diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/aom/av1/common/thread_common.c | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/thread_common.c')
-rw-r--r-- | third_party/aom/av1/common/thread_common.c | 786 |
1 files changed, 786 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/thread_common.c b/third_party/aom/av1/common/thread_common.c new file mode 100644 index 0000000000..8df4c9a09d --- /dev/null +++ b/third_party/aom/av1/common/thread_common.c @@ -0,0 +1,786 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/aom_config.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "av1/common/av1_loopfilter.h" +#include "av1/common/entropymode.h" +#include "av1/common/thread_common.h" +#include "av1/common/reconinter.h" + +// Set up nsync by width. +static INLINE int get_sync_range(int width) { + // nsync numbers are picked by testing. For example, for 4k + // video, using 4 gives best performance. + if (width < 640) + return 1; + else if (width <= 1280) + return 2; + else if (width <= 4096) + return 4; + else + return 8; +} + +static INLINE int get_lr_sync_range(int width) { +#if 0 + // nsync numbers are picked by testing. For example, for 4k + // video, using 4 gives best performance. + if (width < 640) + return 1; + else if (width <= 1280) + return 2; + else if (width <= 4096) + return 4; + else + return 8; +#else + (void)width; + return 1; +#endif +} + +// Allocate memory for lf row synchronization +static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, + int width, int num_workers) { + lf_sync->rows = rows; +#if CONFIG_MULTITHREAD + { + int i, j; + + for (j = 0; j < MAX_MB_PLANE; j++) { + CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], + aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); + if (lf_sync->mutex_[j]) { + for (i = 0; i < rows; ++i) { + pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); + } + } + + CHECK_MEM_ERROR(cm, lf_sync->cond_[j], + aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); + if (lf_sync->cond_[j]) { + for (i = 0; i < rows; ++i) { + pthread_cond_init(&lf_sync->cond_[j][i], NULL); + } + } + } + + CHECK_MEM_ERROR(cm, lf_sync->job_mutex, + aom_malloc(sizeof(*(lf_sync->job_mutex)))); + if (lf_sync->job_mutex) { + pthread_mutex_init(lf_sync->job_mutex, NULL); + } + } +#endif // CONFIG_MULTITHREAD + CHECK_MEM_ERROR(cm, lf_sync->lfdata, + aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); + lf_sync->num_workers = num_workers; + + for (int j = 0; j < MAX_MB_PLANE; j++) { + CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], + aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); + } + CHECK_MEM_ERROR( + cm, lf_sync->job_queue, + aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); + // Set up nsync. + lf_sync->sync_range = get_sync_range(width); +} + +// Deallocate lf synchronization related mutex and data +void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { + if (lf_sync != NULL) { + int j; +#if CONFIG_MULTITHREAD + int i; + for (j = 0; j < MAX_MB_PLANE; j++) { + if (lf_sync->mutex_[j] != NULL) { + for (i = 0; i < lf_sync->rows; ++i) { + pthread_mutex_destroy(&lf_sync->mutex_[j][i]); + } + aom_free(lf_sync->mutex_[j]); + } + if (lf_sync->cond_[j] != NULL) { + for (i = 0; i < lf_sync->rows; ++i) { + pthread_cond_destroy(&lf_sync->cond_[j][i]); + } + aom_free(lf_sync->cond_[j]); + } + } + if (lf_sync->job_mutex != NULL) { + pthread_mutex_destroy(lf_sync->job_mutex); + aom_free(lf_sync->job_mutex); + } +#endif // CONFIG_MULTITHREAD + aom_free(lf_sync->lfdata); + for (j = 0; j < MAX_MB_PLANE; j++) { + aom_free(lf_sync->cur_sb_col[j]); + } + + aom_free(lf_sync->job_queue); + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + av1_zero(*lf_sync); + } +} + +static void loop_filter_data_reset(LFWorkerData *lf_data, + YV12_BUFFER_CONFIG *frame_buffer, + struct AV1Common *cm, MACROBLOCKD *xd) { + struct macroblockd_plane *pd = xd->plane; + lf_data->frame_buffer = frame_buffer; + lf_data->cm = cm; + lf_data->xd = xd; + for (int i = 0; i < MAX_MB_PLANE; i++) { + memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); + lf_data->planes[i].subsampling_x = pd[i].subsampling_x; + lf_data->planes[i].subsampling_y = pd[i].subsampling_y; + } +} + +static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, + int plane) { +#if CONFIG_MULTITHREAD + const int nsync = lf_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; + pthread_mutex_lock(mutex); + + while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { + pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)lf_sync; + (void)r; + (void)c; + (void)plane; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, + const int sb_cols, int plane) { +#if CONFIG_MULTITHREAD + const int nsync = lf_sync->sync_range; + int cur; + // Only signal when there are enough filtered SB for next row to run. + int sig = 1; + + if (c < sb_cols - 1) { + cur = c; + if (c % nsync) sig = 0; + } else { + cur = sb_cols + nsync; + } + + if (sig) { + pthread_mutex_lock(&lf_sync->mutex_[plane][r]); + + lf_sync->cur_sb_col[plane][r] = cur; + + pthread_cond_broadcast(&lf_sync->cond_[plane][r]); + pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); + } +#else + (void)lf_sync; + (void)r; + (void)c; + (void)sb_cols; + (void)plane; +#endif // CONFIG_MULTITHREAD +} + +static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, + int stop, int plane_start, int plane_end) { + int mi_row, plane, dir; + AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; + lf_sync->jobs_enqueued = 0; + lf_sync->jobs_dequeued = 0; + + for (dir = 0; dir < 2; dir++) { + for (plane = plane_start; plane < plane_end; plane++) { + if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) + break; + else if (plane == 1 && !(cm->lf.filter_level_u)) + continue; + else if (plane == 2 && !(cm->lf.filter_level_v)) + continue; + for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { + lf_job_queue->mi_row = mi_row; + lf_job_queue->plane = plane; + lf_job_queue->dir = dir; + lf_job_queue++; + lf_sync->jobs_enqueued++; + } + } + } +} + +AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { + AV1LfMTInfo *cur_job_info = NULL; + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(lf_sync->job_mutex); + + if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { + cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; + lf_sync->jobs_dequeued++; + } + + pthread_mutex_unlock(lf_sync->job_mutex); +#else + (void)lf_sync; +#endif + + return cur_job_info; +} + +// Implement row loopfiltering for each thread. +static INLINE void thread_loop_filter_rows( + const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, + struct macroblockd_plane *planes, MACROBLOCKD *xd, + AV1LfSync *const lf_sync) { + const int sb_cols = + ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; + int mi_row, mi_col, plane, dir; + int r, c; + + while (1) { + AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); + + if (cur_job_info != NULL) { + mi_row = cur_job_info->mi_row; + plane = cur_job_info->plane; + dir = cur_job_info->dir; + r = mi_row >> MAX_MIB_SIZE_LOG2; + + if (dir == 0) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { + c = mi_col >> MAX_MIB_SIZE_LOG2; + + av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, + mi_row, mi_col, plane, plane + 1); + + av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, + mi_col); + sync_write(lf_sync, r, c, sb_cols, plane); + } + } else if (dir == 1) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { + c = mi_col >> MAX_MIB_SIZE_LOG2; + + // Wait for vertical edge filtering of the top-right block to be + // completed + sync_read(lf_sync, r, c, plane); + + // Wait for vertical edge filtering of the right block to be + // completed + sync_read(lf_sync, r + 1, c, plane); + + av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, + mi_row, mi_col, plane, plane + 1); + av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, + mi_col); + } + } + } else { + break; + } + } +} + +// Row-based multi-threaded loopfilter hook +static int loop_filter_row_worker(void *arg1, void *arg2) { + AV1LfSync *const lf_sync = (AV1LfSync *)arg1; + LFWorkerData *const lf_data = (LFWorkerData *)arg2; + thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, + lf_data->xd, lf_sync); + return 1; +} + +static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, + MACROBLOCKD *xd, int start, int stop, + int plane_start, int plane_end, + AVxWorker *workers, int nworkers, + AV1LfSync *lf_sync) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + // Number of superblock rows and cols + const int sb_rows = + ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; + const int num_workers = nworkers; + int i; + + if (!lf_sync->sync_range || sb_rows != lf_sync->rows || + num_workers > lf_sync->num_workers) { + av1_loop_filter_dealloc(lf_sync); + loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); + } + + // Initialize cur_sb_col to -1 for all SB rows. + for (i = 0; i < MAX_MB_PLANE; i++) { + memset(lf_sync->cur_sb_col[i], -1, + sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); + } + + enqueue_lf_jobs(lf_sync, cm, start, stop, plane_start, plane_end); + + // Set up loopfilter thread data. + for (i = 0; i < num_workers; ++i) { + AVxWorker *const worker = &workers[i]; + LFWorkerData *const lf_data = &lf_sync->lfdata[i]; + + worker->hook = loop_filter_row_worker; + worker->data1 = lf_sync; + worker->data2 = lf_data; + + // Loopfilter data + loop_filter_data_reset(lf_data, frame, cm, xd); + + // Start loopfiltering + if (i == num_workers - 1) { + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } + + // Wait till all rows are finished + for (i = 0; i < num_workers; ++i) { + winterface->sync(&workers[i]); + } +} + +void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, + MACROBLOCKD *xd, int plane_start, int plane_end, + int partial_frame, AVxWorker *workers, + int num_workers, AV1LfSync *lf_sync) { + int start_mi_row, end_mi_row, mi_rows_to_filter; + + start_mi_row = 0; + mi_rows_to_filter = cm->mi_rows; + if (partial_frame && cm->mi_rows > 8) { + start_mi_row = cm->mi_rows >> 1; + start_mi_row &= 0xfffffff8; + mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); + } + end_mi_row = start_mi_row + mi_rows_to_filter; + av1_loop_filter_frame_init(cm, plane_start, plane_end); + + loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, + plane_end, workers, num_workers, lf_sync); +} + +static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { +#if CONFIG_MULTITHREAD + AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; + const int nsync = loop_res_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; + pthread_mutex_lock(mutex); + + while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { + pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)lr_sync; + (void)r; + (void)c; + (void)plane; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void lr_sync_write(void *const lr_sync, int r, int c, + const int sb_cols, int plane) { +#if CONFIG_MULTITHREAD + AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; + const int nsync = loop_res_sync->sync_range; + int cur; + // Only signal when there are enough filtered SB for next row to run. + int sig = 1; + + if (c < sb_cols - 1) { + cur = c; + if (c % nsync) sig = 0; + } else { + cur = sb_cols + nsync; + } + + if (sig) { + pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); + + loop_res_sync->cur_sb_col[plane][r] = cur; + + pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); + pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); + } +#else + (void)lr_sync; + (void)r; + (void)c; + (void)sb_cols; + (void)plane; +#endif // CONFIG_MULTITHREAD +} + +// Allocate memory for loop restoration row synchronization +static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, + int num_workers, int num_rows_lr, + int num_planes, int width) { + lr_sync->rows = num_rows_lr; + lr_sync->num_planes = num_planes; +#if CONFIG_MULTITHREAD + { + int i, j; + + for (j = 0; j < num_planes; j++) { + CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], + aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); + if (lr_sync->mutex_[j]) { + for (i = 0; i < num_rows_lr; ++i) { + pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); + } + } + + CHECK_MEM_ERROR(cm, lr_sync->cond_[j], + aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); + if (lr_sync->cond_[j]) { + for (i = 0; i < num_rows_lr; ++i) { + pthread_cond_init(&lr_sync->cond_[j][i], NULL); + } + } + } + + CHECK_MEM_ERROR(cm, lr_sync->job_mutex, + aom_malloc(sizeof(*(lr_sync->job_mutex)))); + if (lr_sync->job_mutex) { + pthread_mutex_init(lr_sync->job_mutex, NULL); + } + } +#endif // CONFIG_MULTITHREAD + CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, + aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata)))); + + for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { + if (worker_idx < num_workers - 1) { + CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, + (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); + CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, + aom_malloc(sizeof(RestorationLineBuffers))); + + } else { + lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; + lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; + } + } + + lr_sync->num_workers = num_workers; + + for (int j = 0; j < num_planes; j++) { + CHECK_MEM_ERROR( + cm, lr_sync->cur_sb_col[j], + aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); + } + CHECK_MEM_ERROR( + cm, lr_sync->job_queue, + aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); + // Set up nsync. + lr_sync->sync_range = get_lr_sync_range(width); +} + +// Deallocate loop restoration synchronization related mutex and data +void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) { + if (lr_sync != NULL) { + int j; +#if CONFIG_MULTITHREAD + int i; + for (j = 0; j < MAX_MB_PLANE; j++) { + if (lr_sync->mutex_[j] != NULL) { + for (i = 0; i < lr_sync->rows; ++i) { + pthread_mutex_destroy(&lr_sync->mutex_[j][i]); + } + aom_free(lr_sync->mutex_[j]); + } + if (lr_sync->cond_[j] != NULL) { + for (i = 0; i < lr_sync->rows; ++i) { + pthread_cond_destroy(&lr_sync->cond_[j][i]); + } + aom_free(lr_sync->cond_[j]); + } + } + if (lr_sync->job_mutex != NULL) { + pthread_mutex_destroy(lr_sync->job_mutex); + aom_free(lr_sync->job_mutex); + } +#endif // CONFIG_MULTITHREAD + for (j = 0; j < MAX_MB_PLANE; j++) { + aom_free(lr_sync->cur_sb_col[j]); + } + + aom_free(lr_sync->job_queue); + + if (lr_sync->lrworkerdata) { + for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) { + LRWorkerData *const workerdata_data = + lr_sync->lrworkerdata + worker_idx; + + aom_free(workerdata_data->rst_tmpbuf); + aom_free(workerdata_data->rlbs); + } + aom_free(lr_sync->lrworkerdata); + } + + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + av1_zero(*lr_sync); + } +} + +static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, + AV1_COMMON *cm) { + FilterFrameCtxt *ctxt = lr_ctxt->ctxt; + + const int num_planes = av1_num_planes(cm); + AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; + int32_t lr_job_counter[2], num_even_lr_jobs = 0; + lr_sync->jobs_enqueued = 0; + lr_sync->jobs_dequeued = 0; + + for (int plane = 0; plane < num_planes; plane++) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + num_even_lr_jobs = + num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1); + } + lr_job_counter[0] = 0; + lr_job_counter[1] = num_even_lr_jobs; + + for (int plane = 0; plane < num_planes; plane++) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + const int is_uv = plane > 0; + const int ss_y = is_uv && cm->seq_params.subsampling_y; + + AV1PixelRect tile_rect = ctxt[plane].tile_rect; + const int unit_size = ctxt[plane].rsi->restoration_unit_size; + + const int tile_h = tile_rect.bottom - tile_rect.top; + const int ext_size = unit_size * 3 / 2; + + int y0 = 0, i = 0; + while (y0 < tile_h) { + int remaining_h = tile_h - y0; + int h = (remaining_h < ext_size) ? remaining_h : unit_size; + + RestorationTileLimits limits; + limits.v_start = tile_rect.top + y0; + limits.v_end = tile_rect.top + y0 + h; + assert(limits.v_end <= tile_rect.bottom); + // Offset the tile upwards to align with the restoration processing stripe + const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; + limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset); + if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset; + + assert(lr_job_counter[0] <= num_even_lr_jobs); + + lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; + lr_job_queue[lr_job_counter[i & 1]].plane = plane; + lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; + lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; + lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; + if ((i & 1) == 0) { + lr_job_queue[lr_job_counter[i & 1]].v_copy_start = + limits.v_start + RESTORATION_BORDER; + lr_job_queue[lr_job_counter[i & 1]].v_copy_end = + limits.v_end - RESTORATION_BORDER; + if (i == 0) { + assert(limits.v_start == tile_rect.top); + lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top; + } + if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) { + assert(limits.v_end == tile_rect.bottom); + lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom; + } + } else { + lr_job_queue[lr_job_counter[i & 1]].v_copy_start = + AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top); + lr_job_queue[lr_job_counter[i & 1]].v_copy_end = + AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom); + } + lr_job_counter[i & 1]++; + lr_sync->jobs_enqueued++; + + y0 += h; + ++i; + } + } +} + +AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { + AV1LrMTInfo *cur_job_info = NULL; + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(lr_sync->job_mutex); + + if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { + cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; + lr_sync->jobs_dequeued++; + } + + pthread_mutex_unlock(lr_sync->job_mutex); +#else + (void)lr_sync; +#endif + + return cur_job_info; +} + +// Implement row loop restoration for each thread. +static int loop_restoration_row_worker(void *arg1, void *arg2) { + AV1LrSync *const lr_sync = (AV1LrSync *)arg1; + LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; + AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; + FilterFrameCtxt *ctxt = lr_ctxt->ctxt; + int lr_unit_row; + int plane; + const int tile_row = LR_TILE_ROW; + const int tile_col = LR_TILE_COL; + const int tile_cols = LR_TILE_COLS; + const int tile_idx = tile_col + tile_row * tile_cols; + typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, + int vstart, int vend); + static const copy_fun copy_funs[3] = { + aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v + }; + + while (1) { + AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); + if (cur_job_info != NULL) { + RestorationTileLimits limits; + sync_read_fn_t on_sync_read; + sync_write_fn_t on_sync_write; + limits.v_start = cur_job_info->v_start; + limits.v_end = cur_job_info->v_end; + lr_unit_row = cur_job_info->lr_unit_row; + plane = cur_job_info->plane; + const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile; + + // sync_mode == 1 implies only sync read is required in LR Multi-threading + // sync_mode == 0 implies only sync write is required. + on_sync_read = + cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; + on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write + : av1_lr_sync_write_dummy; + + av1_foreach_rest_unit_in_row( + &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row, + ctxt[plane].rsi->restoration_unit_size, unit_idx0, + ctxt[plane].rsi->horz_units_per_tile, + ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane], + lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, + on_sync_write, lr_sync); + + copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left, + ctxt[plane].tile_rect.right, cur_job_info->v_copy_start, + cur_job_info->v_copy_end); + } else { + break; + } + } + return 1; +} + +static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, + AVxWorker *workers, int nworkers, + AV1LrSync *lr_sync, AV1_COMMON *cm) { + FilterFrameCtxt *ctxt = lr_ctxt->ctxt; + + const int num_planes = av1_num_planes(cm); + + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + int num_rows_lr = 0; + + for (int plane = 0; plane < num_planes; plane++) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + + const AV1PixelRect tile_rect = ctxt[plane].tile_rect; + const int max_tile_h = tile_rect.bottom - tile_rect.top; + + const int unit_size = cm->rst_info[plane].restoration_unit_size; + + num_rows_lr = + AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h)); + } + + const int num_workers = nworkers; + int i; + assert(MAX_MB_PLANE == 3); + + if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows || + num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) { + av1_loop_restoration_dealloc(lr_sync, num_workers); + loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes, + cm->width); + } + + // Initialize cur_sb_col to -1 for all SB rows. + for (i = 0; i < num_planes; i++) { + memset(lr_sync->cur_sb_col[i], -1, + sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); + } + + enqueue_lr_jobs(lr_sync, lr_ctxt, cm); + + // Set up looprestoration thread data. + for (i = 0; i < num_workers; ++i) { + AVxWorker *const worker = &workers[i]; + lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; + worker->hook = loop_restoration_row_worker; + worker->data1 = lr_sync; + worker->data2 = &lr_sync->lrworkerdata[i]; + + // Start loopfiltering + if (i == num_workers - 1) { + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } + + // Wait till all rows are finished + for (i = 0; i < num_workers; ++i) { + winterface->sync(&workers[i]); + } +} + +void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int optimized_lr, + AVxWorker *workers, int num_workers, + AV1LrSync *lr_sync, void *lr_ctxt) { + assert(!cm->all_lossless); + + const int num_planes = av1_num_planes(cm); + + AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; + + av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, + optimized_lr, num_planes); + + foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, + cm); +} |