diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /intl/icu/source/common/unormcmp.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/common/unormcmp.cpp')
-rw-r--r-- | intl/icu/source/common/unormcmp.cpp | 640 |
1 files changed, 640 insertions, 0 deletions
diff --git a/intl/icu/source/common/unormcmp.cpp b/intl/icu/source/common/unormcmp.cpp new file mode 100644 index 0000000000..e11e716c8d --- /dev/null +++ b/intl/icu/source/common/unormcmp.cpp @@ -0,0 +1,640 @@ +// © 2016 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +/* +******************************************************************************* +* +* Copyright (C) 2001-2014, International Business Machines +* Corporation and others. All Rights Reserved. +* +******************************************************************************* +* file name: unormcmp.cpp +* encoding: UTF-8 +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2004sep13 +* created by: Markus W. Scherer +* +* unorm_compare() function moved here from unorm.cpp for better modularization. +* Depends on both normalization and case folding. +* Allows unorm.cpp to not depend on any character properties code. +*/ + +#include "unicode/utypes.h" + +#if !UCONFIG_NO_NORMALIZATION + +#include "unicode/unorm.h" +#include "unicode/ustring.h" +#include "cmemory.h" +#include "normalizer2impl.h" +#include "ucase.h" +#include "uprops.h" +#include "ustr_imp.h" + +U_NAMESPACE_USE + +/* compare canonically equivalent ------------------------------------------- */ + +/* + * Compare two strings for canonical equivalence. + * Further options include case-insensitive comparison and + * code point order (as opposed to code unit order). + * + * In this function, canonical equivalence is optional as well. + * If canonical equivalence is tested, then both strings must fulfill + * the FCD check. + * + * Semantically, this is equivalent to + * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) + * where code point order, NFD and foldCase are all optional. + * + * String comparisons almost always yield results before processing both strings + * completely. + * They are generally more efficient working incrementally instead of + * performing the sub-processing (strlen, normalization, case-folding) + * on the entire strings first. + * + * It is also unnecessary to not normalize identical characters. + * + * This function works in principle as follows: + * + * loop { + * get one code unit c1 from s1 (-1 if end of source) + * get one code unit c2 from s2 (-1 if end of source) + * + * if(either string finished) { + * return result; + * } + * if(c1==c2) { + * continue; + * } + * + * // c1!=c2 + * try to decompose/case-fold c1/c2, and continue if one does; + * + * // still c1!=c2 and neither decomposes/case-folds, return result + * return c1-c2; + * } + * + * When a character decomposes, then the pointer for that source changes to + * the decomposition, pushing the previous pointer onto a stack. + * When the end of the decomposition is reached, then the code unit reader + * pops the previous source from the stack. + * (Same for case-folding.) + * + * This is complicated further by operating on variable-width UTF-16. + * The top part of the loop works on code units, while lookups for decomposition + * and case-folding need code points. + * Code points are assembled after the equality/end-of-source part. + * The source pointer is only advanced beyond all code units when the code point + * actually decomposes/case-folds. + * + * If we were on a trail surrogate unit when assembling a code point, + * and the code point decomposes/case-folds, then the decomposition/folding + * result must be compared with the part of the other string that corresponds to + * this string's lead surrogate. + * Since we only assemble a code point when hitting a trail unit when the + * preceding lead units were identical, we back up the other string by one unit + * in such a case. + * + * The optional code point order comparison at the end works with + * the same fix-up as the other code point order comparison functions. + * See ustring.c and the comment near the end of this function. + * + * Assumption: A decomposition or case-folding result string never contains + * a single surrogate. This is a safe assumption in the Unicode Standard. + * Therefore, we do not need to check for surrogate pairs across + * decomposition/case-folding boundaries. + * + * Further assumptions (see verifications tstnorm.cpp): + * The API function checks for FCD first, while the core function + * first case-folds and then decomposes. This requires that case-folding does not + * un-FCD any strings. + * + * The API function may also NFD the input and turn off decomposition. + * This requires that case-folding does not un-NFD strings either. + * + * TODO If any of the above two assumptions is violated, + * then this entire code must be re-thought. + * If this happens, then a simple solution is to case-fold both strings up front + * and to turn off UNORM_INPUT_IS_FCD. + * We already do this when not both strings are in FCD because makeFCD + * would be a partial NFD before the case folding, which does not work. + * Note that all of this is only a problem when case-folding _and_ + * canonical equivalence come together. + * (Comments in unorm_compare() are more up to date than this TODO.) + */ + +/* stack element for previous-level source/decomposition pointers */ +struct CmpEquivLevel { + const char16_t *start, *s, *limit; +}; +typedef struct CmpEquivLevel CmpEquivLevel; + +/** + * Internal option for unorm_cmpEquivFold() for decomposing. + * If not set, just do strcasecmp(). + */ +#define _COMPARE_EQUIV 0x80000 + +/* internal function */ +static int32_t +unorm_cmpEquivFold(const char16_t *s1, int32_t length1, + const char16_t *s2, int32_t length2, + uint32_t options, + UErrorCode *pErrorCode) { + const Normalizer2Impl *nfcImpl; + + /* current-level start/limit - s1/s2 as current */ + const char16_t *start1, *start2, *limit1, *limit2; + + /* decomposition and case folding variables */ + const char16_t *p; + int32_t length; + + /* stacks of previous-level start/current/limit */ + CmpEquivLevel stack1[2], stack2[2]; + + /* buffers for algorithmic decompositions */ + char16_t decomp1[4], decomp2[4]; + + /* case folding buffers, only use current-level start/limit */ + char16_t fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; + + /* track which is the current level per string */ + int32_t level1, level2; + + /* current code units, and code points for lookups */ + UChar32 c1, c2, cp1, cp2; + + /* no argument error checking because this itself is not an API */ + + /* + * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set + * otherwise this function must behave exactly as uprv_strCompare() + * not checking for that here makes testing this function easier + */ + + /* normalization/properties data loaded? */ + if((options&_COMPARE_EQUIV)!=0) { + nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode); + } else { + nfcImpl=nullptr; + } + if(U_FAILURE(*pErrorCode)) { + return 0; + } + + /* initialize */ + start1=s1; + if(length1==-1) { + limit1=nullptr; + } else { + limit1=s1+length1; + } + + start2=s2; + if(length2==-1) { + limit2=nullptr; + } else { + limit2=s2+length2; + } + + level1=level2=0; + c1=c2=-1; + + /* comparison loop */ + for(;;) { + /* + * here a code unit value of -1 means "get another code unit" + * below it will mean "this source is finished" + */ + + if(c1<0) { + /* get next code unit from string 1, post-increment */ + for(;;) { + if(s1==limit1 || ((c1=*s1)==0 && (limit1==nullptr || (options&_STRNCMP_STYLE)))) { + if(level1==0) { + c1=-1; + break; + } + } else { + ++s1; + break; + } + + /* reached end of level buffer, pop one level */ + do { + --level1; + start1=stack1[level1].start; /*Not uninitialized*/ + } while(start1==nullptr); + s1=stack1[level1].s; /*Not uninitialized*/ + limit1=stack1[level1].limit; /*Not uninitialized*/ + } + } + + if(c2<0) { + /* get next code unit from string 2, post-increment */ + for(;;) { + if(s2==limit2 || ((c2=*s2)==0 && (limit2==nullptr || (options&_STRNCMP_STYLE)))) { + if(level2==0) { + c2=-1; + break; + } + } else { + ++s2; + break; + } + + /* reached end of level buffer, pop one level */ + do { + --level2; + start2=stack2[level2].start; /*Not uninitialized*/ + } while(start2==nullptr); + s2=stack2[level2].s; /*Not uninitialized*/ + limit2=stack2[level2].limit; /*Not uninitialized*/ + } + } + + /* + * compare c1 and c2 + * either variable c1, c2 is -1 only if the corresponding string is finished + */ + if(c1==c2) { + if(c1<0) { + return 0; /* c1==c2==-1 indicating end of strings */ + } + c1=c2=-1; /* make us fetch new code units */ + continue; + } else if(c1<0) { + return -1; /* string 1 ends before string 2 */ + } else if(c2<0) { + return 1; /* string 2 ends before string 1 */ + } + /* c1!=c2 && c1>=0 && c2>=0 */ + + /* get complete code points for c1, c2 for lookups if either is a surrogate */ + cp1=c1; + if(U_IS_SURROGATE(c1)) { + char16_t c; + + if(U_IS_SURROGATE_LEAD(c1)) { + if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) { + /* advance ++s1; only below if cp1 decomposes/case-folds */ + cp1=U16_GET_SUPPLEMENTARY(c1, c); + } + } else /* isTrail(c1) */ { + if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) { + cp1=U16_GET_SUPPLEMENTARY(c, c1); + } + } + } + + cp2=c2; + if(U_IS_SURROGATE(c2)) { + char16_t c; + + if(U_IS_SURROGATE_LEAD(c2)) { + if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) { + /* advance ++s2; only below if cp2 decomposes/case-folds */ + cp2=U16_GET_SUPPLEMENTARY(c2, c); + } + } else /* isTrail(c2) */ { + if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) { + cp2=U16_GET_SUPPLEMENTARY(c, c2); + } + } + } + + /* + * go down one level for each string + * continue with the main loop as soon as there is a real change + */ + + if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && + (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0 + ) { + /* cp1 case-folds to the code point "length" or to p[length] */ + if(U_IS_SURROGATE(c1)) { + if(U_IS_SURROGATE_LEAD(c1)) { + /* advance beyond source surrogate pair if it case-folds */ + ++s1; + } else /* isTrail(c1) */ { + /* + * we got a supplementary code point when hitting its trail surrogate, + * therefore the lead surrogate must have been the same as in the other string; + * compare this decomposition with the lead surrogate in the other string + * remember that this simulates bulk text replacement: + * the decomposition would replace the entire code point + */ + --s2; + c2=*(s2-1); + } + } + + /* push current level pointers */ + stack1[0].start=start1; + stack1[0].s=s1; + stack1[0].limit=limit1; + ++level1; + + /* copy the folding result to fold1[] */ + if(length<=UCASE_MAX_STRING_LENGTH) { + u_memcpy(fold1, p, length); + } else { + int32_t i=0; + U16_APPEND_UNSAFE(fold1, i, length); + length=i; + } + + /* set next level pointers to case folding */ + start1=s1=fold1; + limit1=fold1+length; + + /* get ready to read from decomposition, continue with loop */ + c1=-1; + continue; + } + + if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && + (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0 + ) { + /* cp2 case-folds to the code point "length" or to p[length] */ + if(U_IS_SURROGATE(c2)) { + if(U_IS_SURROGATE_LEAD(c2)) { + /* advance beyond source surrogate pair if it case-folds */ + ++s2; + } else /* isTrail(c2) */ { + /* + * we got a supplementary code point when hitting its trail surrogate, + * therefore the lead surrogate must have been the same as in the other string; + * compare this decomposition with the lead surrogate in the other string + * remember that this simulates bulk text replacement: + * the decomposition would replace the entire code point + */ + --s1; + c1=*(s1-1); + } + } + + /* push current level pointers */ + stack2[0].start=start2; + stack2[0].s=s2; + stack2[0].limit=limit2; + ++level2; + + /* copy the folding result to fold2[] */ + if(length<=UCASE_MAX_STRING_LENGTH) { + u_memcpy(fold2, p, length); + } else { + int32_t i=0; + U16_APPEND_UNSAFE(fold2, i, length); + length=i; + } + + /* set next level pointers to case folding */ + start2=s2=fold2; + limit2=fold2+length; + + /* get ready to read from decomposition, continue with loop */ + c2=-1; + continue; + } + + if( level1<2 && (options&_COMPARE_EQUIV) && + 0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length)) + ) { + /* cp1 decomposes into p[length] */ + if(U_IS_SURROGATE(c1)) { + if(U_IS_SURROGATE_LEAD(c1)) { + /* advance beyond source surrogate pair if it decomposes */ + ++s1; + } else /* isTrail(c1) */ { + /* + * we got a supplementary code point when hitting its trail surrogate, + * therefore the lead surrogate must have been the same as in the other string; + * compare this decomposition with the lead surrogate in the other string + * remember that this simulates bulk text replacement: + * the decomposition would replace the entire code point + */ + --s2; + c2=*(s2-1); + } + } + + /* push current level pointers */ + stack1[level1].start=start1; + stack1[level1].s=s1; + stack1[level1].limit=limit1; + ++level1; + + /* set empty intermediate level if skipped */ + if(level1<2) { + stack1[level1++].start=nullptr; + } + + /* set next level pointers to decomposition */ + start1=s1=p; + limit1=p+length; + + /* get ready to read from decomposition, continue with loop */ + c1=-1; + continue; + } + + if( level2<2 && (options&_COMPARE_EQUIV) && + 0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length)) + ) { + /* cp2 decomposes into p[length] */ + if(U_IS_SURROGATE(c2)) { + if(U_IS_SURROGATE_LEAD(c2)) { + /* advance beyond source surrogate pair if it decomposes */ + ++s2; + } else /* isTrail(c2) */ { + /* + * we got a supplementary code point when hitting its trail surrogate, + * therefore the lead surrogate must have been the same as in the other string; + * compare this decomposition with the lead surrogate in the other string + * remember that this simulates bulk text replacement: + * the decomposition would replace the entire code point + */ + --s1; + c1=*(s1-1); + } + } + + /* push current level pointers */ + stack2[level2].start=start2; + stack2[level2].s=s2; + stack2[level2].limit=limit2; + ++level2; + + /* set empty intermediate level if skipped */ + if(level2<2) { + stack2[level2++].start=nullptr; + } + + /* set next level pointers to decomposition */ + start2=s2=p; + limit2=p+length; + + /* get ready to read from decomposition, continue with loop */ + c2=-1; + continue; + } + + /* + * no decomposition/case folding, max level for both sides: + * return difference result + * + * code point order comparison must not just return cp1-cp2 + * because when single surrogates are present then the surrogate pairs + * that formed cp1 and cp2 may be from different string indexes + * + * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units + * c1=d800 cp1=10001 c2=dc00 cp2=10000 + * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } + * + * therefore, use same fix-up as in ustring.c/uprv_strCompare() + * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ + * so we have slightly different pointer/start/limit comparisons here + */ + + if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { + /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ + if( + (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) || + (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2))) + ) { + /* part of a surrogate pair, leave >=d800 */ + } else { + /* BMP code point - may be surrogate code point - make <d800 */ + c1-=0x2800; + } + + if( + (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) || + (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2))) + ) { + /* part of a surrogate pair, leave >=d800 */ + } else { + /* BMP code point - may be surrogate code point - make <d800 */ + c2-=0x2800; + } + } + + return c1-c2; + } +} + +static +UBool _normalize(const Normalizer2 *n2, const char16_t *s, int32_t length, + UnicodeString &normalized, UErrorCode *pErrorCode) { + UnicodeString str(length<0, s, length); + + // check if s fulfill the conditions + int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode); + if (U_FAILURE(*pErrorCode)) { + return false; + } + /* + * ICU 2.4 had a further optimization: + * If both strings were not in FCD, then they were both NFD'ed, + * and the _COMPARE_EQUIV option was turned off. + * It is not entirely clear that this is valid with the current + * definition of the canonical caseless match. + * Therefore, ICU 2.6 removes that optimization. + */ + if(spanQCYes<str.length()) { + UnicodeString unnormalized=str.tempSubString(spanQCYes); + normalized.setTo(false, str.getBuffer(), spanQCYes); + n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode); + if (U_SUCCESS(*pErrorCode)) { + return true; + } + } + return false; +} + +U_CAPI int32_t U_EXPORT2 +unorm_compare(const char16_t *s1, int32_t length1, + const char16_t *s2, int32_t length2, + uint32_t options, + UErrorCode *pErrorCode) { + /* argument checking */ + if(U_FAILURE(*pErrorCode)) { + return 0; + } + if(s1==0 || length1<-1 || s2==0 || length2<-1) { + *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; + return 0; + } + + UnicodeString fcd1, fcd2; + int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT); + options|=_COMPARE_EQUIV; + + /* + * UAX #21 Case Mappings, as fixed for Unicode version 4 + * (see Jitterbug 2021), defines a canonical caseless match as + * + * A string X is a canonical caseless match + * for a string Y if and only if + * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) + * + * For better performance, we check for FCD (or let the caller tell us that + * both strings are in FCD) for the inner normalization. + * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that + * case-folding preserves the FCD-ness of a string. + * The outer normalization is then only performed by unorm_cmpEquivFold() + * when there is a difference. + * + * Exception: When using the Turkic case-folding option, we do perform + * full NFD first. This is because in the Turkic case precomposed characters + * with 0049 capital I or 0069 small i fold differently whether they + * are first decomposed or not, so an FCD check - a check only for + * canonical order - is not sufficient. + */ + if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) { + const Normalizer2 *n2; + if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { + n2=Normalizer2::getNFDInstance(*pErrorCode); + } else { + n2=Normalizer2Factory::getFCDInstance(*pErrorCode); + } + if (U_FAILURE(*pErrorCode)) { + return 0; + } + + if(normOptions&UNORM_UNICODE_3_2) { + const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode); + FilteredNormalizer2 fn2(*n2, *uni32); + if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) { + s1=fcd1.getBuffer(); + length1=fcd1.length(); + } + if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) { + s2=fcd2.getBuffer(); + length2=fcd2.length(); + } + } else { + if(_normalize(n2, s1, length1, fcd1, pErrorCode)) { + s1=fcd1.getBuffer(); + length1=fcd1.length(); + } + if(_normalize(n2, s2, length2, fcd2, pErrorCode)) { + s2=fcd2.getBuffer(); + length2=fcd2.length(); + } + } + } + + if(U_SUCCESS(*pErrorCode)) { + return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); + } else { + return 0; + } +} + +#endif /* #if !UCONFIG_NO_NORMALIZATION */ |