summaryrefslogtreecommitdiffstats
path: root/gfx/gl/Colorspaces.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /gfx/gl/Colorspaces.cpp
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/gl/Colorspaces.cpp')
-rw-r--r--gfx/gl/Colorspaces.cpp435
1 files changed, 435 insertions, 0 deletions
diff --git a/gfx/gl/Colorspaces.cpp b/gfx/gl/Colorspaces.cpp
new file mode 100644
index 0000000000..29ddf37cd9
--- /dev/null
+++ b/gfx/gl/Colorspaces.cpp
@@ -0,0 +1,435 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+// We are going to be doing so, so many transforms, so descriptive labels are
+// critical.
+
+#include "Colorspaces.h"
+
+#include "nsDebug.h"
+#include "qcms.h"
+
+namespace mozilla::color {
+
+// tf = { k * linear | linear < b
+// { a * pow(linear, 1/g) - (1-a) | linear >= b
+float TfFromLinear(const PiecewiseGammaDesc& desc, const float linear) {
+ if (linear < desc.b) {
+ return linear * desc.k;
+ }
+ float ret = linear;
+ ret = powf(ret, 1.0f / desc.g);
+ ret *= desc.a;
+ ret -= (desc.a - 1);
+ return ret;
+}
+
+float LinearFromTf(const PiecewiseGammaDesc& desc, const float tf) {
+ const auto linear_if_low = tf / desc.k;
+ if (linear_if_low < desc.b) {
+ return linear_if_low;
+ }
+ float ret = tf;
+ ret += (desc.a - 1);
+ ret /= desc.a;
+ ret = powf(ret, 1.0f * desc.g);
+ return ret;
+}
+
+// -
+
+mat3 YuvFromRgb(const YuvLumaCoeffs& yc) {
+ // Y is always [0,1]
+ // U and V are signed, and could be either [-1,+1] or [-0.5,+0.5].
+ // Specs generally use [-0.5,+0.5], so we use that too.
+ // E.g.
+ // y = 0.2126*r + 0.7152*g + 0.0722*b
+ // u = (b - y) / (u_range = u_max - u_min) // u_min = -u_max
+ // = (b - y) / (u(0,0,1) - u(1,1,0))
+ // = (b - y) / (2 * u(0,0,1))
+ // = (b - y) / (2 * u.b))
+ // = (b - y) / (2 * (1 - 0.0722))
+ // = (-0.2126*r + -0.7152*g + (1-0.0722)*b) / 1.8556
+ // v = (r - y) / 1.5748;
+ // = ((1-0.2126)*r + -0.7152*g + -0.0722*b) / 1.5748
+ const auto y = vec3({yc.r, yc.g, yc.b});
+ const auto u = vec3({0, 0, 1}) - y;
+ const auto v = vec3({1, 0, 0}) - y;
+
+ // From rows:
+ return mat3({y, u / (2 * u.z()), v / (2 * v.x())});
+}
+
+mat4 YuvFromYcbcr(const YcbcrDesc& d) {
+ // E.g.
+ // y = (yy - 16) / (235 - 16); // 16->0, 235->1
+ // u = (cb - 128) / (240 - 16); // 16->-0.5, 128->0, 240->+0.5
+ // v = (cr - 128) / (240 - 16);
+
+ const auto yRange = d.y1 - d.y0;
+ const auto uHalfRange = d.uPlusHalf - d.u0;
+ const auto uRange = 2 * uHalfRange;
+
+ const auto ycbcrFromYuv = mat4{{vec4{{yRange, 0, 0, d.y0}},
+ {{0, uRange, 0, d.u0}},
+ {{0, 0, uRange, d.u0}},
+ {{0, 0, 0, 1}}}};
+ const auto yuvFromYcbcr = inverse(ycbcrFromYuv);
+ return yuvFromYcbcr;
+}
+
+inline vec3 CIEXYZ_from_CIExyY(const vec2 xy, const float Y = 1) {
+ const auto xyz = vec3(xy, 1 - xy.x() - xy.y());
+ const auto XYZ = xyz * (Y / xy.y());
+ return XYZ;
+}
+
+mat3 XyzFromLinearRgb(const Chromaticities& c) {
+ // http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
+
+ // Given red (xr, yr), green (xg, yg), blue (xb, yb),
+ // and whitepoint (XW, YW, ZW)
+
+ // [ X ] [ R ]
+ // [ Y ] = M x [ G ]
+ // [ Z ] [ B ]
+
+ // [ Sr*Xr Sg*Xg Sb*Xb ]
+ // M = [ Sr*Yr Sg*Yg Sb*Yb ]
+ // [ Sr*Zr Sg*Zg Sb*Zb ]
+
+ // Xr = xr / yr
+ // Yr = 1
+ // Zr = (1 - xr - yr) / yr
+
+ // Xg = xg / yg
+ // Yg = 1
+ // Zg = (1 - xg - yg) / yg
+
+ // Xb = xb / yb
+ // Yb = 1
+ // Zb = (1 - xb - yb) / yb
+
+ // [ Sr ] [ Xr Xg Xb ]^-1 [ XW ]
+ // [ Sg ] = [ Yr Yg Yb ] x [ YW ]
+ // [ Sb ] [ Zr Zg Zb ] [ ZW ]
+
+ const auto xrgb = vec3({c.rx, c.gx, c.bx});
+ const auto yrgb = vec3({c.ry, c.gy, c.by});
+
+ const auto Xrgb = xrgb / yrgb;
+ const auto Yrgb = vec3(1);
+ const auto Zrgb = (vec3(1) - xrgb - yrgb) / yrgb;
+
+ const auto XYZrgb = mat3({Xrgb, Yrgb, Zrgb});
+ const auto XYZrgb_inv = inverse(XYZrgb);
+ const auto XYZwhitepoint = vec3({c.wx, c.wy, 1 - c.wx - c.wy}) / c.wy;
+ const auto Srgb = XYZrgb_inv * XYZwhitepoint;
+
+ const auto M = mat3({Srgb * Xrgb, Srgb * Yrgb, Srgb * Zrgb});
+ return M;
+}
+
+// -
+ColorspaceTransform ColorspaceTransform::Create(const ColorspaceDesc& src,
+ const ColorspaceDesc& dst) {
+ auto ct = ColorspaceTransform{src, dst};
+ ct.srcTf = src.tf;
+ ct.dstTf = dst.tf;
+
+ const auto RgbTfFrom = [&](const ColorspaceDesc& cs) {
+ auto rgbFrom = mat4::Identity();
+ if (cs.yuv) {
+ const auto yuvFromYcbcr = YuvFromYcbcr(cs.yuv->ycbcr);
+ const auto yuvFromRgb = YuvFromRgb(cs.yuv->yCoeffs);
+ const auto rgbFromYuv = inverse(yuvFromRgb);
+ const auto rgbFromYuv4 = mat4(rgbFromYuv);
+
+ const auto rgbFromYcbcr = rgbFromYuv4 * yuvFromYcbcr;
+ rgbFrom = rgbFromYcbcr;
+ }
+ return rgbFrom;
+ };
+
+ ct.srcRgbTfFromSrc = RgbTfFrom(src);
+ const auto dstRgbTfFromDst = RgbTfFrom(dst);
+ ct.dstFromDstRgbTf = inverse(dstRgbTfFromDst);
+
+ // -
+
+ ct.dstRgbLinFromSrcRgbLin = mat3::Identity();
+ if (!(src.chrom == dst.chrom)) {
+ const auto xyzFromSrcRgbLin = XyzFromLinearRgb(src.chrom);
+ const auto xyzFromDstRgbLin = XyzFromLinearRgb(dst.chrom);
+ const auto dstRgbLinFromXyz = inverse(xyzFromDstRgbLin);
+ ct.dstRgbLinFromSrcRgbLin = dstRgbLinFromXyz * xyzFromSrcRgbLin;
+ }
+
+ return ct;
+}
+
+vec3 ColorspaceTransform::DstFromSrc(const vec3 src) const {
+ const auto srcRgbTf = srcRgbTfFromSrc * vec4(src, 1);
+ auto srcRgbLin = srcRgbTf;
+ if (srcTf) {
+ srcRgbLin.x(LinearFromTf(*srcTf, srcRgbTf.x()));
+ srcRgbLin.y(LinearFromTf(*srcTf, srcRgbTf.y()));
+ srcRgbLin.z(LinearFromTf(*srcTf, srcRgbTf.z()));
+ }
+
+ const auto dstRgbLin = dstRgbLinFromSrcRgbLin * vec3(srcRgbLin);
+ auto dstRgbTf = dstRgbLin;
+ if (dstTf) {
+ dstRgbTf.x(TfFromLinear(*dstTf, dstRgbLin.x()));
+ dstRgbTf.y(TfFromLinear(*dstTf, dstRgbLin.y()));
+ dstRgbTf.z(TfFromLinear(*dstTf, dstRgbLin.z()));
+ }
+
+ const auto dst4 = dstFromDstRgbTf * vec4(dstRgbTf, 1);
+ return vec3(dst4);
+}
+
+// -
+
+mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB) {
+ // This is what ICC profiles use to do whitepoint transforms,
+ // because ICC also requires D50 for the Profile Connection Space.
+
+ // From https://www.color.org/specification/ICC.1-2022-05.pdf
+ // E.3 "Linearized Bradford transformation":
+
+ const auto M_BFD = mat3{{
+ vec3{{0.8951, 0.2664f, -0.1614f}},
+ vec3{{-0.7502f, 1.7135f, 0.0367f}},
+ vec3{{0.0389f, -0.0685f, 1.0296f}},
+ }};
+ // NB: They use rho/gamma/beta, but we'll use R/G/B here.
+ const auto XYZDst = CIEXYZ_from_CIExyY(xyA); // "XYZ_W", WP of PCS
+ const auto XYZSrc = CIEXYZ_from_CIExyY(xyB); // "XYZ_NAW", WP of src
+ const auto rgbSrc = M_BFD * XYZSrc; // "RGB_SRC"
+ const auto rgbDst = M_BFD * XYZDst; // "RGB_PCS"
+ const auto rgbDstOverSrc = rgbDst / rgbSrc;
+ const auto M_dstOverSrc = mat3::Scale(rgbDstOverSrc);
+ const auto M_adapt = inverse(M_BFD) * M_dstOverSrc * M_BFD;
+ return M_adapt;
+}
+
+std::optional<mat4> ColorspaceTransform::ToMat4() const {
+ mat4 fromSrc = srcRgbTfFromSrc;
+ if (srcTf) return {};
+ fromSrc = mat4(dstRgbLinFromSrcRgbLin) * fromSrc;
+ if (dstTf) return {};
+ fromSrc = dstFromDstRgbTf * fromSrc;
+ return fromSrc;
+}
+
+Lut3 ColorspaceTransform::ToLut3(const ivec3 size) const {
+ auto lut = Lut3::Create(size);
+ lut.SetMap([&](const vec3& srcVal) { return DstFromSrc(srcVal); });
+ return lut;
+}
+
+vec3 Lut3::Sample(const vec3 in01) const {
+ const auto coord = vec3(size - 1) * in01;
+ const auto p0 = floor(coord);
+ const auto dp = coord - p0;
+ const auto ip0 = ivec3(p0);
+
+ // Trilinear
+ const auto f000 = Fetch(ip0 + ivec3({0, 0, 0}));
+ const auto f100 = Fetch(ip0 + ivec3({1, 0, 0}));
+ const auto f010 = Fetch(ip0 + ivec3({0, 1, 0}));
+ const auto f110 = Fetch(ip0 + ivec3({1, 1, 0}));
+ const auto f001 = Fetch(ip0 + ivec3({0, 0, 1}));
+ const auto f101 = Fetch(ip0 + ivec3({1, 0, 1}));
+ const auto f011 = Fetch(ip0 + ivec3({0, 1, 1}));
+ const auto f111 = Fetch(ip0 + ivec3({1, 1, 1}));
+
+ const auto fx00 = mix(f000, f100, dp.x());
+ const auto fx10 = mix(f010, f110, dp.x());
+ const auto fx01 = mix(f001, f101, dp.x());
+ const auto fx11 = mix(f011, f111, dp.x());
+
+ const auto fxy0 = mix(fx00, fx10, dp.y());
+ const auto fxy1 = mix(fx01, fx11, dp.y());
+
+ const auto fxyz = mix(fxy0, fxy1, dp.z());
+ return fxyz;
+}
+
+// -
+
+ColorProfileDesc ColorProfileDesc::From(const ColorspaceDesc& cspace) {
+ auto ret = ColorProfileDesc{};
+
+ if (cspace.yuv) {
+ const auto yuvFromYcbcr = YuvFromYcbcr(cspace.yuv->ycbcr);
+ const auto yuvFromRgb = YuvFromRgb(cspace.yuv->yCoeffs);
+ const auto rgbFromYuv = inverse(yuvFromRgb);
+ ret.rgbFromYcbcr = mat4(rgbFromYuv) * yuvFromYcbcr;
+ }
+
+ if (cspace.tf) {
+ const size_t tableSize = 256;
+ auto& tableR = ret.linearFromTf.r;
+ tableR.resize(tableSize);
+ for (size_t i = 0; i < tableR.size(); i++) {
+ const float tfVal = i / float(tableR.size() - 1);
+ const float linearVal = LinearFromTf(*cspace.tf, tfVal);
+ tableR[i] = linearVal;
+ }
+ ret.linearFromTf.g = tableR;
+ ret.linearFromTf.b = tableR;
+ }
+
+ ret.xyzd65FromLinearRgb = XyzFromLinearRgb(cspace.chrom);
+
+ return ret;
+}
+
+// -
+
+template <class T>
+constexpr inline T NewtonEstimateX(const T x1, const T y1, const T dydx,
+ const T y2 = 0) {
+ // Estimate x s.t. y=0
+ // y = y0 + x*dydx;
+ // y0 = y - x*dydx;
+ // y1 - x1*dydx = y2 - x2*dydx
+ // x2*dydx = y2 - y1 + x1*dydx
+ // x2 = (y2 - y1)/dydx + x1
+ return (y2 - y1) / dydx + x1;
+}
+
+float GuessGamma(const std::vector<float>& vals, float exp_guess) {
+ // Approximate (signed) error = 0.0.
+ constexpr float d_exp = 0.001;
+ constexpr float error_tolerance = 0.001;
+ struct Samples {
+ float y1, y2;
+ };
+ const auto Sample = [&](const float exp) {
+ int i = -1;
+ auto samples = Samples{};
+ for (const auto& expected : vals) {
+ i += 1;
+ const auto in = i / float(vals.size() - 1);
+ samples.y1 += powf(in, exp) - expected;
+ samples.y2 += powf(in, exp + d_exp) - expected;
+ }
+ samples.y1 /= vals.size(); // Normalize by val count.
+ samples.y2 /= vals.size();
+ return samples;
+ };
+ constexpr int MAX_ITERS = 10;
+ for (int i = 1;; i++) {
+ const auto err = Sample(exp_guess);
+ const auto derr = err.y2 - err.y1;
+ exp_guess = NewtonEstimateX(exp_guess, err.y1, derr / d_exp);
+ // Check if we were close before, because then this last round of estimation
+ // should get us pretty much right on it.
+ if (std::abs(err.y1) < error_tolerance) {
+ return exp_guess;
+ }
+ if (i >= MAX_ITERS) {
+ printf_stderr("GuessGamma() -> %f after %i iterations (avg err %f)\n",
+ exp_guess, i, err.y1);
+ MOZ_ASSERT(false, "GuessGamma failed.");
+ return exp_guess;
+ }
+ }
+}
+
+// -
+
+ColorProfileDesc ColorProfileDesc::From(const qcms_profile& qcmsProfile) {
+ ColorProfileDesc ret;
+
+ qcms_profile_data data = {};
+ qcms_profile_get_data(&qcmsProfile, &data);
+
+ auto xyzd50FromLinearRgb = mat3{};
+ // X contributions from [R,G,B]
+ xyzd50FromLinearRgb.at(0, 0) = data.red_colorant_xyzd50[0];
+ xyzd50FromLinearRgb.at(1, 0) = data.green_colorant_xyzd50[0];
+ xyzd50FromLinearRgb.at(2, 0) = data.blue_colorant_xyzd50[0];
+ // Y contributions from [R,G,B]
+ xyzd50FromLinearRgb.at(0, 1) = data.red_colorant_xyzd50[1];
+ xyzd50FromLinearRgb.at(1, 1) = data.green_colorant_xyzd50[1];
+ xyzd50FromLinearRgb.at(2, 1) = data.blue_colorant_xyzd50[1];
+ // Z contributions from [R,G,B]
+ xyzd50FromLinearRgb.at(0, 2) = data.red_colorant_xyzd50[2];
+ xyzd50FromLinearRgb.at(1, 2) = data.green_colorant_xyzd50[2];
+ xyzd50FromLinearRgb.at(2, 2) = data.blue_colorant_xyzd50[2];
+
+ const auto d65FromD50 = XyzAFromXyzB_BradfordLinear(D65, D50);
+ ret.xyzd65FromLinearRgb = d65FromD50 * xyzd50FromLinearRgb;
+
+ // -
+
+ const auto Fn = [&](std::vector<float>* const linearFromTf,
+ int32_t claimed_samples,
+ const qcms_color_channel channel) {
+ if (claimed_samples == 0) return; // No tf.
+
+ if (claimed_samples == -1) {
+ claimed_samples = 4096; // Ask it to generate a bunch.
+ claimed_samples = 256; // Ask it to generate a bunch.
+ }
+
+ linearFromTf->resize(AssertedCast<size_t>(claimed_samples));
+
+ const auto begin = linearFromTf->data();
+ qcms_profile_get_lut(&qcmsProfile, channel, begin,
+ begin + linearFromTf->size());
+ };
+
+ Fn(&ret.linearFromTf.r, data.linear_from_trc_red_samples,
+ qcms_color_channel::Red);
+ Fn(&ret.linearFromTf.b, data.linear_from_trc_blue_samples,
+ qcms_color_channel::Blue);
+ Fn(&ret.linearFromTf.g, data.linear_from_trc_green_samples,
+ qcms_color_channel::Green);
+
+ // -
+
+ return ret;
+}
+
+// -
+
+ColorProfileConversionDesc ColorProfileConversionDesc::From(
+ const FromDesc& desc) {
+ const auto dstLinearRgbFromXyzd65 = inverse(desc.dst.xyzd65FromLinearRgb);
+ auto ret = ColorProfileConversionDesc{
+ .srcRgbFromSrcYuv = desc.src.rgbFromYcbcr,
+ .srcLinearFromSrcTf = desc.src.linearFromTf,
+ .dstLinearFromSrcLinear =
+ dstLinearRgbFromXyzd65 * desc.src.xyzd65FromLinearRgb,
+ .dstTfFromDstLinear = {},
+ };
+ bool sameTF = true;
+ sameTF &= desc.src.linearFromTf.r == desc.dst.linearFromTf.r;
+ sameTF &= desc.src.linearFromTf.g == desc.dst.linearFromTf.g;
+ sameTF &= desc.src.linearFromTf.b == desc.dst.linearFromTf.b;
+ if (sameTF) {
+ ret.srcLinearFromSrcTf = {};
+ ret.dstTfFromDstLinear = {};
+ } else {
+ const auto Invert = [](const std::vector<float>& linearFromTf,
+ std::vector<float>* const tfFromLinear) {
+ const auto size = linearFromTf.size();
+ MOZ_ASSERT(size != 1); // Less than two is uninvertable.
+ if (size < 2) return;
+ (*tfFromLinear).resize(size);
+ InvertLut(linearFromTf, &*tfFromLinear);
+ };
+ Invert(desc.dst.linearFromTf.r, &ret.dstTfFromDstLinear.r);
+ Invert(desc.dst.linearFromTf.g, &ret.dstTfFromDstLinear.g);
+ Invert(desc.dst.linearFromTf.b, &ret.dstTfFromDstLinear.b);
+ }
+ return ret;
+}
+
+} // namespace mozilla::color