diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /media/libopus/silk/fixed/noise_shape_analysis_FIX.c | |
parent | Initial commit. (diff) | |
download | firefox-esr-upstream.tar.xz firefox-esr-upstream.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libopus/silk/fixed/noise_shape_analysis_FIX.c')
-rw-r--r-- | media/libopus/silk/fixed/noise_shape_analysis_FIX.c | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/media/libopus/silk/fixed/noise_shape_analysis_FIX.c b/media/libopus/silk/fixed/noise_shape_analysis_FIX.c new file mode 100644 index 0000000000..85fea0bf09 --- /dev/null +++ b/media/libopus/silk/fixed/noise_shape_analysis_FIX.c @@ -0,0 +1,407 @@ +/*********************************************************************** +Copyright (c) 2006-2011, Skype Limited. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "main_FIX.h" +#include "stack_alloc.h" +#include "tuning_parameters.h" + +/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */ +/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */ +/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */ +/* coefficient in an array of coefficients, for monic filters. */ +static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/ + const opus_int32 *coefs_Q24, + opus_int lambda_Q16, + opus_int order +) { + opus_int i; + opus_int32 gain_Q24; + + lambda_Q16 = -lambda_Q16; + gain_Q24 = coefs_Q24[ order - 1 ]; + for( i = order - 2; i >= 0; i-- ) { + gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); + } + gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); + return silk_INVERSE32_varQ( gain_Q24, 40 ); +} + +/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */ +/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */ +static OPUS_INLINE void limit_warped_coefs( + opus_int32 *coefs_Q24, + opus_int lambda_Q16, + opus_int32 limit_Q24, + opus_int order +) { + opus_int i, iter, ind = 0; + opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16; + opus_int32 nom_Q16, den_Q24; + opus_int32 limit_Q20, maxabs_Q20; + + /* Convert to monic coefficients */ + lambda_Q16 = -lambda_Q16; + for( i = order - 1; i > 0; i-- ) { + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); + } + lambda_Q16 = -lambda_Q16; + nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); + gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); + for( i = 0; i < order; i++ ) { + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); + } + limit_Q20 = silk_RSHIFT(limit_Q24, 4); + for( iter = 0; iter < 10; iter++ ) { + /* Find maximum absolute value */ + maxabs_Q24 = -1; + for( i = 0; i < order; i++ ) { + tmp = silk_abs_int32( coefs_Q24[ i ] ); + if( tmp > maxabs_Q24 ) { + maxabs_Q24 = tmp; + ind = i; + } + } + /* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */ + maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4); + if( maxabs_Q20 <= limit_Q20 ) { + /* Coefficients are within range - done */ + return; + } + + /* Convert back to true warped coefficients */ + for( i = 1; i < order; i++ ) { + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); + } + gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 ); + for( i = 0; i < order; i++ ) { + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); + } + + /* Apply bandwidth expansion */ + chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( + silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), + silk_MUL( maxabs_Q20, ind + 1 ), 22 ); + silk_bwexpander_32( coefs_Q24, order, chirp_Q16 ); + + /* Convert to monic warped coefficients */ + lambda_Q16 = -lambda_Q16; + for( i = order - 1; i > 0; i-- ) { + coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 ); + } + lambda_Q16 = -lambda_Q16; + nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 ); + den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 ); + gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); + for( i = 0; i < order; i++ ) { + coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] ); + } + } + silk_assert( 0 ); +} + +/* Disable MIPS version until it's updated. */ +#if 0 && defined(MIPSr1_ASM) +#include "mips/noise_shape_analysis_FIX_mipsr1.h" +#endif + +/**************************************************************/ +/* Compute noise shaping coefficients and initial gain values */ +/**************************************************************/ +#ifndef OVERRIDE_silk_noise_shape_analysis_FIX +void silk_noise_shape_analysis_FIX( + silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ + silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ + const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */ + const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */ + int arch /* I Run-time architecture */ +) +{ + silk_shape_state_FIX *psShapeSt = &psEnc->sShape; + opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0; + opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32; + opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; + opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; + opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; + opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; + opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ]; + VARDECL( opus_int16, x_windowed ); + const opus_int16 *x_ptr, *pitch_res_ptr; + SAVE_STACK; + + /* Point to start of first LPC analysis block */ + x_ptr = x - psEnc->sCmn.la_shape; + + /****************/ + /* GAIN CONTROL */ + /****************/ + SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; + + /* Input quality is the average of the quality in the lowest two VAD bands */ + psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ] + + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); + + /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ + psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 - + SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); + + /* Reduce coding SNR during low speech activity */ + if( psEnc->sCmn.useCBR == 0 ) { + b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; + b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, + silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/ + silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ + } + + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { + /* Reduce gains for periodic signals */ + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 ); + } else { + /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ + SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, + silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ), + SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); + } + + /*************************/ + /* SPARSENESS PROCESSING */ + /*************************/ + /* Set quantizer offset */ + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { + /* Initially set to 0; may be overruled in process_gains(..) */ + psEnc->sCmn.indices.quantOffsetType = 0; + } else { + /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ + nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); + energy_variation_Q7 = 0; + log_energy_prev_Q7 = 0; + pitch_res_ptr = pitch_res; + nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; + for( k = 0; k < nSegs; k++ ) { + silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); + nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ + + log_energy_Q7 = silk_lin2log( nrg ); + if( k > 0 ) { + energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 ); + } + log_energy_prev_Q7 = log_energy_Q7; + pitch_res_ptr += nSamples; + } + + /* Set quantization offset depending on sparseness measure */ + if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) { + psEnc->sCmn.indices.quantOffsetType = 0; + } else { + psEnc->sCmn.indices.quantOffsetType = 1; + } + } + + /*******************************/ + /* Control bandwidth expansion */ + /*******************************/ + /* More BWE for signals with high prediction gain */ + strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ); + BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), + silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 ); + + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */ + warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); + } else { + warping_Q16 = 0; + } + + /********************************************/ + /* Compute noise shaping AR coefs and gains */ + /********************************************/ + ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 ); + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { + /* Apply window: sine slope followed by flat part followed by cosine slope */ + opus_int shift, slope_part, flat_part; + flat_part = psEnc->sCmn.fs_kHz * 3; + slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); + + silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); + shift = slope_part; + silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) ); + shift += flat_part; + silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part ); + + /* Update pointer: next LPC analysis block */ + x_ptr += psEnc->sCmn.subfr_length; + + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Calculate warped auto correlation */ + silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch ); + } else { + /* Calculate regular auto correlation */ + silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch ); + } + + /* Add white noise, as a fraction of energy */ + auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ), + SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); + + /* Calculate the reflection coefficients using schur */ + nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); + silk_assert( nrg >= 0 ); + + /* Convert reflection coefficients to prediction coefficients */ + silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); + + Qnrg = -scale; /* range: -12...30*/ + silk_assert( Qnrg >= -12 ); + silk_assert( Qnrg <= 30 ); + + /* Make sure that Qnrg is an even number */ + if( Qnrg & 1 ) { + Qnrg -= 1; + nrg >>= 1; + } + + tmp32 = silk_SQRT_APPROX( nrg ); + Qnrg >>= 1; /* range: -6...15*/ + + psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); + + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Adjust gain for warping */ + gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder ); + silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); + if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) { + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); + } else { + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ); + if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) { + psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; + } else { + psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 ); + } + } + silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 ); + } + + /* Bandwidth expansion */ + silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 ); + + if( psEnc->sCmn.warping_Q16 > 0 ) { + /* Convert to monic warped prediction coefficients and limit absolute values */ + limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder ); + + /* Convert from Q24 to Q13 and store in int16 */ + for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { + psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) ); + } + } else { + silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder ); + } + } + + /*****************/ + /* Gain tweaking */ + /*****************/ + /* Increase gains during low speech activity and put lower limit on gains */ + gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); + gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); + silk_assert( gain_mult_Q16 > 0 ); + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { + psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 ); + silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); + psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 ); + } + + + /************************************************/ + /* Control low-frequency shaping and noise tilt */ + /************************************************/ + /* Less low frequency shaping for noisy inputs */ + strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ), + SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); + strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 ); + if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { + /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */ + /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/ + opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz ); + for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { + b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] ); + /* Pack two coefficients in one int32 */ + psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); + psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); + } + silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/ + Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - + silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ), + silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) ); + } else { + b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/ + /* Pack two coefficients in one int32 */ + psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - + silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 ); + psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) ); + for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { + psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; + } + Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); + } + + /****************************/ + /* HARMONIC SHAPING CONTROL */ + /****************************/ + if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { + /* More harmonic noise shaping for high bitrates or noisy input */ + HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), + SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), + psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) ); + + /* Less harmonic noise shaping for less periodic signals */ + HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), + silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); + } else { + HarmShapeGain_Q16 = 0; + } + + /*************************/ + /* Smooth over subframes */ + /*************************/ + for( k = 0; k < MAX_NB_SUBFR; k++ ) { + psShapeSt->HarmShapeGain_smth_Q16 = + silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); + psShapeSt->Tilt_smth_Q16 = + silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); + + psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 ); + psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 ); + } + RESTORE_STACK; +} +#endif /* OVERRIDE_silk_noise_shape_analysis_FIX */ |