summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/numerics/safe_conversions_impl.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/sandbox/chromium/base/numerics/safe_conversions_impl.h
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/sandbox/chromium/base/numerics/safe_conversions_impl.h')
-rw-r--r--security/sandbox/chromium/base/numerics/safe_conversions_impl.h851
1 files changed, 851 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/numerics/safe_conversions_impl.h b/security/sandbox/chromium/base/numerics/safe_conversions_impl.h
new file mode 100644
index 0000000000..7c5ca68c3b
--- /dev/null
+++ b/security/sandbox/chromium/base/numerics/safe_conversions_impl.h
@@ -0,0 +1,851 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
+#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
+
+#include <stdint.h>
+
+#include <limits>
+#include <type_traits>
+
+#if defined(__GNUC__) || defined(__clang__)
+#define BASE_NUMERICS_LIKELY(x) __builtin_expect(!!(x), 1)
+#define BASE_NUMERICS_UNLIKELY(x) __builtin_expect(!!(x), 0)
+#else
+#define BASE_NUMERICS_LIKELY(x) (x)
+#define BASE_NUMERICS_UNLIKELY(x) (x)
+#endif
+
+namespace base {
+namespace internal {
+
+// The std library doesn't provide a binary max_exponent for integers, however
+// we can compute an analog using std::numeric_limits<>::digits.
+template <typename NumericType>
+struct MaxExponent {
+ static const int value = std::is_floating_point<NumericType>::value
+ ? std::numeric_limits<NumericType>::max_exponent
+ : std::numeric_limits<NumericType>::digits + 1;
+};
+
+// The number of bits (including the sign) in an integer. Eliminates sizeof
+// hacks.
+template <typename NumericType>
+struct IntegerBitsPlusSign {
+ static const int value = std::numeric_limits<NumericType>::digits +
+ std::is_signed<NumericType>::value;
+};
+
+// Helper templates for integer manipulations.
+
+template <typename Integer>
+struct PositionOfSignBit {
+ static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
+};
+
+// Determines if a numeric value is negative without throwing compiler
+// warnings on: unsigned(value) < 0.
+template <typename T,
+ typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T value) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return value < 0;
+}
+
+template <typename T,
+ typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return false;
+}
+
+// This performs a fast negation, returning a signed value. It works on unsigned
+// arguments, but probably doesn't do what you want for any unsigned value
+// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
+template <typename T>
+constexpr typename std::make_signed<T>::type ConditionalNegate(
+ T x,
+ bool is_negative) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using SignedT = typename std::make_signed<T>::type;
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return static_cast<SignedT>(
+ (static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
+}
+
+// This performs a safe, absolute value via unsigned overflow.
+template <typename T>
+constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return IsValueNegative(value)
+ ? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
+ : static_cast<UnsignedT>(value);
+}
+
+// This allows us to switch paths on known compile-time constants.
+#if defined(__clang__) || defined(__GNUC__)
+constexpr bool CanDetectCompileTimeConstant() {
+ return true;
+}
+template <typename T>
+constexpr bool IsCompileTimeConstant(const T v) {
+ return __builtin_constant_p(v);
+}
+#else
+constexpr bool CanDetectCompileTimeConstant() {
+ return false;
+}
+template <typename T>
+constexpr bool IsCompileTimeConstant(const T) {
+ return false;
+}
+#endif
+template <typename T>
+constexpr bool MustTreatAsConstexpr(const T v) {
+ // Either we can't detect a compile-time constant, and must always use the
+ // constexpr path, or we know we have a compile-time constant.
+ return !CanDetectCompileTimeConstant() || IsCompileTimeConstant(v);
+}
+
+// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
+// Also used in a constexpr template to trigger a compilation failure on
+// an error condition.
+struct CheckOnFailure {
+ template <typename T>
+ static T HandleFailure() {
+#if defined(_MSC_VER)
+ __debugbreak();
+#elif defined(__GNUC__) || defined(__clang__)
+ __builtin_trap();
+#else
+ ((void)(*(volatile char*)0 = 0));
+#endif
+ return T();
+ }
+};
+
+enum IntegerRepresentation {
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED
+};
+
+// A range for a given nunmeric Src type is contained for a given numeric Dst
+// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
+// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
+// We implement this as template specializations rather than simple static
+// comparisons to ensure type correctness in our comparisons.
+enum NumericRangeRepresentation {
+ NUMERIC_RANGE_NOT_CONTAINED,
+ NUMERIC_RANGE_CONTAINED
+};
+
+// Helper templates to statically determine if our destination type can contain
+// maximum and minimum values represented by the source type.
+
+template <typename Dst,
+ typename Src,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED>
+struct StaticDstRangeRelationToSrcRange;
+
+// Same sign: Dst is guaranteed to contain Src only if its range is equal or
+// larger.
+template <typename Dst, typename Src, IntegerRepresentation Sign>
+struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
+ static const NumericRangeRepresentation value =
+ MaxExponent<Dst>::value >= MaxExponent<Src>::value
+ ? NUMERIC_RANGE_CONTAINED
+ : NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// Unsigned to signed: Dst is guaranteed to contain source only if its range is
+// larger.
+template <typename Dst, typename Src>
+struct StaticDstRangeRelationToSrcRange<Dst,
+ Src,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED> {
+ static const NumericRangeRepresentation value =
+ MaxExponent<Dst>::value > MaxExponent<Src>::value
+ ? NUMERIC_RANGE_CONTAINED
+ : NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// Signed to unsigned: Dst cannot be statically determined to contain Src.
+template <typename Dst, typename Src>
+struct StaticDstRangeRelationToSrcRange<Dst,
+ Src,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED> {
+ static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// This class wraps the range constraints as separate booleans so the compiler
+// can identify constants and eliminate unused code paths.
+class RangeCheck {
+ public:
+ constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
+ : is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
+ constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
+ constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
+ constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
+ constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
+ constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
+ constexpr bool operator==(const RangeCheck rhs) const {
+ return is_underflow_ == rhs.is_underflow_ &&
+ is_overflow_ == rhs.is_overflow_;
+ }
+ constexpr bool operator!=(const RangeCheck rhs) const {
+ return !(*this == rhs);
+ }
+
+ private:
+ // Do not change the order of these member variables. The integral conversion
+ // optimization depends on this exact order.
+ const bool is_underflow_;
+ const bool is_overflow_;
+};
+
+// The following helper template addresses a corner case in range checks for
+// conversion from a floating-point type to an integral type of smaller range
+// but larger precision (e.g. float -> unsigned). The problem is as follows:
+// 1. Integral maximum is always one less than a power of two, so it must be
+// truncated to fit the mantissa of the floating point. The direction of
+// rounding is implementation defined, but by default it's always IEEE
+// floats, which round to nearest and thus result in a value of larger
+// magnitude than the integral value.
+// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
+// // is 4294967295u.
+// 2. If the floating point value is equal to the promoted integral maximum
+// value, a range check will erroneously pass.
+// Example: (4294967296f <= 4294967295u) // This is true due to a precision
+// // loss in rounding up to float.
+// 3. When the floating point value is then converted to an integral, the
+// resulting value is out of range for the target integral type and
+// thus is implementation defined.
+// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
+// To fix this bug we manually truncate the maximum value when the destination
+// type is an integral of larger precision than the source floating-point type,
+// such that the resulting maximum is represented exactly as a floating point.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct NarrowingRange {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = typename std::numeric_limits<Dst>;
+
+ // Computes the mask required to make an accurate comparison between types.
+ static const int kShift =
+ (MaxExponent<Src>::value > MaxExponent<Dst>::value &&
+ SrcLimits::digits < DstLimits::digits)
+ ? (DstLimits::digits - SrcLimits::digits)
+ : 0;
+ template <
+ typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+
+ // Masks out the integer bits that are beyond the precision of the
+ // intermediate type used for comparison.
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift < DstLimits::digits, "");
+ return static_cast<T>(
+ ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
+ IsValueNegative(value)));
+ }
+
+ template <typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* =
+ nullptr>
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift == 0, "");
+ return value;
+ }
+
+ static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
+ static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
+};
+
+template <typename Dst,
+ typename Src,
+ template <typename> class Bounds,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ NumericRangeRepresentation DstRange =
+ StaticDstRangeRelationToSrcRange<Dst, Src>::value>
+struct DstRangeRelationToSrcRangeImpl;
+
+// The following templates are for ranges that must be verified at runtime. We
+// split it into checks based on signedness to avoid confusing casts and
+// compiler warnings on signed an unsigned comparisons.
+
+// Same sign narrowing: The range is contained for normal limits.
+template <typename Dst,
+ typename Src,
+ template <typename> class Bounds,
+ IntegerRepresentation DstSign,
+ IntegerRepresentation SrcSign>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ DstSign,
+ SrcSign,
+ NUMERIC_RANGE_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
+ static_cast<Dst>(value) >= DstLimits::lowest(),
+ static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
+ static_cast<Dst>(value) <= DstLimits::max());
+ }
+};
+
+// Signed to signed narrowing: Both the upper and lower boundaries may be
+// exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_SIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
+ }
+};
+
+// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
+// standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
+ value <= DstLimits::max());
+ }
+};
+
+// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(DstLimits::lowest() <= Dst(0) ||
+ static_cast<Promotion>(value) >=
+ static_cast<Promotion>(DstLimits::lowest()),
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
+ }
+};
+
+// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
+// and any negative value exceeds the lower boundary for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(
+ value >= Src(0) && (DstLimits::lowest() == 0 ||
+ static_cast<Dst>(value) >= DstLimits::lowest()),
+ static_cast<Promotion>(SrcLimits::max()) <=
+ static_cast<Promotion>(DstLimits::max()) ||
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
+ }
+};
+
+// Simple wrapper for statically checking if a type's range is contained.
+template <typename Dst, typename Src>
+struct IsTypeInRangeForNumericType {
+ static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
+ NUMERIC_RANGE_CONTAINED;
+};
+
+template <typename Dst,
+ template <typename> class Bounds = std::numeric_limits,
+ typename Src>
+constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
+ static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
+ return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
+}
+
+// Integer promotion templates used by the portable checked integer arithmetic.
+template <size_t Size, bool IsSigned>
+struct IntegerForDigitsAndSign;
+
+#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
+ template <> \
+ struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
+ std::is_signed<I>::value> { \
+ using type = I; \
+ }
+
+INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
+#undef INTEGER_FOR_DIGITS_AND_SIGN
+
+// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
+// support 128-bit math, then the ArithmeticPromotion template below will need
+// to be updated (or more likely replaced with a decltype expression).
+static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
+ "Max integer size not supported for this toolchain.");
+
+template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
+struct TwiceWiderInteger {
+ using type =
+ typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
+ IsSigned>::type;
+};
+
+enum ArithmeticPromotionCategory {
+ LEFT_PROMOTION, // Use the type of the left-hand argument.
+ RIGHT_PROMOTION // Use the type of the right-hand argument.
+};
+
+// Determines the type that can represent the largest positive value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION>
+struct MaxExponentPromotion;
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that can represent the lowest arithmetic value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ std::is_signed<Lhs>::value
+ ? (std::is_signed<Rhs>::value
+ ? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION)
+ : LEFT_PROMOTION)
+ : (std::is_signed<Rhs>::value
+ ? RIGHT_PROMOTION
+ : (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION))>
+struct LowestValuePromotion;
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that is best able to represent an arithmetic result.
+template <
+ typename Lhs,
+ typename Rhs = Lhs,
+ bool is_intmax_type =
+ std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
+ IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
+ value == IntegerBitsPlusSign<intmax_t>::value,
+ bool is_max_exponent =
+ StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Lhs>::value ==
+ NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Rhs>::value == NUMERIC_RANGE_CONTAINED>
+struct BigEnoughPromotion;
+
+// The side with the max exponent is big enough.
+template <typename Lhs, typename Rhs, bool is_intmax_type>
+struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = true;
+};
+
+// We can use a twice wider type to fit.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, false, false> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static const bool is_contained = true;
+};
+
+// No type is large enough.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, true, false> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// We can statically check if operations on the provided types can wrap, so we
+// can skip the checked operations if they're not needed. So, for an integer we
+// care if the destination type preserves the sign and is twice the width of
+// the source.
+template <typename T, typename Lhs, typename Rhs = Lhs>
+struct IsIntegerArithmeticSafe {
+ static const bool value =
+ !std::is_floating_point<T>::value &&
+ !std::is_floating_point<Lhs>::value &&
+ !std::is_floating_point<Rhs>::value &&
+ std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
+ std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
+};
+
+// Promotes to a type that can represent any possible result of a binary
+// arithmetic operation with the source types.
+template <typename Lhs,
+ typename Rhs,
+ bool is_promotion_possible = IsIntegerArithmeticSafe<
+ typename std::conditional<std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value,
+ intmax_t,
+ uintmax_t>::type,
+ typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
+struct FastIntegerArithmeticPromotion;
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
+ static const bool is_contained = true;
+};
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
+ using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// Extracts the underlying type from an enum.
+template <typename T, bool is_enum = std::is_enum<T>::value>
+struct ArithmeticOrUnderlyingEnum;
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, true> {
+ using type = typename std::underlying_type<T>::type;
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, false> {
+ using type = T;
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+// The following are helper templates used in the CheckedNumeric class.
+template <typename T>
+class CheckedNumeric;
+
+template <typename T>
+class ClampedNumeric;
+
+template <typename T>
+class StrictNumeric;
+
+// Used to treat CheckedNumeric and arithmetic underlying types the same.
+template <typename T>
+struct UnderlyingType {
+ using type = typename ArithmeticOrUnderlyingEnum<T>::type;
+ static const bool is_numeric = std::is_arithmetic<type>::value;
+ static const bool is_checked = false;
+ static const bool is_clamped = false;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<CheckedNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = true;
+ static const bool is_clamped = false;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<ClampedNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = false;
+ static const bool is_clamped = true;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<StrictNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = false;
+ static const bool is_clamped = false;
+ static const bool is_strict = true;
+};
+
+template <typename L, typename R>
+struct IsCheckedOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
+};
+
+template <typename L, typename R>
+struct IsClampedOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped) &&
+ !(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
+};
+
+template <typename L, typename R>
+struct IsStrictOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict) &&
+ !(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked) &&
+ !(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped);
+};
+
+// as_signed<> returns the supplied integral value (or integral castable
+// Numeric template) cast as a signed integral of equivalent precision.
+// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
+template <typename Src>
+constexpr typename std::make_signed<
+ typename base::internal::UnderlyingType<Src>::type>::type
+as_signed(const Src value) {
+ static_assert(std::is_integral<decltype(as_signed(value))>::value,
+ "Argument must be a signed or unsigned integer type.");
+ return static_cast<decltype(as_signed(value))>(value);
+}
+
+// as_unsigned<> returns the supplied integral value (or integral castable
+// Numeric template) cast as an unsigned integral of equivalent precision.
+// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
+template <typename Src>
+constexpr typename std::make_unsigned<
+ typename base::internal::UnderlyingType<Src>::type>::type
+as_unsigned(const Src value) {
+ static_assert(std::is_integral<decltype(as_unsigned(value))>::value,
+ "Argument must be a signed or unsigned integer type.");
+ return static_cast<decltype(as_unsigned(value))>(value);
+}
+
+template <typename L, typename R>
+constexpr bool IsLessImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLess {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsLessOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLessOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreater {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreaterOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+struct IsEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) ==
+ DstRangeRelationToSrcRange<L>(rhs) &&
+ static_cast<decltype(lhs + rhs)>(lhs) ==
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+template <typename L, typename R>
+struct IsNotEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) !=
+ DstRangeRelationToSrcRange<L>(rhs) ||
+ static_cast<decltype(lhs + rhs)>(lhs) !=
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+// These perform the actual math operations on the CheckedNumerics.
+// Binary arithmetic operations.
+template <template <typename, typename> class C, typename L, typename R>
+constexpr bool SafeCompare(const L lhs, const R rhs) {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ using Promotion = BigEnoughPromotion<L, R>;
+ using BigType = typename Promotion::type;
+ return Promotion::is_contained
+ // Force to a larger type for speed if both are contained.
+ ? C<BigType, BigType>::Test(
+ static_cast<BigType>(static_cast<L>(lhs)),
+ static_cast<BigType>(static_cast<R>(rhs)))
+ // Let the template functions figure it out for mixed types.
+ : C<L, R>::Test(lhs, rhs);
+}
+
+template <typename Dst, typename Src>
+constexpr bool IsMaxInRangeForNumericType() {
+ return IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
+ std::numeric_limits<Src>::max());
+}
+
+template <typename Dst, typename Src>
+constexpr bool IsMinInRangeForNumericType() {
+ return IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
+ std::numeric_limits<Src>::lowest());
+}
+
+template <typename Dst, typename Src>
+constexpr Dst CommonMax() {
+ return !IsMaxInRangeForNumericType<Dst, Src>()
+ ? Dst(std::numeric_limits<Dst>::max())
+ : Dst(std::numeric_limits<Src>::max());
+}
+
+template <typename Dst, typename Src>
+constexpr Dst CommonMin() {
+ return !IsMinInRangeForNumericType<Dst, Src>()
+ ? Dst(std::numeric_limits<Dst>::lowest())
+ : Dst(std::numeric_limits<Src>::lowest());
+}
+
+// This is a wrapper to generate return the max or min for a supplied type.
+// If the argument is false, the returned value is the maximum. If true the
+// returned value is the minimum.
+template <typename Dst, typename Src = Dst>
+constexpr Dst CommonMaxOrMin(bool is_min) {
+ return is_min ? CommonMin<Dst, Src>() : CommonMax<Dst, Src>();
+}
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_