks);
crypt_free(cd);
close(f_luks);
return r;
}
|