summaryrefslogtreecommitdiffstats
path: root/dom/media/webaudio/blink/HRTFElevation.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /dom/media/webaudio/blink/HRTFElevation.cpp
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'dom/media/webaudio/blink/HRTFElevation.cpp')
-rw-r--r--dom/media/webaudio/blink/HRTFElevation.cpp338
1 files changed, 338 insertions, 0 deletions
diff --git a/dom/media/webaudio/blink/HRTFElevation.cpp b/dom/media/webaudio/blink/HRTFElevation.cpp
new file mode 100644
index 0000000000..af4e520384
--- /dev/null
+++ b/dom/media/webaudio/blink/HRTFElevation.cpp
@@ -0,0 +1,338 @@
+/*
+ * Copyright (C) 2010 Google Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
+ * its contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "HRTFElevation.h"
+
+#include <speex/speex_resampler.h>
+#include "mozilla/PodOperations.h"
+#include "AudioSampleFormat.h"
+
+#include "IRC_Composite_C_R0195-incl.cpp"
+
+using namespace mozilla;
+
+namespace WebCore {
+
+const int elevationSpacing = irc_composite_c_r0195_elevation_interval;
+const int firstElevation = irc_composite_c_r0195_first_elevation;
+const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195);
+
+const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8;
+
+const int rawSampleRate = irc_composite_c_r0195_sample_rate;
+
+// Number of frames in an individual impulse response.
+const size_t ResponseFrameSize = 256;
+
+size_t HRTFElevation::sizeOfIncludingThis(
+ mozilla::MallocSizeOf aMallocSizeOf) const {
+ size_t amount = aMallocSizeOf(this);
+
+ amount += m_kernelListL.ShallowSizeOfExcludingThis(aMallocSizeOf);
+ for (size_t i = 0; i < m_kernelListL.Length(); i++) {
+ amount += m_kernelListL[i]->sizeOfIncludingThis(aMallocSizeOf);
+ }
+
+ return amount;
+}
+
+size_t HRTFElevation::fftSizeForSampleRate(float sampleRate) {
+ // The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz,
+ // but these have been truncated to 256 samples.
+ // An FFT-size of twice impulse response size is used (for convolution).
+ // So for sample rates of 44.1KHz an FFT size of 512 is good.
+ // We double the FFT-size only for sample rates at least double this.
+ // If the FFT size is too large then the impulse response will be padded
+ // with zeros without the fade-out provided by HRTFKernel.
+ MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0);
+
+ // This is the size if we were to use all raw response samples.
+ unsigned resampledLength =
+ floorf(ResponseFrameSize * sampleRate / rawSampleRate);
+ // Keep things semi-sane, with max FFT size of 1024.
+ unsigned size = std::min(resampledLength, 1023U);
+ // Ensure a minimum of 2 * WEBAUDIO_BLOCK_SIZE (with the size++ below) for
+ // FFTConvolver and set the 8 least significant bits for rounding up to
+ // the next power of 2 below.
+ size |= 2 * WEBAUDIO_BLOCK_SIZE - 1;
+ // Round up to the next power of 2, making the FFT size no more than twice
+ // the impulse response length. This doubles size for values that are
+ // already powers of 2. This works by filling in alls bit to right of the
+ // most significant bit. The most significant bit is no greater than
+ // 1 << 9, and the least significant 8 bits were already set above, so
+ // there is at most one bit to add.
+ size |= (size >> 1);
+ size++;
+ MOZ_ASSERT((size & (size - 1)) == 0);
+
+ return size;
+}
+
+nsReturnRef<HRTFKernel> HRTFElevation::calculateKernelForAzimuthElevation(
+ int azimuth, int elevation, SpeexResamplerState* resampler,
+ float sampleRate) {
+ int elevationIndex = (elevation - firstElevation) / elevationSpacing;
+ MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations);
+
+ int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count;
+ int azimuthSpacing = 360 / numberOfAzimuths;
+ MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360);
+
+ int azimuthIndex = azimuth / azimuthSpacing;
+ MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth);
+
+ const int16_t(&impulse_response_data)[ResponseFrameSize] =
+ irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex];
+
+ // When libspeex_resampler is compiled with FIXED_POINT, samples in
+ // speex_resampler_process_float are rounded directly to int16_t, which
+ // only works well if the floats are in the range +/-32767. On such
+ // platforms it's better to resample before converting to float anyway.
+#ifdef MOZ_SAMPLE_TYPE_S16
+# define RESAMPLER_PROCESS speex_resampler_process_int
+ const int16_t* response = impulse_response_data;
+ const int16_t* resampledResponse;
+#else
+# define RESAMPLER_PROCESS speex_resampler_process_float
+ float response[ResponseFrameSize];
+ ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize);
+ float* resampledResponse;
+#endif
+
+ // Note that depending on the fftSize returned by the panner, we may be
+ // truncating the impulse response.
+ const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2;
+
+ AutoTArray<AudioDataValue, 2 * ResponseFrameSize> resampled;
+ if (sampleRate == rawSampleRate) {
+ resampledResponse = response;
+ MOZ_ASSERT(resampledResponseLength == ResponseFrameSize);
+ } else {
+ resampled.SetLength(resampledResponseLength);
+ resampledResponse = resampled.Elements();
+ speex_resampler_skip_zeros(resampler);
+
+ // Feed the input buffer into the resampler.
+ spx_uint32_t in_len = ResponseFrameSize;
+ spx_uint32_t out_len = resampled.Length();
+ RESAMPLER_PROCESS(resampler, 0, response, &in_len, resampled.Elements(),
+ &out_len);
+
+ if (out_len < resampled.Length()) {
+ // The input should have all been processed.
+ MOZ_ASSERT(in_len == ResponseFrameSize);
+ // Feed in zeros get the data remaining in the resampler.
+ spx_uint32_t out_index = out_len;
+ in_len = speex_resampler_get_input_latency(resampler);
+ out_len = resampled.Length() - out_index;
+ RESAMPLER_PROCESS(resampler, 0, nullptr, &in_len,
+ resampled.Elements() + out_index, &out_len);
+ out_index += out_len;
+ // There may be some uninitialized samples remaining for very low
+ // sample rates.
+ PodZero(resampled.Elements() + out_index, resampled.Length() - out_index);
+ }
+
+ speex_resampler_reset_mem(resampler);
+ }
+
+#ifdef MOZ_SAMPLE_TYPE_S16
+ AutoTArray<float, 2 * ResponseFrameSize> floatArray;
+ floatArray.SetLength(resampledResponseLength);
+ float* floatResponse = floatArray.Elements();
+ ConvertAudioSamples(resampledResponse, floatResponse,
+ resampledResponseLength);
+#else
+ float* floatResponse = resampledResponse;
+#endif
+#undef RESAMPLER_PROCESS
+
+ return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate);
+}
+
+// The range of elevations for the IRCAM impulse responses varies depending on
+// azimuth, but the minimum elevation appears to always be -45.
+//
+// Here's how it goes:
+static int maxElevations[] = {
+ // Azimuth
+ //
+ 90, // 0
+ 45, // 15
+ 60, // 30
+ 45, // 45
+ 75, // 60
+ 45, // 75
+ 60, // 90
+ 45, // 105
+ 75, // 120
+ 45, // 135
+ 60, // 150
+ 45, // 165
+ 75, // 180
+ 45, // 195
+ 60, // 210
+ 45, // 225
+ 75, // 240
+ 45, // 255
+ 60, // 270
+ 45, // 285
+ 75, // 300
+ 45, // 315
+ 60, // 330
+ 45 // 345
+};
+
+nsReturnRef<HRTFElevation> HRTFElevation::createBuiltin(int elevation,
+ float sampleRate) {
+ if (elevation < firstElevation ||
+ elevation > firstElevation + numberOfElevations * elevationSpacing ||
+ (elevation / elevationSpacing) * elevationSpacing != elevation)
+ return nsReturnRef<HRTFElevation>();
+
+ // Spacing, in degrees, between every azimuth loaded from resource.
+ // Some elevations do not have data for all these intervals.
+ // See maxElevations.
+ static const unsigned AzimuthSpacing = 15;
+ static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing;
+ static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360, "Not a multiple");
+ static const unsigned InterpolationFactor =
+ NumberOfTotalAzimuths / NumberOfRawAzimuths;
+ static_assert(
+ NumberOfTotalAzimuths == NumberOfRawAzimuths * InterpolationFactor,
+ "Not a multiple");
+
+ HRTFKernelList kernelListL;
+ kernelListL.SetLength(NumberOfTotalAzimuths);
+
+ SpeexResamplerState* resampler =
+ sampleRate == rawSampleRate
+ ? nullptr
+ : speex_resampler_init(1, rawSampleRate, sampleRate,
+ SPEEX_RESAMPLER_QUALITY_MIN, nullptr);
+
+ // Load convolution kernels from HRTF files.
+ int interpolatedIndex = 0;
+ for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
+ // Don't let elevation exceed maximum for this azimuth.
+ int maxElevation = maxElevations[rawIndex];
+ int actualElevation = std::min(elevation, maxElevation);
+
+ kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation(
+ rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate);
+
+ interpolatedIndex += InterpolationFactor;
+ }
+
+ if (resampler) speex_resampler_destroy(resampler);
+
+ // Now go back and interpolate intermediate azimuth values.
+ for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
+ int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
+
+ // Create the interpolated convolution kernels and delays.
+ for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
+ float x =
+ float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
+
+ kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel(
+ kernelListL[i], kernelListL[j], x);
+ }
+ }
+
+ return nsReturnRef<HRTFElevation>(
+ new HRTFElevation(std::move(kernelListL), elevation, sampleRate));
+}
+
+nsReturnRef<HRTFElevation> HRTFElevation::createByInterpolatingSlices(
+ HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x,
+ float sampleRate) {
+ MOZ_ASSERT(hrtfElevation1 && hrtfElevation2);
+ if (!hrtfElevation1 || !hrtfElevation2) return nsReturnRef<HRTFElevation>();
+
+ MOZ_ASSERT(x >= 0.0 && x < 1.0);
+
+ HRTFKernelList kernelListL;
+ kernelListL.SetLength(NumberOfTotalAzimuths);
+
+ const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL();
+ const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL();
+
+ // Interpolate kernels of corresponding azimuths of the two elevations.
+ for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
+ kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i],
+ kernelListL2[i], x);
+ }
+
+ // Interpolate elevation angle.
+ double angle = (1.0 - x) * hrtfElevation1->elevationAngle() +
+ x * hrtfElevation2->elevationAngle();
+
+ return nsReturnRef<HRTFElevation>(new HRTFElevation(
+ std::move(kernelListL), static_cast<int>(angle), sampleRate));
+}
+
+void HRTFElevation::getKernelsFromAzimuth(
+ double azimuthBlend, unsigned azimuthIndex, HRTFKernel*& kernelL,
+ HRTFKernel*& kernelR, double& frameDelayL, double& frameDelayR) {
+ bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
+ MOZ_ASSERT(checkAzimuthBlend);
+ if (!checkAzimuthBlend) azimuthBlend = 0.0;
+
+ unsigned numKernels = m_kernelListL.Length();
+
+ bool isIndexGood = azimuthIndex < numKernels;
+ MOZ_ASSERT(isIndexGood);
+ if (!isIndexGood) {
+ kernelL = 0;
+ kernelR = 0;
+ return;
+ }
+
+ // Return the left and right kernels,
+ // using symmetry to produce the right kernel.
+ kernelL = m_kernelListL[azimuthIndex];
+ int azimuthIndexR = (numKernels - azimuthIndex) % numKernels;
+ kernelR = m_kernelListL[azimuthIndexR];
+
+ frameDelayL = kernelL->frameDelay();
+ frameDelayR = kernelR->frameDelay();
+
+ int azimuthIndex2L = (azimuthIndex + 1) % numKernels;
+ double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay();
+ int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels;
+ double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay();
+
+ // Linearly interpolate delays.
+ frameDelayL =
+ (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
+ frameDelayR =
+ (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
+}
+
+} // namespace WebCore