summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/res/cs_clip_rectangle.glsl
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /gfx/wr/webrender/res/cs_clip_rectangle.glsl
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/wr/webrender/res/cs_clip_rectangle.glsl')
-rw-r--r--gfx/wr/webrender/res/cs_clip_rectangle.glsl498
1 files changed, 498 insertions, 0 deletions
diff --git a/gfx/wr/webrender/res/cs_clip_rectangle.glsl b/gfx/wr/webrender/res/cs_clip_rectangle.glsl
new file mode 100644
index 0000000000..8a6aabc710
--- /dev/null
+++ b/gfx/wr/webrender/res/cs_clip_rectangle.glsl
@@ -0,0 +1,498 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include shared,clip_shared,ellipse
+
+varying highp vec4 vLocalPos;
+#ifdef WR_FEATURE_FAST_PATH
+flat varying mediump vec3 vClipParams; // xy = box size, z = radius
+#else
+flat varying highp vec4 vClipCenter_Radius_TL;
+flat varying highp vec4 vClipCenter_Radius_TR;
+flat varying highp vec4 vClipCenter_Radius_BL;
+flat varying highp vec4 vClipCenter_Radius_BR;
+flat varying highp vec3 vClipPlane_TL;
+flat varying highp vec3 vClipPlane_TR;
+flat varying highp vec3 vClipPlane_BL;
+flat varying highp vec3 vClipPlane_BR;
+#endif
+// Clip mode. Packed in to a vector to work around bug 1630356.
+flat varying mediump vec2 vClipMode;
+
+#ifdef WR_VERTEX_SHADER
+
+PER_INSTANCE in vec2 aClipLocalPos;
+PER_INSTANCE in vec4 aClipLocalRect;
+PER_INSTANCE in float aClipMode;
+PER_INSTANCE in vec4 aClipRect_TL;
+PER_INSTANCE in vec4 aClipRadii_TL;
+PER_INSTANCE in vec4 aClipRect_TR;
+PER_INSTANCE in vec4 aClipRadii_TR;
+PER_INSTANCE in vec4 aClipRect_BL;
+PER_INSTANCE in vec4 aClipRadii_BL;
+PER_INSTANCE in vec4 aClipRect_BR;
+PER_INSTANCE in vec4 aClipRadii_BR;
+
+struct ClipMaskInstanceRect {
+ ClipMaskInstanceCommon base;
+ vec2 local_pos;
+};
+
+ClipMaskInstanceRect fetch_clip_item() {
+ ClipMaskInstanceRect cmi;
+
+ cmi.base = fetch_clip_item_common();
+ cmi.local_pos = aClipLocalPos;
+
+ return cmi;
+}
+
+struct ClipRect {
+ RectWithEndpoint rect;
+ float mode;
+};
+
+struct ClipCorner {
+ RectWithEndpoint rect;
+ vec4 outer_inner_radius;
+};
+
+struct ClipData {
+ ClipRect rect;
+ ClipCorner top_left;
+ ClipCorner top_right;
+ ClipCorner bottom_left;
+ ClipCorner bottom_right;
+};
+
+ClipData fetch_clip() {
+ ClipData clip;
+
+ clip.rect = ClipRect(RectWithEndpoint(aClipLocalRect.xy, aClipLocalRect.zw), aClipMode);
+ clip.top_left = ClipCorner(RectWithEndpoint(aClipRect_TL.xy, aClipRect_TL.zw), aClipRadii_TL);
+ clip.top_right = ClipCorner(RectWithEndpoint(aClipRect_TR.xy, aClipRect_TR.zw), aClipRadii_TR);
+ clip.bottom_left = ClipCorner(RectWithEndpoint(aClipRect_BL.xy, aClipRect_BL.zw), aClipRadii_BL);
+ clip.bottom_right = ClipCorner(RectWithEndpoint(aClipRect_BR.xy, aClipRect_BR.zw), aClipRadii_BR);
+
+ return clip;
+}
+
+void main(void) {
+ ClipMaskInstanceRect cmi = fetch_clip_item();
+ Transform clip_transform = fetch_transform(cmi.base.clip_transform_id);
+ Transform prim_transform = fetch_transform(cmi.base.prim_transform_id);
+ ClipData clip = fetch_clip();
+
+ RectWithEndpoint local_rect = clip.rect.rect;
+ vec2 diff = cmi.local_pos - local_rect.p0;
+ local_rect.p0 = cmi.local_pos;
+ local_rect.p1 += diff;
+
+ ClipVertexInfo vi = write_clip_tile_vertex(
+ local_rect,
+ prim_transform,
+ clip_transform,
+ cmi.base.sub_rect,
+ cmi.base.task_origin,
+ cmi.base.screen_origin,
+ cmi.base.device_pixel_scale
+ );
+
+ vClipMode.x = clip.rect.mode;
+ vLocalPos = vi.local_pos;
+
+#ifdef WR_FEATURE_FAST_PATH
+ // If the radii are all uniform, we can use a much simpler 2d
+ // signed distance function to get a rounded rect clip.
+ vec2 half_size = 0.5 * rect_size(local_rect);
+ float radius = clip.top_left.outer_inner_radius.x;
+ vLocalPos.xy -= (half_size + cmi.local_pos) * vi.local_pos.w;
+ vClipParams = vec3(half_size - vec2(radius), radius);
+#else
+ RectWithEndpoint clip_rect = local_rect;
+
+ vec2 r_tl = clip.top_left.outer_inner_radius.xy;
+ vec2 r_tr = clip.top_right.outer_inner_radius.xy;
+ vec2 r_br = clip.bottom_right.outer_inner_radius.xy;
+ vec2 r_bl = clip.bottom_left.outer_inner_radius.xy;
+
+ vClipCenter_Radius_TL = vec4(clip_rect.p0 + r_tl,
+ inverse_radii_squared(r_tl));
+
+ vClipCenter_Radius_TR = vec4(clip_rect.p1.x - r_tr.x,
+ clip_rect.p0.y + r_tr.y,
+ inverse_radii_squared(r_tr));
+
+ vClipCenter_Radius_BR = vec4(clip_rect.p1 - r_br,
+ inverse_radii_squared(r_br));
+
+ vClipCenter_Radius_BL = vec4(clip_rect.p0.x + r_bl.x,
+ clip_rect.p1.y - r_bl.y,
+ inverse_radii_squared(r_bl));
+
+ // We need to know the half-spaces of the corners separate from the center
+ // and radius. We compute a point that falls on the diagonal (which is just
+ // an inner vertex pushed out along one axis, but not on both) to get the
+ // plane offset of the half-space. We also compute the direction vector of
+ // the half-space, which is a perpendicular vertex (-y,x) of the vector of
+ // the diagonal. We leave the scales of the vectors unchanged.
+ vec2 n_tl = -r_tl.yx;
+ vec2 n_tr = vec2(r_tr.y, -r_tr.x);
+ vec2 n_br = r_br.yx;
+ vec2 n_bl = vec2(-r_bl.y, r_bl.x);
+ vClipPlane_TL = vec3(n_tl,
+ dot(n_tl, vec2(clip_rect.p0.x, clip_rect.p0.y + r_tl.y)));
+ vClipPlane_TR = vec3(n_tr,
+ dot(n_tr, vec2(clip_rect.p1.x - r_tr.x, clip_rect.p0.y)));
+ vClipPlane_BR = vec3(n_br,
+ dot(n_br, vec2(clip_rect.p1.x, clip_rect.p1.y - r_br.y)));
+ vClipPlane_BL = vec3(n_bl,
+ dot(n_bl, vec2(clip_rect.p0.x + r_bl.x, clip_rect.p1.y)));
+#endif
+}
+#endif
+
+#ifdef WR_FRAGMENT_SHADER
+
+#ifdef WR_FEATURE_FAST_PATH
+// See http://www.iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
+float sd_box(in vec2 pos, in vec2 box_size) {
+ vec2 d = abs(pos) - box_size;
+ return length(max(d, vec2(0.0))) + min(max(d.x,d.y), 0.0);
+}
+
+float sd_rounded_box(in vec2 pos, in vec2 box_size, in float radius) {
+ return sd_box(pos, box_size) - radius;
+}
+#endif
+
+void main(void) {
+ vec2 local_pos = vLocalPos.xy / vLocalPos.w;
+ float aa_range = compute_aa_range(local_pos);
+
+#ifdef WR_FEATURE_FAST_PATH
+ float dist = sd_rounded_box(local_pos, vClipParams.xy, vClipParams.z);
+#else
+ float dist = distance_to_rounded_rect(
+ local_pos,
+ vClipPlane_TL,
+ vClipCenter_Radius_TL,
+ vClipPlane_TR,
+ vClipCenter_Radius_TR,
+ vClipPlane_BR,
+ vClipCenter_Radius_BR,
+ vClipPlane_BL,
+ vClipCenter_Radius_BL,
+ vTransformBounds
+ );
+#endif
+
+ // Compute AA for the given dist and range.
+ float alpha = distance_aa(aa_range, dist);
+
+ // Select alpha or inverse alpha depending on clip in/out.
+ float final_alpha = mix(alpha, 1.0 - alpha, vClipMode.x);
+
+ float final_final_alpha = vLocalPos.w > 0.0 ? final_alpha : 0.0;
+ oFragColor = vec4(final_final_alpha, 0.0, 0.0, 1.0);
+}
+
+#ifdef SWGL_DRAW_SPAN
+// Currently the cs_clip_rectangle shader is slow because it always evaluates
+// the corner ellipse segments and the rectangle AA for every fragment the
+// shader is run on. To alleviate this for now with SWGL, this essentially
+// implements a rounded-rectangle span rasterizer inside the span shader. The
+// motivation is that we can separate out the parts of the span which are fully
+// opaque and fully transparent, outputting runs of fixed color in those areas,
+// while only evaluating the ellipse segments and AA in the smaller outlying
+// parts of the span that actually need it.
+// The shader conceptually represents a rounded rectangle as an inner octagon
+// (8 half-spaces) bounding the opaque region and an outer octagon bounding the
+// curve and AA parts. Everything outside is transparent. The line of the span
+// is intersected with half-spaces, looking for interior spans that minimally
+// intersect the half-spaces (start max, end min). In the ideal case we hit a
+// start corner ellipse segment and an end corner ellipse segment, rendering
+// the two curves on the ends with an opaque run in between, outputting clear
+// for any transparent runs before and after the start and end curves.
+// This is slightly complicated by the fact that the results here must agree
+// with the main results of the fragment shader, in case SWGL has to fall back
+// to the main fragment shader for any reason. So, we make an effort to handle
+// both ways of operating - the uniform radius fast-path and the varying radius
+// slow-path.
+void swgl_drawSpanR8() {
+ // Perspective is not supported.
+ if (swgl_interpStep(vLocalPos).w != 0.0) {
+ return;
+ }
+
+ // If the span is completely outside the Z-range and clipped out, just
+ // output clear so we don't need to consider invalid W in the rest of the
+ // shader.
+ float w = swgl_forceScalar(vLocalPos.w);
+ if (w <= 0.0) {
+ swgl_commitSolidR8(0.0);
+ return;
+ }
+
+ // To start, we evaluate the rounded-rectangle in local space relative to
+ // the local-space position. This will be interpolated across the span to
+ // track whether we intersect any half-spaces.
+ w = 1.0 / w;
+ vec2 local_pos = vLocalPos.xy * w;
+ vec2 local_pos0 = swgl_forceScalar(local_pos);
+ vec2 local_step = swgl_interpStep(vLocalPos).xy * w;
+ float step_scale = max(dot(local_step, local_step), 1.0e-6);
+
+ // Get the local-space AA range. This range represents 1/fwidth(local_pos),
+ // essentially the scale of how much local-space maps to an AA pixel. We
+ // need to know the inverse, how much local-space we traverse per AA pixel
+ // pixel step. We then scale this to represent the amount of span steps
+ // traversed per AA pixel step.
+ float aa_range = compute_aa_range(local_pos);
+ float aa_margin = inversesqrt(aa_range * aa_range * step_scale);
+
+ // We need to know the bounds of the aligned rectangle portion of the rrect
+ // in local-space. If we're using the fast-path, this is specified as the
+ // inner bounding-box half-width of the rrect and the uniform outer radius
+ // of the corners in vClipParams, which we map to the outer bounding-box.
+ // For the general case, we have already stored the outer bounding box in
+ // vTransformBounds.
+ #ifdef WR_FEATURE_FAST_PATH
+ vec4 clip_rect = vec4(-vClipParams.xy - vClipParams.z, vClipParams.xy + vClipParams.z);
+ #else
+ vec4 clip_rect = vTransformBounds;
+ #endif
+
+ // We need to compute the local-space distance to the bounding box and then
+ // figure out how many processing steps that maps to. If we are stepping in
+ // a negative direction on an axis, we need to swap the sides of the box
+ // which we consider as the start or end. If there is no local-space step
+ // on an axis (i.e. constant Y), we need to take care to force the steps to
+ // either the start or end of the span depending on if we are inside or
+ // outside of the bounding box.
+ vec4 clip_dist =
+ mix(clip_rect, clip_rect.zwxy, lessThan(local_step, vec2(0.0)).xyxy)
+ - local_pos0.xyxy;
+ clip_dist =
+ mix(1.0e6 * step(0.0, clip_dist),
+ clip_dist * recip(local_step).xyxy,
+ notEqual(local_step, vec2(0.0)).xyxy);
+
+ // Initially, the opaque region is bounded by the further start intersect
+ // with the bounding box and the nearest end intersect with the bounding
+ // box.
+ float opaque_start = max(clip_dist.x, clip_dist.y);
+ float opaque_end = min(clip_dist.z, clip_dist.w);
+ float aa_start = opaque_start;
+ float aa_end = opaque_end;
+
+ // Here we actually intersect with the half-space of the corner. We get the
+ // plane distance of the local-space position from the diagonal bounding
+ // ellipse segment from the opaque region. The half-space is defined by the
+ // direction vector of the plane and an offset point that falls on the
+ // dividing line (which is a vertex on the corner box, which is actually on
+ // the outer radius of the bounding box, but not a corner vertex). This
+ // distance is positive if on the curve side and negative if on the inner
+ // opaque region. If we are on the curve side, we need to verify we are
+ // traveling in direction towards the opaque region so that we will
+ // eventually intersect the diagonal so we can calculate when the start
+ // corner segment will end, otherwise we are going away from the rrect.
+ // If we are inside the opaque interior, we need to verify we are traveling
+ // in direction towards the curve, so that we can calculate when the end
+ // corner segment will start. Further, if we intersect, we calculate the
+ // offset of the outer octagon where AA starts from the inner octagon of
+ // where the opaque region starts using the apex vector (which is transpose
+ // of the half-space's direction).
+ //
+ // We need to intersect the corner ellipse segments. Significantly, we need
+ // to know where the apex of the ellipse segment is and how far to push the
+ // outer diagonal of the octagon from the inner diagonal. The position of
+ // the inner diagonal simply runs diagonal across the corner box and has a
+ // constant offset from vertex on the inner bounding box. The apex also has
+ // a constant offset along the opposite diagonal relative to the diagonal
+ // intersect which is 1/sqrt(2) - 0.5 assuming unit length for the diagonal.
+ // We then need to project the vector to the apex onto the local-space step
+ // scale, but we do this with reference to the normal vector of the diagonal
+ // using dot(normal, apex) / dot(normal, local_step), where the apex vector
+ // is (0.7071 - 0.5) * abs(normal).yx * sign(normal).
+ vec3 start_plane = vec3(1.0e6);
+ vec3 end_plane = vec3(1.0e6);
+
+ // plane is assumed to be a vec3 with normal in (X, Y) and offset in Z.
+ #define CLIP_CORNER(plane, info) do { \
+ float dist = dot(local_pos0, plane.xy) - plane.z; \
+ float scale = -dot(local_step, plane.xy); \
+ if (scale >= 0.0) { \
+ if (dist > opaque_start * scale) { \
+ SET_CORNER(start_corner, info); \
+ start_plane = plane; \
+ float inv_scale = recip(max(scale, 1.0e-6)); \
+ opaque_start = dist * inv_scale; \
+ float apex = (0.7071 - 0.5) * 2.0 * abs(plane.x * plane.y); \
+ aa_start = opaque_start - apex * inv_scale; \
+ } \
+ } else if (dist > opaque_end * scale) { \
+ SET_CORNER(end_corner, info); \
+ end_plane = plane; \
+ float inv_scale = recip(min(scale, -1.0e-6)); \
+ opaque_end = dist * inv_scale; \
+ float apex = (0.7071 - 0.5) * 2.0 * abs(plane.x * plane.y); \
+ aa_end = opaque_end - apex * inv_scale; \
+ } \
+ } while (false)
+
+ #ifdef WR_FEATURE_FAST_PATH
+ // For the fast-path, we only have the half-width of the inner bounding
+ // box. We need to map this to points that fall on the diagonal of the
+ // half-space for each corner. To do this we just need to push out the
+ // vertex in the right direction on a single axis, leaving the other
+ // unchanged.
+ // However, since the corner radii are all the same, and since the local
+ // origin of each ellipse is assumed to be at (0, 0), the plane offset
+ // of the half-space is the same for each case. So given a corner offset
+ // of (x+z, y) and a vector of (z, z), the dot product becomes:
+ // (x+z)*z + y*z == x*z + y*z + z*z
+ // The direction vector of the corner half-space has constant length,
+ // but just needs an appropriate direction set.
+ float offset = (vClipParams.x + vClipParams.y + vClipParams.z) * vClipParams.z;
+ vec3 plane_tl = vec3(-vClipParams.zz, offset);
+ vec3 plane_tr = vec3(vClipParams.z, -vClipParams.z, offset);
+ vec3 plane_br = vec3(vClipParams.zz, offset);
+ vec3 plane_bl = vec3(-vClipParams.z, vClipParams.z, offset);
+
+ #define SET_CORNER(corner, info)
+
+ // Clip against the corner half-spaces.
+ CLIP_CORNER(plane_tl, );
+ CLIP_CORNER(plane_tr, );
+ CLIP_CORNER(plane_br, );
+ CLIP_CORNER(plane_bl, );
+
+ // Later we need to calculate distance AA for both corners and the
+ // outer bounding rect. For the fast-path, this is all done inside
+ // sd_rounded_box.
+ #define AA_RECT(local_pos) \
+ sd_rounded_box(local_pos, vClipParams.xy, vClipParams.z)
+ #else
+ // For the general case, we need to remember which of the actual start
+ // and end corners we intersect, so that we can evaluate the curve AA
+ // against only those corners rather than having to try against all 4
+ // corners for both sides of the span. Initialize these values so that
+ // if no corner is intersected, they will just zero the AA.
+ vec4 start_corner = vec4(vec2(1.0e6), vec2(1.0));
+ vec4 end_corner = vec4(vec2(1.0e6), vec2(1.0));
+
+ #define SET_CORNER(corner, info) corner = info
+
+ // Clip against the corner half-spaces. We have already computed the
+ // corner half-spaces in the vertex shader.
+ CLIP_CORNER(vClipPlane_TL, vClipCenter_Radius_TL);
+ CLIP_CORNER(vClipPlane_TR, vClipCenter_Radius_TR);
+ CLIP_CORNER(vClipPlane_BR, vClipCenter_Radius_BR);
+ CLIP_CORNER(vClipPlane_BL, vClipCenter_Radius_BL);
+
+ // Later we need to calculate distance AA for both corners and the
+ // outer bounding rect. For the general case, we need to explicitly
+ // evaluate either the ellipse segment distance or the rect distance.
+ #define AA_RECT(local_pos) \
+ signed_distance_rect(local_pos, vTransformBounds.xy, vTransformBounds.zw)
+ #define AA_CORNER(local_pos, corner) \
+ distance_to_ellipse_approx(local_pos - corner.xy, corner.zw, 1.0)
+ #endif
+
+ // Pad the AA region by a margin, as the intersections take place assuming
+ // pixel centers, but AA actually starts half a pixel away from the center.
+ // If the AA region narrows to nothing, be careful not to inflate so much
+ // that we start processing AA for fragments that don't need it.
+ aa_margin = max(aa_margin - max(aa_start - aa_end, 0.0), 0.0);
+ aa_start -= aa_margin;
+ aa_end += aa_margin;
+
+ // Compute the thresholds at which we need to transition between various
+ // segments of the span, from fully transparent outside to the start of
+ // the outer octagon where AA starts, from there to where the inner opaque
+ // octagon starts, from there to where the opaque inner octagon ends and
+ // AA starts again, to finally where the outer octagon/AA ends and we're
+ // back to fully transparent. These thresholds are just flipped offsets
+ // from the start of the span so we can compare against the remaining
+ // span length which automatically deducts as we commit fragments.
+ ivec4 steps = ivec4(clamp(
+ swgl_SpanLength -
+ swgl_StepSize *
+ vec4(floor(aa_start), ceil(opaque_start), floor(opaque_end), ceil(aa_end)),
+ 0.0, swgl_SpanLength));
+ int aa_start_len = steps.x;
+ int opaque_start_len = steps.y;
+ int opaque_end_len = steps.z;
+ int aa_end_len = steps.w;
+
+ // Output fully clear while we're outside the AA region.
+ if (swgl_SpanLength > aa_start_len) {
+ int num_aa = swgl_SpanLength - aa_start_len;
+ swgl_commitPartialSolidR8(num_aa, vClipMode.x);
+ local_pos += float(num_aa / swgl_StepSize) * local_step;
+ }
+ #ifdef AA_CORNER
+ if (start_plane.x < 1.0e5) {
+ // We're now in the outer octagon which requires AA. Evaluate the corner
+ // distance of the start corner here and output AA for it. Before we hit
+ // the actual opaque inner octagon, we have a transitional step where the
+ // diagonal might intersect mid-way through the step. We have consider
+ // either the corner or rect distance depending on which side we're on.
+ while (swgl_SpanLength > opaque_start_len) {
+ float alpha = distance_aa(aa_range,
+ dot(local_pos, start_plane.xy) > start_plane.z
+ ? AA_CORNER(local_pos, start_corner)
+ : AA_RECT(local_pos));
+ swgl_commitColorR8(mix(alpha, 1.0 - alpha, vClipMode.x));
+ local_pos += local_step;
+ }
+ }
+ #endif
+ // If there's no start corner, just do rect AA until opaque.
+ while (swgl_SpanLength > opaque_start_len) {
+ float alpha = distance_aa(aa_range, AA_RECT(local_pos));
+ swgl_commitColorR8(mix(alpha, 1.0 - alpha, vClipMode.x));
+ local_pos += local_step;
+ }
+ // Now we're finally in the opaque inner octagon part of the span. Just
+ // output a solid run.
+ if (swgl_SpanLength > opaque_end_len) {
+ int num_opaque = swgl_SpanLength - opaque_end_len;
+ swgl_commitPartialSolidR8(num_opaque, 1.0 - vClipMode.x);
+ local_pos += float(num_opaque / swgl_StepSize) * local_step;
+ }
+ #ifdef AA_CORNER
+ if (end_plane.x < 1.0e5) {
+ // Finally we're in the AA region on the other side, inside the outer
+ // octagon again. Just evaluate the distance to the end corner and
+ // compute AA for it. We're leaving the opaque inner octagon, but like
+ // before, we have to be careful we're not dealing with a step partially
+ // intersected by the end corner's diagonal. Check which side we are on
+ // and use either the corner or rect distance as appropriate.
+ while (swgl_SpanLength > aa_end_len) {
+ float alpha = distance_aa(aa_range,
+ dot(local_pos, end_plane.xy) > end_plane.z
+ ? AA_CORNER(local_pos, end_corner)
+ : AA_RECT(local_pos));
+ swgl_commitColorR8(mix(alpha, 1.0 - alpha, vClipMode.x));
+ local_pos += local_step;
+ }
+ }
+ #endif
+ // If there's no end corner, just do rect AA until clear.
+ while (swgl_SpanLength > aa_end_len) {
+ float alpha = distance_aa(aa_range, AA_RECT(local_pos));
+ swgl_commitColorR8(mix(alpha, 1.0 - alpha, vClipMode.x));
+ local_pos += local_step;
+ }
+ // We're now outside the outer AA octagon on the other side. Just output
+ // fully clear.
+ if (swgl_SpanLength > 0) {
+ swgl_commitPartialSolidR8(swgl_SpanLength, vClipMode.x);
+ }
+}
+#endif
+
+#endif