summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/double-conversion-bignum.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /intl/icu/source/i18n/double-conversion-bignum.cpp
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/i18n/double-conversion-bignum.cpp')
-rw-r--r--intl/icu/source/i18n/double-conversion-bignum.cpp815
1 files changed, 815 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/double-conversion-bignum.cpp b/intl/icu/source/i18n/double-conversion-bignum.cpp
new file mode 100644
index 0000000000..d2b701a21d
--- /dev/null
+++ b/intl/icu/source/i18n/double-conversion-bignum.cpp
@@ -0,0 +1,815 @@
+// © 2018 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+//
+// From the double-conversion library. Original license:
+//
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
+#include "unicode/utypes.h"
+#if !UCONFIG_NO_FORMATTING
+
+#include <algorithm>
+#include <cstring>
+
+// ICU PATCH: Customize header file paths for ICU.
+
+#include "double-conversion-bignum.h"
+#include "double-conversion-utils.h"
+
+// ICU PATCH: Wrap in ICU namespace
+U_NAMESPACE_BEGIN
+
+namespace double_conversion {
+
+Bignum::Chunk& Bignum::RawBigit(const int index) {
+ DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
+ return bigits_buffer_[index];
+}
+
+
+const Bignum::Chunk& Bignum::RawBigit(const int index) const {
+ DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
+ return bigits_buffer_[index];
+}
+
+
+template<typename S>
+static int BitSize(const S value) {
+ (void) value; // Mark variable as used.
+ return 8 * sizeof(value);
+}
+
+// Guaranteed to lie in one Bigit.
+void Bignum::AssignUInt16(const uint16_t value) {
+ DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
+ Zero();
+ if (value > 0) {
+ RawBigit(0) = value;
+ used_bigits_ = 1;
+ }
+}
+
+
+void Bignum::AssignUInt64(uint64_t value) {
+ Zero();
+ for(int i = 0; value > 0; ++i) {
+ RawBigit(i) = value & kBigitMask;
+ value >>= kBigitSize;
+ ++used_bigits_;
+ }
+}
+
+
+void Bignum::AssignBignum(const Bignum& other) {
+ exponent_ = other.exponent_;
+ for (int i = 0; i < other.used_bigits_; ++i) {
+ RawBigit(i) = other.RawBigit(i);
+ }
+ used_bigits_ = other.used_bigits_;
+}
+
+
+static uint64_t ReadUInt64(const Vector<const char> buffer,
+ const int from,
+ const int digits_to_read) {
+ uint64_t result = 0;
+ for (int i = from; i < from + digits_to_read; ++i) {
+ const int digit = buffer[i] - '0';
+ DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
+ result = result * 10 + digit;
+ }
+ return result;
+}
+
+
+void Bignum::AssignDecimalString(const Vector<const char> value) {
+ // 2^64 = 18446744073709551616 > 10^19
+ static const int kMaxUint64DecimalDigits = 19;
+ Zero();
+ int length = value.length();
+ unsigned pos = 0;
+ // Let's just say that each digit needs 4 bits.
+ while (length >= kMaxUint64DecimalDigits) {
+ const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
+ pos += kMaxUint64DecimalDigits;
+ length -= kMaxUint64DecimalDigits;
+ MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
+ AddUInt64(digits);
+ }
+ const uint64_t digits = ReadUInt64(value, pos, length);
+ MultiplyByPowerOfTen(length);
+ AddUInt64(digits);
+ Clamp();
+}
+
+
+static uint64_t HexCharValue(const int c) {
+ if ('0' <= c && c <= '9') {
+ return c - '0';
+ }
+ if ('a' <= c && c <= 'f') {
+ return 10 + c - 'a';
+ }
+ DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
+ return 10 + c - 'A';
+}
+
+
+// Unlike AssignDecimalString(), this function is "only" used
+// for unit-tests and therefore not performance critical.
+void Bignum::AssignHexString(Vector<const char> value) {
+ Zero();
+ // Required capacity could be reduced by ignoring leading zeros.
+ EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
+ DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert
+ // Accumulates converted hex digits until at least kBigitSize bits.
+ // Works with non-factor-of-four kBigitSizes.
+ uint64_t tmp = 0;
+ for (int cnt = 0; !value.is_empty(); value.pop_back()) {
+ tmp |= (HexCharValue(value.last()) << cnt);
+ if ((cnt += 4) >= kBigitSize) {
+ RawBigit(used_bigits_++) = (tmp & kBigitMask);
+ cnt -= kBigitSize;
+ tmp >>= kBigitSize;
+ }
+ }
+ if (tmp > 0) {
+ DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask);
+ RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp & kBigitMask);
+ }
+ Clamp();
+}
+
+
+void Bignum::AddUInt64(const uint64_t operand) {
+ if (operand == 0) {
+ return;
+ }
+ Bignum other;
+ other.AssignUInt64(operand);
+ AddBignum(other);
+}
+
+
+void Bignum::AddBignum(const Bignum& other) {
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+ DOUBLE_CONVERSION_ASSERT(other.IsClamped());
+
+ // If this has a greater exponent than other append zero-bigits to this.
+ // After this call exponent_ <= other.exponent_.
+ Align(other);
+
+ // There are two possibilities:
+ // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
+ // bbbbb 00000000
+ // ----------------
+ // ccccccccccc 0000
+ // or
+ // aaaaaaaaaa 0000
+ // bbbbbbbbb 0000000
+ // -----------------
+ // cccccccccccc 0000
+ // In both cases we might need a carry bigit.
+
+ EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
+ Chunk carry = 0;
+ int bigit_pos = other.exponent_ - exponent_;
+ DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
+ for (int i = used_bigits_; i < bigit_pos; ++i) {
+ RawBigit(i) = 0;
+ }
+ for (int i = 0; i < other.used_bigits_; ++i) {
+ const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
+ const Chunk sum = my + other.RawBigit(i) + carry;
+ RawBigit(bigit_pos) = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ ++bigit_pos;
+ }
+ while (carry != 0) {
+ const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
+ const Chunk sum = my + carry;
+ RawBigit(bigit_pos) = sum & kBigitMask;
+ carry = sum >> kBigitSize;
+ ++bigit_pos;
+ }
+ used_bigits_ = static_cast<int16_t>(std::max(bigit_pos, static_cast<int>(used_bigits_)));
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+}
+
+
+void Bignum::SubtractBignum(const Bignum& other) {
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+ DOUBLE_CONVERSION_ASSERT(other.IsClamped());
+ // We require this to be bigger than other.
+ DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
+
+ Align(other);
+
+ const int offset = other.exponent_ - exponent_;
+ Chunk borrow = 0;
+ int i;
+ for (i = 0; i < other.used_bigits_; ++i) {
+ DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
+ const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
+ RawBigit(i + offset) = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ }
+ while (borrow != 0) {
+ const Chunk difference = RawBigit(i + offset) - borrow;
+ RawBigit(i + offset) = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ ++i;
+ }
+ Clamp();
+}
+
+
+void Bignum::ShiftLeft(const int shift_amount) {
+ if (used_bigits_ == 0) {
+ return;
+ }
+ exponent_ += static_cast<int16_t>(shift_amount / kBigitSize);
+ const int local_shift = shift_amount % kBigitSize;
+ EnsureCapacity(used_bigits_ + 1);
+ BigitsShiftLeft(local_shift);
+}
+
+
+void Bignum::MultiplyByUInt32(const uint32_t factor) {
+ if (factor == 1) {
+ return;
+ }
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ if (used_bigits_ == 0) {
+ return;
+ }
+ // The product of a bigit with the factor is of size kBigitSize + 32.
+ // Assert that this number + 1 (for the carry) fits into double chunk.
+ DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
+ DoubleChunk carry = 0;
+ for (int i = 0; i < used_bigits_; ++i) {
+ const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
+ RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
+ carry = (product >> kBigitSize);
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_bigits_ + 1);
+ RawBigit(used_bigits_) = carry & kBigitMask;
+ used_bigits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByUInt64(const uint64_t factor) {
+ if (factor == 1) {
+ return;
+ }
+ if (factor == 0) {
+ Zero();
+ return;
+ }
+ if (used_bigits_ == 0) {
+ return;
+ }
+ DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
+ uint64_t carry = 0;
+ const uint64_t low = factor & 0xFFFFFFFF;
+ const uint64_t high = factor >> 32;
+ for (int i = 0; i < used_bigits_; ++i) {
+ const uint64_t product_low = low * RawBigit(i);
+ const uint64_t product_high = high * RawBigit(i);
+ const uint64_t tmp = (carry & kBigitMask) + product_low;
+ RawBigit(i) = tmp & kBigitMask;
+ carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
+ (product_high << (32 - kBigitSize));
+ }
+ while (carry != 0) {
+ EnsureCapacity(used_bigits_ + 1);
+ RawBigit(used_bigits_) = carry & kBigitMask;
+ used_bigits_++;
+ carry >>= kBigitSize;
+ }
+}
+
+
+void Bignum::MultiplyByPowerOfTen(const int exponent) {
+ static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
+ static const uint16_t kFive1 = 5;
+ static const uint16_t kFive2 = kFive1 * 5;
+ static const uint16_t kFive3 = kFive2 * 5;
+ static const uint16_t kFive4 = kFive3 * 5;
+ static const uint16_t kFive5 = kFive4 * 5;
+ static const uint16_t kFive6 = kFive5 * 5;
+ static const uint32_t kFive7 = kFive6 * 5;
+ static const uint32_t kFive8 = kFive7 * 5;
+ static const uint32_t kFive9 = kFive8 * 5;
+ static const uint32_t kFive10 = kFive9 * 5;
+ static const uint32_t kFive11 = kFive10 * 5;
+ static const uint32_t kFive12 = kFive11 * 5;
+ static const uint32_t kFive13 = kFive12 * 5;
+ static const uint32_t kFive1_to_12[] =
+ { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
+ kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
+
+ DOUBLE_CONVERSION_ASSERT(exponent >= 0);
+
+ if (exponent == 0) {
+ return;
+ }
+ if (used_bigits_ == 0) {
+ return;
+ }
+ // We shift by exponent at the end just before returning.
+ int remaining_exponent = exponent;
+ while (remaining_exponent >= 27) {
+ MultiplyByUInt64(kFive27);
+ remaining_exponent -= 27;
+ }
+ while (remaining_exponent >= 13) {
+ MultiplyByUInt32(kFive13);
+ remaining_exponent -= 13;
+ }
+ if (remaining_exponent > 0) {
+ MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
+ }
+ ShiftLeft(exponent);
+}
+
+
+void Bignum::Square() {
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+ const int product_length = 2 * used_bigits_;
+ EnsureCapacity(product_length);
+
+ // Comba multiplication: compute each column separately.
+ // Example: r = a2a1a0 * b2b1b0.
+ // r = 1 * a0b0 +
+ // 10 * (a1b0 + a0b1) +
+ // 100 * (a2b0 + a1b1 + a0b2) +
+ // 1000 * (a2b1 + a1b2) +
+ // 10000 * a2b2
+ //
+ // In the worst case we have to accumulate nb-digits products of digit*digit.
+ //
+ // Assert that the additional number of bits in a DoubleChunk are enough to
+ // sum up used_digits of Bigit*Bigit.
+ if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
+ DOUBLE_CONVERSION_UNIMPLEMENTED();
+ }
+ DoubleChunk accumulator = 0;
+ // First shift the digits so we don't overwrite them.
+ const int copy_offset = used_bigits_;
+ for (int i = 0; i < used_bigits_; ++i) {
+ RawBigit(copy_offset + i) = RawBigit(i);
+ }
+ // We have two loops to avoid some 'if's in the loop.
+ for (int i = 0; i < used_bigits_; ++i) {
+ // Process temporary digit i with power i.
+ // The sum of the two indices must be equal to i.
+ int bigit_index1 = i;
+ int bigit_index2 = 0;
+ // Sum all of the sub-products.
+ while (bigit_index1 >= 0) {
+ const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
+ const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ for (int i = used_bigits_; i < product_length; ++i) {
+ int bigit_index1 = used_bigits_ - 1;
+ int bigit_index2 = i - bigit_index1;
+ // Invariant: sum of both indices is again equal to i.
+ // Inner loop runs 0 times on last iteration, emptying accumulator.
+ while (bigit_index2 < used_bigits_) {
+ const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
+ const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
+ bigit_index1--;
+ bigit_index2++;
+ }
+ // The overwritten RawBigit(i) will never be read in further loop iterations,
+ // because bigit_index1 and bigit_index2 are always greater
+ // than i - used_bigits_.
+ RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
+ accumulator >>= kBigitSize;
+ }
+ // Since the result was guaranteed to lie inside the number the
+ // accumulator must be 0 now.
+ DOUBLE_CONVERSION_ASSERT(accumulator == 0);
+
+ // Don't forget to update the used_digits and the exponent.
+ used_bigits_ = static_cast<int16_t>(product_length);
+ exponent_ *= 2;
+ Clamp();
+}
+
+
+void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
+ DOUBLE_CONVERSION_ASSERT(base != 0);
+ DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
+ if (power_exponent == 0) {
+ AssignUInt16(1);
+ return;
+ }
+ Zero();
+ int shifts = 0;
+ // We expect base to be in range 2-32, and most often to be 10.
+ // It does not make much sense to implement different algorithms for counting
+ // the bits.
+ while ((base & 1) == 0) {
+ base >>= 1;
+ shifts++;
+ }
+ int bit_size = 0;
+ int tmp_base = base;
+ while (tmp_base != 0) {
+ tmp_base >>= 1;
+ bit_size++;
+ }
+ const int final_size = bit_size * power_exponent;
+ // 1 extra bigit for the shifting, and one for rounded final_size.
+ EnsureCapacity(final_size / kBigitSize + 2);
+
+ // Left to Right exponentiation.
+ int mask = 1;
+ while (power_exponent >= mask) mask <<= 1;
+
+ // The mask is now pointing to the bit above the most significant 1-bit of
+ // power_exponent.
+ // Get rid of first 1-bit;
+ mask >>= 2;
+ uint64_t this_value = base;
+
+ bool delayed_multiplication = false;
+ const uint64_t max_32bits = 0xFFFFFFFF;
+ while (mask != 0 && this_value <= max_32bits) {
+ this_value = this_value * this_value;
+ // Verify that there is enough space in this_value to perform the
+ // multiplication. The first bit_size bits must be 0.
+ if ((power_exponent & mask) != 0) {
+ DOUBLE_CONVERSION_ASSERT(bit_size > 0);
+ const uint64_t base_bits_mask =
+ ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
+ const bool high_bits_zero = (this_value & base_bits_mask) == 0;
+ if (high_bits_zero) {
+ this_value *= base;
+ } else {
+ delayed_multiplication = true;
+ }
+ }
+ mask >>= 1;
+ }
+ AssignUInt64(this_value);
+ if (delayed_multiplication) {
+ MultiplyByUInt32(base);
+ }
+
+ // Now do the same thing as a bignum.
+ while (mask != 0) {
+ Square();
+ if ((power_exponent & mask) != 0) {
+ MultiplyByUInt32(base);
+ }
+ mask >>= 1;
+ }
+
+ // And finally add the saved shifts.
+ ShiftLeft(shifts * power_exponent);
+}
+
+
+// Precondition: this/other < 16bit.
+uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+ DOUBLE_CONVERSION_ASSERT(other.IsClamped());
+ DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
+
+ // Easy case: if we have less digits than the divisor than the result is 0.
+ // Note: this handles the case where this == 0, too.
+ if (BigitLength() < other.BigitLength()) {
+ return 0;
+ }
+
+ Align(other);
+
+ uint16_t result = 0;
+
+ // Start by removing multiples of 'other' until both numbers have the same
+ // number of digits.
+ while (BigitLength() > other.BigitLength()) {
+ // This naive approach is extremely inefficient if `this` divided by other
+ // is big. This function is implemented for doubleToString where
+ // the result should be small (less than 10).
+ DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
+ DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
+ // Remove the multiples of the first digit.
+ // Example this = 23 and other equals 9. -> Remove 2 multiples.
+ result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
+ SubtractTimes(other, RawBigit(used_bigits_ - 1));
+ }
+
+ DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
+
+ // Both bignums are at the same length now.
+ // Since other has more than 0 digits we know that the access to
+ // RawBigit(used_bigits_ - 1) is safe.
+ const Chunk this_bigit = RawBigit(used_bigits_ - 1);
+ const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
+
+ if (other.used_bigits_ == 1) {
+ // Shortcut for easy (and common) case.
+ int quotient = this_bigit / other_bigit;
+ RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
+ DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
+ result += static_cast<uint16_t>(quotient);
+ Clamp();
+ return result;
+ }
+
+ const int division_estimate = this_bigit / (other_bigit + 1);
+ DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
+ result += static_cast<uint16_t>(division_estimate);
+ SubtractTimes(other, division_estimate);
+
+ if (other_bigit * (division_estimate + 1) > this_bigit) {
+ // No need to even try to subtract. Even if other's remaining digits were 0
+ // another subtraction would be too much.
+ return result;
+ }
+
+ while (LessEqual(other, *this)) {
+ SubtractBignum(other);
+ result++;
+ }
+ return result;
+}
+
+
+template<typename S>
+static int SizeInHexChars(S number) {
+ DOUBLE_CONVERSION_ASSERT(number > 0);
+ int result = 0;
+ while (number != 0) {
+ number >>= 4;
+ result++;
+ }
+ return result;
+}
+
+
+static char HexCharOfValue(const int value) {
+ DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
+ if (value < 10) {
+ return static_cast<char>(value + '0');
+ }
+ return static_cast<char>(value - 10 + 'A');
+}
+
+
+bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
+ DOUBLE_CONVERSION_ASSERT(IsClamped());
+ // Each bigit must be printable as separate hex-character.
+ DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
+ static const int kHexCharsPerBigit = kBigitSize / 4;
+
+ if (used_bigits_ == 0) {
+ if (buffer_size < 2) {
+ return false;
+ }
+ buffer[0] = '0';
+ buffer[1] = '\0';
+ return true;
+ }
+ // We add 1 for the terminating '\0' character.
+ const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
+ SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
+ if (needed_chars > buffer_size) {
+ return false;
+ }
+ int string_index = needed_chars - 1;
+ buffer[string_index--] = '\0';
+ for (int i = 0; i < exponent_; ++i) {
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = '0';
+ }
+ }
+ for (int i = 0; i < used_bigits_ - 1; ++i) {
+ Chunk current_bigit = RawBigit(i);
+ for (int j = 0; j < kHexCharsPerBigit; ++j) {
+ buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
+ current_bigit >>= 4;
+ }
+ }
+ // And finally the last bigit.
+ Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
+ while (most_significant_bigit != 0) {
+ buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
+ most_significant_bigit >>= 4;
+ }
+ return true;
+}
+
+
+Bignum::Chunk Bignum::BigitOrZero(const int index) const {
+ if (index >= BigitLength()) {
+ return 0;
+ }
+ if (index < exponent_) {
+ return 0;
+ }
+ return RawBigit(index - exponent_);
+}
+
+
+int Bignum::Compare(const Bignum& a, const Bignum& b) {
+ DOUBLE_CONVERSION_ASSERT(a.IsClamped());
+ DOUBLE_CONVERSION_ASSERT(b.IsClamped());
+ const int bigit_length_a = a.BigitLength();
+ const int bigit_length_b = b.BigitLength();
+ if (bigit_length_a < bigit_length_b) {
+ return -1;
+ }
+ if (bigit_length_a > bigit_length_b) {
+ return +1;
+ }
+ for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
+ const Chunk bigit_a = a.BigitOrZero(i);
+ const Chunk bigit_b = b.BigitOrZero(i);
+ if (bigit_a < bigit_b) {
+ return -1;
+ }
+ if (bigit_a > bigit_b) {
+ return +1;
+ }
+ // Otherwise they are equal up to this digit. Try the next digit.
+ }
+ return 0;
+}
+
+
+int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
+ DOUBLE_CONVERSION_ASSERT(a.IsClamped());
+ DOUBLE_CONVERSION_ASSERT(b.IsClamped());
+ DOUBLE_CONVERSION_ASSERT(c.IsClamped());
+ if (a.BigitLength() < b.BigitLength()) {
+ return PlusCompare(b, a, c);
+ }
+ if (a.BigitLength() + 1 < c.BigitLength()) {
+ return -1;
+ }
+ if (a.BigitLength() > c.BigitLength()) {
+ return +1;
+ }
+ // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
+ // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
+ // of 'a'.
+ if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
+ return -1;
+ }
+
+ Chunk borrow = 0;
+ // Starting at min_exponent all digits are == 0. So no need to compare them.
+ const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
+ for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
+ const Chunk chunk_a = a.BigitOrZero(i);
+ const Chunk chunk_b = b.BigitOrZero(i);
+ const Chunk chunk_c = c.BigitOrZero(i);
+ const Chunk sum = chunk_a + chunk_b;
+ if (sum > chunk_c + borrow) {
+ return +1;
+ } else {
+ borrow = chunk_c + borrow - sum;
+ if (borrow > 1) {
+ return -1;
+ }
+ borrow <<= kBigitSize;
+ }
+ }
+ if (borrow == 0) {
+ return 0;
+ }
+ return -1;
+}
+
+
+void Bignum::Clamp() {
+ while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
+ used_bigits_--;
+ }
+ if (used_bigits_ == 0) {
+ // Zero.
+ exponent_ = 0;
+ }
+}
+
+
+void Bignum::Align(const Bignum& other) {
+ if (exponent_ > other.exponent_) {
+ // If "X" represents a "hidden" bigit (by the exponent) then we are in the
+ // following case (a == this, b == other):
+ // a: aaaaaaXXXX or a: aaaaaXXX
+ // b: bbbbbbX b: bbbbbbbbXX
+ // We replace some of the hidden digits (X) of a with 0 digits.
+ // a: aaaaaa000X or a: aaaaa0XX
+ const int zero_bigits = exponent_ - other.exponent_;
+ EnsureCapacity(used_bigits_ + zero_bigits);
+ for (int i = used_bigits_ - 1; i >= 0; --i) {
+ RawBigit(i + zero_bigits) = RawBigit(i);
+ }
+ for (int i = 0; i < zero_bigits; ++i) {
+ RawBigit(i) = 0;
+ }
+ used_bigits_ += static_cast<int16_t>(zero_bigits);
+ exponent_ -= static_cast<int16_t>(zero_bigits);
+
+ DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
+ DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
+ }
+}
+
+
+void Bignum::BigitsShiftLeft(const int shift_amount) {
+ DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
+ DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
+ Chunk carry = 0;
+ for (int i = 0; i < used_bigits_; ++i) {
+ const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
+ RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
+ carry = new_carry;
+ }
+ if (carry != 0) {
+ RawBigit(used_bigits_) = carry;
+ used_bigits_++;
+ }
+}
+
+
+void Bignum::SubtractTimes(const Bignum& other, const int factor) {
+ DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
+ if (factor < 3) {
+ for (int i = 0; i < factor; ++i) {
+ SubtractBignum(other);
+ }
+ return;
+ }
+ Chunk borrow = 0;
+ const int exponent_diff = other.exponent_ - exponent_;
+ for (int i = 0; i < other.used_bigits_; ++i) {
+ const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
+ const DoubleChunk remove = borrow + product;
+ const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
+ RawBigit(i + exponent_diff) = difference & kBigitMask;
+ borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
+ (remove >> kBigitSize));
+ }
+ for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
+ if (borrow == 0) {
+ return;
+ }
+ const Chunk difference = RawBigit(i) - borrow;
+ RawBigit(i) = difference & kBigitMask;
+ borrow = difference >> (kChunkSize - 1);
+ }
+ Clamp();
+}
+
+
+} // namespace double_conversion
+
+// ICU PATCH: Close ICU namespace
+U_NAMESPACE_END
+#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING