diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/googletest/googlemock/include/gmock/gmock-matchers.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/googletest/googlemock/include/gmock/gmock-matchers.h')
-rw-r--r-- | third_party/googletest/googlemock/include/gmock/gmock-matchers.h | 5615 |
1 files changed, 5615 insertions, 0 deletions
diff --git a/third_party/googletest/googlemock/include/gmock/gmock-matchers.h b/third_party/googletest/googlemock/include/gmock/gmock-matchers.h new file mode 100644 index 0000000000..b5f487b01c --- /dev/null +++ b/third_party/googletest/googlemock/include/gmock/gmock-matchers.h @@ -0,0 +1,5615 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Google Mock - a framework for writing C++ mock classes. +// +// The MATCHER* family of macros can be used in a namespace scope to +// define custom matchers easily. +// +// Basic Usage +// =========== +// +// The syntax +// +// MATCHER(name, description_string) { statements; } +// +// defines a matcher with the given name that executes the statements, +// which must return a bool to indicate if the match succeeds. Inside +// the statements, you can refer to the value being matched by 'arg', +// and refer to its type by 'arg_type'. +// +// The description string documents what the matcher does, and is used +// to generate the failure message when the match fails. Since a +// MATCHER() is usually defined in a header file shared by multiple +// C++ source files, we require the description to be a C-string +// literal to avoid possible side effects. It can be empty, in which +// case we'll use the sequence of words in the matcher name as the +// description. +// +// For example: +// +// MATCHER(IsEven, "") { return (arg % 2) == 0; } +// +// allows you to write +// +// // Expects mock_foo.Bar(n) to be called where n is even. +// EXPECT_CALL(mock_foo, Bar(IsEven())); +// +// or, +// +// // Verifies that the value of some_expression is even. +// EXPECT_THAT(some_expression, IsEven()); +// +// If the above assertion fails, it will print something like: +// +// Value of: some_expression +// Expected: is even +// Actual: 7 +// +// where the description "is even" is automatically calculated from the +// matcher name IsEven. +// +// Argument Type +// ============= +// +// Note that the type of the value being matched (arg_type) is +// determined by the context in which you use the matcher and is +// supplied to you by the compiler, so you don't need to worry about +// declaring it (nor can you). This allows the matcher to be +// polymorphic. For example, IsEven() can be used to match any type +// where the value of "(arg % 2) == 0" can be implicitly converted to +// a bool. In the "Bar(IsEven())" example above, if method Bar() +// takes an int, 'arg_type' will be int; if it takes an unsigned long, +// 'arg_type' will be unsigned long; and so on. +// +// Parameterizing Matchers +// ======================= +// +// Sometimes you'll want to parameterize the matcher. For that you +// can use another macro: +// +// MATCHER_P(name, param_name, description_string) { statements; } +// +// For example: +// +// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } +// +// will allow you to write: +// +// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); +// +// which may lead to this message (assuming n is 10): +// +// Value of: Blah("a") +// Expected: has absolute value 10 +// Actual: -9 +// +// Note that both the matcher description and its parameter are +// printed, making the message human-friendly. +// +// In the matcher definition body, you can write 'foo_type' to +// reference the type of a parameter named 'foo'. For example, in the +// body of MATCHER_P(HasAbsoluteValue, value) above, you can write +// 'value_type' to refer to the type of 'value'. +// +// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to +// support multi-parameter matchers. +// +// Describing Parameterized Matchers +// ================================= +// +// The last argument to MATCHER*() is a string-typed expression. The +// expression can reference all of the matcher's parameters and a +// special bool-typed variable named 'negation'. When 'negation' is +// false, the expression should evaluate to the matcher's description; +// otherwise it should evaluate to the description of the negation of +// the matcher. For example, +// +// using testing::PrintToString; +// +// MATCHER_P2(InClosedRange, low, hi, +// std::string(negation ? "is not" : "is") + " in range [" + +// PrintToString(low) + ", " + PrintToString(hi) + "]") { +// return low <= arg && arg <= hi; +// } +// ... +// EXPECT_THAT(3, InClosedRange(4, 6)); +// EXPECT_THAT(3, Not(InClosedRange(2, 4))); +// +// would generate two failures that contain the text: +// +// Expected: is in range [4, 6] +// ... +// Expected: is not in range [2, 4] +// +// If you specify "" as the description, the failure message will +// contain the sequence of words in the matcher name followed by the +// parameter values printed as a tuple. For example, +// +// MATCHER_P2(InClosedRange, low, hi, "") { ... } +// ... +// EXPECT_THAT(3, InClosedRange(4, 6)); +// EXPECT_THAT(3, Not(InClosedRange(2, 4))); +// +// would generate two failures that contain the text: +// +// Expected: in closed range (4, 6) +// ... +// Expected: not (in closed range (2, 4)) +// +// Types of Matcher Parameters +// =========================== +// +// For the purpose of typing, you can view +// +// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } +// +// as shorthand for +// +// template <typename p1_type, ..., typename pk_type> +// FooMatcherPk<p1_type, ..., pk_type> +// Foo(p1_type p1, ..., pk_type pk) { ... } +// +// When you write Foo(v1, ..., vk), the compiler infers the types of +// the parameters v1, ..., and vk for you. If you are not happy with +// the result of the type inference, you can specify the types by +// explicitly instantiating the template, as in Foo<long, bool>(5, +// false). As said earlier, you don't get to (or need to) specify +// 'arg_type' as that's determined by the context in which the matcher +// is used. You can assign the result of expression Foo(p1, ..., pk) +// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This +// can be useful when composing matchers. +// +// While you can instantiate a matcher template with reference types, +// passing the parameters by pointer usually makes your code more +// readable. If, however, you still want to pass a parameter by +// reference, be aware that in the failure message generated by the +// matcher you will see the value of the referenced object but not its +// address. +// +// Explaining Match Results +// ======================== +// +// Sometimes the matcher description alone isn't enough to explain why +// the match has failed or succeeded. For example, when expecting a +// long string, it can be very helpful to also print the diff between +// the expected string and the actual one. To achieve that, you can +// optionally stream additional information to a special variable +// named result_listener, whose type is a pointer to class +// MatchResultListener: +// +// MATCHER_P(EqualsLongString, str, "") { +// if (arg == str) return true; +// +// *result_listener << "the difference: " +/// << DiffStrings(str, arg); +// return false; +// } +// +// Overloading Matchers +// ==================== +// +// You can overload matchers with different numbers of parameters: +// +// MATCHER_P(Blah, a, description_string1) { ... } +// MATCHER_P2(Blah, a, b, description_string2) { ... } +// +// Caveats +// ======= +// +// When defining a new matcher, you should also consider implementing +// MatcherInterface or using MakePolymorphicMatcher(). These +// approaches require more work than the MATCHER* macros, but also +// give you more control on the types of the value being matched and +// the matcher parameters, which may leads to better compiler error +// messages when the matcher is used wrong. They also allow +// overloading matchers based on parameter types (as opposed to just +// based on the number of parameters). +// +// MATCHER*() can only be used in a namespace scope as templates cannot be +// declared inside of a local class. +// +// More Information +// ================ +// +// To learn more about using these macros, please search for 'MATCHER' +// on +// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md +// +// This file also implements some commonly used argument matchers. More +// matchers can be defined by the user implementing the +// MatcherInterface<T> interface if necessary. +// +// See googletest/include/gtest/gtest-matchers.h for the definition of class +// Matcher, class MatcherInterface, and others. + +// IWYU pragma: private, include "gmock/gmock.h" +// IWYU pragma: friend gmock/.* + +#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ +#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ + +#include <algorithm> +#include <cmath> +#include <initializer_list> +#include <iterator> +#include <limits> +#include <memory> +#include <ostream> // NOLINT +#include <sstream> +#include <string> +#include <type_traits> +#include <utility> +#include <vector> + +#include "gmock/internal/gmock-internal-utils.h" +#include "gmock/internal/gmock-port.h" +#include "gmock/internal/gmock-pp.h" +#include "gtest/gtest.h" + +// MSVC warning C5046 is new as of VS2017 version 15.8. +#if defined(_MSC_VER) && _MSC_VER >= 1915 +#define GMOCK_MAYBE_5046_ 5046 +#else +#define GMOCK_MAYBE_5046_ +#endif + +GTEST_DISABLE_MSC_WARNINGS_PUSH_( + 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by + clients of class B */ + /* Symbol involving type with internal linkage not defined */) + +namespace testing { + +// To implement a matcher Foo for type T, define: +// 1. a class FooMatcherImpl that implements the +// MatcherInterface<T> interface, and +// 2. a factory function that creates a Matcher<T> object from a +// FooMatcherImpl*. +// +// The two-level delegation design makes it possible to allow a user +// to write "v" instead of "Eq(v)" where a Matcher is expected, which +// is impossible if we pass matchers by pointers. It also eases +// ownership management as Matcher objects can now be copied like +// plain values. + +// A match result listener that stores the explanation in a string. +class StringMatchResultListener : public MatchResultListener { + public: + StringMatchResultListener() : MatchResultListener(&ss_) {} + + // Returns the explanation accumulated so far. + std::string str() const { return ss_.str(); } + + // Clears the explanation accumulated so far. + void Clear() { ss_.str(""); } + + private: + ::std::stringstream ss_; + + StringMatchResultListener(const StringMatchResultListener&) = delete; + StringMatchResultListener& operator=(const StringMatchResultListener&) = + delete; +}; + +// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION +// and MUST NOT BE USED IN USER CODE!!! +namespace internal { + +// The MatcherCastImpl class template is a helper for implementing +// MatcherCast(). We need this helper in order to partially +// specialize the implementation of MatcherCast() (C++ allows +// class/struct templates to be partially specialized, but not +// function templates.). + +// This general version is used when MatcherCast()'s argument is a +// polymorphic matcher (i.e. something that can be converted to a +// Matcher but is not one yet; for example, Eq(value)) or a value (for +// example, "hello"). +template <typename T, typename M> +class MatcherCastImpl { + public: + static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { + // M can be a polymorphic matcher, in which case we want to use + // its conversion operator to create Matcher<T>. Or it can be a value + // that should be passed to the Matcher<T>'s constructor. + // + // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a + // polymorphic matcher because it'll be ambiguous if T has an implicit + // constructor from M (this usually happens when T has an implicit + // constructor from any type). + // + // It won't work to unconditionally implicit_cast + // polymorphic_matcher_or_value to Matcher<T> because it won't trigger + // a user-defined conversion from M to T if one exists (assuming M is + // a value). + return CastImpl(polymorphic_matcher_or_value, + std::is_convertible<M, Matcher<T>>{}, + std::is_convertible<M, T>{}); + } + + private: + template <bool Ignore> + static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, + std::true_type /* convertible_to_matcher */, + std::integral_constant<bool, Ignore>) { + // M is implicitly convertible to Matcher<T>, which means that either + // M is a polymorphic matcher or Matcher<T> has an implicit constructor + // from M. In both cases using the implicit conversion will produce a + // matcher. + // + // Even if T has an implicit constructor from M, it won't be called because + // creating Matcher<T> would require a chain of two user-defined conversions + // (first to create T from M and then to create Matcher<T> from T). + return polymorphic_matcher_or_value; + } + + // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic + // matcher. It's a value of a type implicitly convertible to T. Use direct + // initialization to create a matcher. + static Matcher<T> CastImpl(const M& value, + std::false_type /* convertible_to_matcher */, + std::true_type /* convertible_to_T */) { + return Matcher<T>(ImplicitCast_<T>(value)); + } + + // M can't be implicitly converted to either Matcher<T> or T. Attempt to use + // polymorphic matcher Eq(value) in this case. + // + // Note that we first attempt to perform an implicit cast on the value and + // only fall back to the polymorphic Eq() matcher afterwards because the + // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end + // which might be undefined even when Rhs is implicitly convertible to Lhs + // (e.g. std::pair<const int, int> vs. std::pair<int, int>). + // + // We don't define this method inline as we need the declaration of Eq(). + static Matcher<T> CastImpl(const M& value, + std::false_type /* convertible_to_matcher */, + std::false_type /* convertible_to_T */); +}; + +// This more specialized version is used when MatcherCast()'s argument +// is already a Matcher. This only compiles when type T can be +// statically converted to type U. +template <typename T, typename U> +class MatcherCastImpl<T, Matcher<U>> { + public: + static Matcher<T> Cast(const Matcher<U>& source_matcher) { + return Matcher<T>(new Impl(source_matcher)); + } + + private: + class Impl : public MatcherInterface<T> { + public: + explicit Impl(const Matcher<U>& source_matcher) + : source_matcher_(source_matcher) {} + + // We delegate the matching logic to the source matcher. + bool MatchAndExplain(T x, MatchResultListener* listener) const override { + using FromType = typename std::remove_cv<typename std::remove_pointer< + typename std::remove_reference<T>::type>::type>::type; + using ToType = typename std::remove_cv<typename std::remove_pointer< + typename std::remove_reference<U>::type>::type>::type; + // Do not allow implicitly converting base*/& to derived*/&. + static_assert( + // Do not trigger if only one of them is a pointer. That implies a + // regular conversion and not a down_cast. + (std::is_pointer<typename std::remove_reference<T>::type>::value != + std::is_pointer<typename std::remove_reference<U>::type>::value) || + std::is_same<FromType, ToType>::value || + !std::is_base_of<FromType, ToType>::value, + "Can't implicitly convert from <base> to <derived>"); + + // Do the cast to `U` explicitly if necessary. + // Otherwise, let implicit conversions do the trick. + using CastType = + typename std::conditional<std::is_convertible<T&, const U&>::value, + T&, U>::type; + + return source_matcher_.MatchAndExplain(static_cast<CastType>(x), + listener); + } + + void DescribeTo(::std::ostream* os) const override { + source_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + source_matcher_.DescribeNegationTo(os); + } + + private: + const Matcher<U> source_matcher_; + }; +}; + +// This even more specialized version is used for efficiently casting +// a matcher to its own type. +template <typename T> +class MatcherCastImpl<T, Matcher<T>> { + public: + static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } +}; + +// Template specialization for parameterless Matcher. +template <typename Derived> +class MatcherBaseImpl { + public: + MatcherBaseImpl() = default; + + template <typename T> + operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) + return ::testing::Matcher<T>(new + typename Derived::template gmock_Impl<T>()); + } +}; + +// Template specialization for Matcher with parameters. +template <template <typename...> class Derived, typename... Ts> +class MatcherBaseImpl<Derived<Ts...>> { + public: + // Mark the constructor explicit for single argument T to avoid implicit + // conversions. + template <typename E = std::enable_if<sizeof...(Ts) == 1>, + typename E::type* = nullptr> + explicit MatcherBaseImpl(Ts... params) + : params_(std::forward<Ts>(params)...) {} + template <typename E = std::enable_if<sizeof...(Ts) != 1>, + typename = typename E::type> + MatcherBaseImpl(Ts... params) // NOLINT + : params_(std::forward<Ts>(params)...) {} + + template <typename F> + operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) + return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); + } + + private: + template <typename F, std::size_t... tuple_ids> + ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { + return ::testing::Matcher<F>( + new typename Derived<Ts...>::template gmock_Impl<F>( + std::get<tuple_ids>(params_)...)); + } + + const std::tuple<Ts...> params_; +}; + +} // namespace internal + +// In order to be safe and clear, casting between different matcher +// types is done explicitly via MatcherCast<T>(m), which takes a +// matcher m and returns a Matcher<T>. It compiles only when T can be +// statically converted to the argument type of m. +template <typename T, typename M> +inline Matcher<T> MatcherCast(const M& matcher) { + return internal::MatcherCastImpl<T, M>::Cast(matcher); +} + +// This overload handles polymorphic matchers and values only since +// monomorphic matchers are handled by the next one. +template <typename T, typename M> +inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { + return MatcherCast<T>(polymorphic_matcher_or_value); +} + +// This overload handles monomorphic matchers. +// +// In general, if type T can be implicitly converted to type U, we can +// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is +// contravariant): just keep a copy of the original Matcher<U>, convert the +// argument from type T to U, and then pass it to the underlying Matcher<U>. +// The only exception is when U is a reference and T is not, as the +// underlying Matcher<U> may be interested in the argument's address, which +// is not preserved in the conversion from T to U. +template <typename T, typename U> +inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { + // Enforce that T can be implicitly converted to U. + static_assert(std::is_convertible<const T&, const U&>::value, + "T must be implicitly convertible to U"); + // Enforce that we are not converting a non-reference type T to a reference + // type U. + static_assert(std::is_reference<T>::value || !std::is_reference<U>::value, + "cannot convert non reference arg to reference"); + // In case both T and U are arithmetic types, enforce that the + // conversion is not lossy. + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; + constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; + constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; + static_assert( + kTIsOther || kUIsOther || + (internal::LosslessArithmeticConvertible<RawT, RawU>::value), + "conversion of arithmetic types must be lossless"); + return MatcherCast<T>(matcher); +} + +// A<T>() returns a matcher that matches any value of type T. +template <typename T> +Matcher<T> A(); + +// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION +// and MUST NOT BE USED IN USER CODE!!! +namespace internal { + +// If the explanation is not empty, prints it to the ostream. +inline void PrintIfNotEmpty(const std::string& explanation, + ::std::ostream* os) { + if (explanation != "" && os != nullptr) { + *os << ", " << explanation; + } +} + +// Returns true if the given type name is easy to read by a human. +// This is used to decide whether printing the type of a value might +// be helpful. +inline bool IsReadableTypeName(const std::string& type_name) { + // We consider a type name readable if it's short or doesn't contain + // a template or function type. + return (type_name.length() <= 20 || + type_name.find_first_of("<(") == std::string::npos); +} + +// Matches the value against the given matcher, prints the value and explains +// the match result to the listener. Returns the match result. +// 'listener' must not be NULL. +// Value cannot be passed by const reference, because some matchers take a +// non-const argument. +template <typename Value, typename T> +bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, + MatchResultListener* listener) { + if (!listener->IsInterested()) { + // If the listener is not interested, we do not need to construct the + // inner explanation. + return matcher.Matches(value); + } + + StringMatchResultListener inner_listener; + const bool match = matcher.MatchAndExplain(value, &inner_listener); + + UniversalPrint(value, listener->stream()); +#if GTEST_HAS_RTTI + const std::string& type_name = GetTypeName<Value>(); + if (IsReadableTypeName(type_name)) + *listener->stream() << " (of type " << type_name << ")"; +#endif + PrintIfNotEmpty(inner_listener.str(), listener->stream()); + + return match; +} + +// An internal helper class for doing compile-time loop on a tuple's +// fields. +template <size_t N> +class TuplePrefix { + public: + // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true + // if and only if the first N fields of matcher_tuple matches + // the first N fields of value_tuple, respectively. + template <typename MatcherTuple, typename ValueTuple> + static bool Matches(const MatcherTuple& matcher_tuple, + const ValueTuple& value_tuple) { + return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && + std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); + } + + // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) + // describes failures in matching the first N fields of matchers + // against the first N fields of values. If there is no failure, + // nothing will be streamed to os. + template <typename MatcherTuple, typename ValueTuple> + static void ExplainMatchFailuresTo(const MatcherTuple& matchers, + const ValueTuple& values, + ::std::ostream* os) { + // First, describes failures in the first N - 1 fields. + TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); + + // Then describes the failure (if any) in the (N - 1)-th (0-based) + // field. + typename std::tuple_element<N - 1, MatcherTuple>::type matcher = + std::get<N - 1>(matchers); + typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; + const Value& value = std::get<N - 1>(values); + StringMatchResultListener listener; + if (!matcher.MatchAndExplain(value, &listener)) { + *os << " Expected arg #" << N - 1 << ": "; + std::get<N - 1>(matchers).DescribeTo(os); + *os << "\n Actual: "; + // We remove the reference in type Value to prevent the + // universal printer from printing the address of value, which + // isn't interesting to the user most of the time. The + // matcher's MatchAndExplain() method handles the case when + // the address is interesting. + internal::UniversalPrint(value, os); + PrintIfNotEmpty(listener.str(), os); + *os << "\n"; + } + } +}; + +// The base case. +template <> +class TuplePrefix<0> { + public: + template <typename MatcherTuple, typename ValueTuple> + static bool Matches(const MatcherTuple& /* matcher_tuple */, + const ValueTuple& /* value_tuple */) { + return true; + } + + template <typename MatcherTuple, typename ValueTuple> + static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, + const ValueTuple& /* values */, + ::std::ostream* /* os */) {} +}; + +// TupleMatches(matcher_tuple, value_tuple) returns true if and only if +// all matchers in matcher_tuple match the corresponding fields in +// value_tuple. It is a compiler error if matcher_tuple and +// value_tuple have different number of fields or incompatible field +// types. +template <typename MatcherTuple, typename ValueTuple> +bool TupleMatches(const MatcherTuple& matcher_tuple, + const ValueTuple& value_tuple) { + // Makes sure that matcher_tuple and value_tuple have the same + // number of fields. + static_assert(std::tuple_size<MatcherTuple>::value == + std::tuple_size<ValueTuple>::value, + "matcher and value have different numbers of fields"); + return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, + value_tuple); +} + +// Describes failures in matching matchers against values. If there +// is no failure, nothing will be streamed to os. +template <typename MatcherTuple, typename ValueTuple> +void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, + const ValueTuple& values, ::std::ostream* os) { + TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( + matchers, values, os); +} + +// TransformTupleValues and its helper. +// +// TransformTupleValuesHelper hides the internal machinery that +// TransformTupleValues uses to implement a tuple traversal. +template <typename Tuple, typename Func, typename OutIter> +class TransformTupleValuesHelper { + private: + typedef ::std::tuple_size<Tuple> TupleSize; + + public: + // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. + // Returns the final value of 'out' in case the caller needs it. + static OutIter Run(Func f, const Tuple& t, OutIter out) { + return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); + } + + private: + template <typename Tup, size_t kRemainingSize> + struct IterateOverTuple { + OutIter operator()(Func f, const Tup& t, OutIter out) const { + *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); + return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); + } + }; + template <typename Tup> + struct IterateOverTuple<Tup, 0> { + OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const { + return out; + } + }; +}; + +// Successively invokes 'f(element)' on each element of the tuple 't', +// appending each result to the 'out' iterator. Returns the final value +// of 'out'. +template <typename Tuple, typename Func, typename OutIter> +OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { + return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); +} + +// Implements _, a matcher that matches any value of any +// type. This is a polymorphic matcher, so we need a template type +// conversion operator to make it appearing as a Matcher<T> for any +// type T. +class AnythingMatcher { + public: + using is_gtest_matcher = void; + + template <typename T> + bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { + return true; + } + void DescribeTo(std::ostream* os) const { *os << "is anything"; } + void DescribeNegationTo(::std::ostream* os) const { + // This is mostly for completeness' sake, as it's not very useful + // to write Not(A<bool>()). However we cannot completely rule out + // such a possibility, and it doesn't hurt to be prepared. + *os << "never matches"; + } +}; + +// Implements the polymorphic IsNull() matcher, which matches any raw or smart +// pointer that is NULL. +class IsNullMatcher { + public: + template <typename Pointer> + bool MatchAndExplain(const Pointer& p, + MatchResultListener* /* listener */) const { + return p == nullptr; + } + + void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } + void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } +}; + +// Implements the polymorphic NotNull() matcher, which matches any raw or smart +// pointer that is not NULL. +class NotNullMatcher { + public: + template <typename Pointer> + bool MatchAndExplain(const Pointer& p, + MatchResultListener* /* listener */) const { + return p != nullptr; + } + + void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } + void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } +}; + +// Ref(variable) matches any argument that is a reference to +// 'variable'. This matcher is polymorphic as it can match any +// super type of the type of 'variable'. +// +// The RefMatcher template class implements Ref(variable). It can +// only be instantiated with a reference type. This prevents a user +// from mistakenly using Ref(x) to match a non-reference function +// argument. For example, the following will righteously cause a +// compiler error: +// +// int n; +// Matcher<int> m1 = Ref(n); // This won't compile. +// Matcher<int&> m2 = Ref(n); // This will compile. +template <typename T> +class RefMatcher; + +template <typename T> +class RefMatcher<T&> { + // Google Mock is a generic framework and thus needs to support + // mocking any function types, including those that take non-const + // reference arguments. Therefore the template parameter T (and + // Super below) can be instantiated to either a const type or a + // non-const type. + public: + // RefMatcher() takes a T& instead of const T&, as we want the + // compiler to catch using Ref(const_value) as a matcher for a + // non-const reference. + explicit RefMatcher(T& x) : object_(x) {} // NOLINT + + template <typename Super> + operator Matcher<Super&>() const { + // By passing object_ (type T&) to Impl(), which expects a Super&, + // we make sure that Super is a super type of T. In particular, + // this catches using Ref(const_value) as a matcher for a + // non-const reference, as you cannot implicitly convert a const + // reference to a non-const reference. + return MakeMatcher(new Impl<Super>(object_)); + } + + private: + template <typename Super> + class Impl : public MatcherInterface<Super&> { + public: + explicit Impl(Super& x) : object_(x) {} // NOLINT + + // MatchAndExplain() takes a Super& (as opposed to const Super&) + // in order to match the interface MatcherInterface<Super&>. + bool MatchAndExplain(Super& x, + MatchResultListener* listener) const override { + *listener << "which is located @" << static_cast<const void*>(&x); + return &x == &object_; + } + + void DescribeTo(::std::ostream* os) const override { + *os << "references the variable "; + UniversalPrinter<Super&>::Print(object_, os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "does not reference the variable "; + UniversalPrinter<Super&>::Print(object_, os); + } + + private: + const Super& object_; + }; + + T& object_; +}; + +// Polymorphic helper functions for narrow and wide string matchers. +inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { + return String::CaseInsensitiveCStringEquals(lhs, rhs); +} + +inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, + const wchar_t* rhs) { + return String::CaseInsensitiveWideCStringEquals(lhs, rhs); +} + +// String comparison for narrow or wide strings that can have embedded NUL +// characters. +template <typename StringType> +bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { + // Are the heads equal? + if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { + return false; + } + + // Skip the equal heads. + const typename StringType::value_type nul = 0; + const size_t i1 = s1.find(nul), i2 = s2.find(nul); + + // Are we at the end of either s1 or s2? + if (i1 == StringType::npos || i2 == StringType::npos) { + return i1 == i2; + } + + // Are the tails equal? + return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); +} + +// String matchers. + +// Implements equality-based string matchers like StrEq, StrCaseNe, and etc. +template <typename StringType> +class StrEqualityMatcher { + public: + StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) + : string_(std::move(str)), + expect_eq_(expect_eq), + case_sensitive_(case_sensitive) {} + +#if GTEST_INTERNAL_HAS_STRING_VIEW + bool MatchAndExplain(const internal::StringView& s, + MatchResultListener* listener) const { + // This should fail to compile if StringView is used with wide + // strings. + const StringType& str = std::string(s); + return MatchAndExplain(str, listener); + } +#endif // GTEST_INTERNAL_HAS_STRING_VIEW + + // Accepts pointer types, particularly: + // const char* + // char* + // const wchar_t* + // wchar_t* + template <typename CharType> + bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { + if (s == nullptr) { + return !expect_eq_; + } + return MatchAndExplain(StringType(s), listener); + } + + // Matches anything that can convert to StringType. + // + // This is a template, not just a plain function with const StringType&, + // because StringView has some interfering non-explicit constructors. + template <typename MatcheeStringType> + bool MatchAndExplain(const MatcheeStringType& s, + MatchResultListener* /* listener */) const { + const StringType s2(s); + const bool eq = case_sensitive_ ? s2 == string_ + : CaseInsensitiveStringEquals(s2, string_); + return expect_eq_ == eq; + } + + void DescribeTo(::std::ostream* os) const { + DescribeToHelper(expect_eq_, os); + } + + void DescribeNegationTo(::std::ostream* os) const { + DescribeToHelper(!expect_eq_, os); + } + + private: + void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { + *os << (expect_eq ? "is " : "isn't "); + *os << "equal to "; + if (!case_sensitive_) { + *os << "(ignoring case) "; + } + UniversalPrint(string_, os); + } + + const StringType string_; + const bool expect_eq_; + const bool case_sensitive_; +}; + +// Implements the polymorphic HasSubstr(substring) matcher, which +// can be used as a Matcher<T> as long as T can be converted to a +// string. +template <typename StringType> +class HasSubstrMatcher { + public: + explicit HasSubstrMatcher(const StringType& substring) + : substring_(substring) {} + +#if GTEST_INTERNAL_HAS_STRING_VIEW + bool MatchAndExplain(const internal::StringView& s, + MatchResultListener* listener) const { + // This should fail to compile if StringView is used with wide + // strings. + const StringType& str = std::string(s); + return MatchAndExplain(str, listener); + } +#endif // GTEST_INTERNAL_HAS_STRING_VIEW + + // Accepts pointer types, particularly: + // const char* + // char* + // const wchar_t* + // wchar_t* + template <typename CharType> + bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { + return s != nullptr && MatchAndExplain(StringType(s), listener); + } + + // Matches anything that can convert to StringType. + // + // This is a template, not just a plain function with const StringType&, + // because StringView has some interfering non-explicit constructors. + template <typename MatcheeStringType> + bool MatchAndExplain(const MatcheeStringType& s, + MatchResultListener* /* listener */) const { + return StringType(s).find(substring_) != StringType::npos; + } + + // Describes what this matcher matches. + void DescribeTo(::std::ostream* os) const { + *os << "has substring "; + UniversalPrint(substring_, os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "has no substring "; + UniversalPrint(substring_, os); + } + + private: + const StringType substring_; +}; + +// Implements the polymorphic StartsWith(substring) matcher, which +// can be used as a Matcher<T> as long as T can be converted to a +// string. +template <typename StringType> +class StartsWithMatcher { + public: + explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {} + +#if GTEST_INTERNAL_HAS_STRING_VIEW + bool MatchAndExplain(const internal::StringView& s, + MatchResultListener* listener) const { + // This should fail to compile if StringView is used with wide + // strings. + const StringType& str = std::string(s); + return MatchAndExplain(str, listener); + } +#endif // GTEST_INTERNAL_HAS_STRING_VIEW + + // Accepts pointer types, particularly: + // const char* + // char* + // const wchar_t* + // wchar_t* + template <typename CharType> + bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { + return s != nullptr && MatchAndExplain(StringType(s), listener); + } + + // Matches anything that can convert to StringType. + // + // This is a template, not just a plain function with const StringType&, + // because StringView has some interfering non-explicit constructors. + template <typename MatcheeStringType> + bool MatchAndExplain(const MatcheeStringType& s, + MatchResultListener* /* listener */) const { + const StringType& s2(s); + return s2.length() >= prefix_.length() && + s2.substr(0, prefix_.length()) == prefix_; + } + + void DescribeTo(::std::ostream* os) const { + *os << "starts with "; + UniversalPrint(prefix_, os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "doesn't start with "; + UniversalPrint(prefix_, os); + } + + private: + const StringType prefix_; +}; + +// Implements the polymorphic EndsWith(substring) matcher, which +// can be used as a Matcher<T> as long as T can be converted to a +// string. +template <typename StringType> +class EndsWithMatcher { + public: + explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} + +#if GTEST_INTERNAL_HAS_STRING_VIEW + bool MatchAndExplain(const internal::StringView& s, + MatchResultListener* listener) const { + // This should fail to compile if StringView is used with wide + // strings. + const StringType& str = std::string(s); + return MatchAndExplain(str, listener); + } +#endif // GTEST_INTERNAL_HAS_STRING_VIEW + + // Accepts pointer types, particularly: + // const char* + // char* + // const wchar_t* + // wchar_t* + template <typename CharType> + bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { + return s != nullptr && MatchAndExplain(StringType(s), listener); + } + + // Matches anything that can convert to StringType. + // + // This is a template, not just a plain function with const StringType&, + // because StringView has some interfering non-explicit constructors. + template <typename MatcheeStringType> + bool MatchAndExplain(const MatcheeStringType& s, + MatchResultListener* /* listener */) const { + const StringType& s2(s); + return s2.length() >= suffix_.length() && + s2.substr(s2.length() - suffix_.length()) == suffix_; + } + + void DescribeTo(::std::ostream* os) const { + *os << "ends with "; + UniversalPrint(suffix_, os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "doesn't end with "; + UniversalPrint(suffix_, os); + } + + private: + const StringType suffix_; +}; + +// Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be +// used as a Matcher<T> as long as T can be converted to a string. +class WhenBase64UnescapedMatcher { + public: + using is_gtest_matcher = void; + + explicit WhenBase64UnescapedMatcher( + const Matcher<const std::string&>& internal_matcher) + : internal_matcher_(internal_matcher) {} + + // Matches anything that can convert to std::string. + template <typename MatcheeStringType> + bool MatchAndExplain(const MatcheeStringType& s, + MatchResultListener* listener) const { + const std::string s2(s); // NOLINT (needed for working with string_view). + std::string unescaped; + if (!internal::Base64Unescape(s2, &unescaped)) { + if (listener != nullptr) { + *listener << "is not a valid base64 escaped string"; + } + return false; + } + return MatchPrintAndExplain(unescaped, internal_matcher_, listener); + } + + void DescribeTo(::std::ostream* os) const { + *os << "matches after Base64Unescape "; + internal_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "does not match after Base64Unescape "; + internal_matcher_.DescribeTo(os); + } + + private: + const Matcher<const std::string&> internal_matcher_; +}; + +// Implements a matcher that compares the two fields of a 2-tuple +// using one of the ==, <=, <, etc, operators. The two fields being +// compared don't have to have the same type. +// +// The matcher defined here is polymorphic (for example, Eq() can be +// used to match a std::tuple<int, short>, a std::tuple<const long&, double>, +// etc). Therefore we use a template type conversion operator in the +// implementation. +template <typename D, typename Op> +class PairMatchBase { + public: + template <typename T1, typename T2> + operator Matcher<::std::tuple<T1, T2>>() const { + return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); + } + template <typename T1, typename T2> + operator Matcher<const ::std::tuple<T1, T2>&>() const { + return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); + } + + private: + static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT + return os << D::Desc(); + } + + template <typename Tuple> + class Impl : public MatcherInterface<Tuple> { + public: + bool MatchAndExplain(Tuple args, + MatchResultListener* /* listener */) const override { + return Op()(::std::get<0>(args), ::std::get<1>(args)); + } + void DescribeTo(::std::ostream* os) const override { + *os << "are " << GetDesc; + } + void DescribeNegationTo(::std::ostream* os) const override { + *os << "aren't " << GetDesc; + } + }; +}; + +class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { + public: + static const char* Desc() { return "an equal pair"; } +}; +class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { + public: + static const char* Desc() { return "an unequal pair"; } +}; +class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { + public: + static const char* Desc() { return "a pair where the first < the second"; } +}; +class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { + public: + static const char* Desc() { return "a pair where the first > the second"; } +}; +class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { + public: + static const char* Desc() { return "a pair where the first <= the second"; } +}; +class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { + public: + static const char* Desc() { return "a pair where the first >= the second"; } +}; + +// Implements the Not(...) matcher for a particular argument type T. +// We do not nest it inside the NotMatcher class template, as that +// will prevent different instantiations of NotMatcher from sharing +// the same NotMatcherImpl<T> class. +template <typename T> +class NotMatcherImpl : public MatcherInterface<const T&> { + public: + explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} + + bool MatchAndExplain(const T& x, + MatchResultListener* listener) const override { + return !matcher_.MatchAndExplain(x, listener); + } + + void DescribeTo(::std::ostream* os) const override { + matcher_.DescribeNegationTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + matcher_.DescribeTo(os); + } + + private: + const Matcher<T> matcher_; +}; + +// Implements the Not(m) matcher, which matches a value that doesn't +// match matcher m. +template <typename InnerMatcher> +class NotMatcher { + public: + explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} + + // This template type conversion operator allows Not(m) to be used + // to match any type m can match. + template <typename T> + operator Matcher<T>() const { + return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); + } + + private: + InnerMatcher matcher_; +}; + +// Implements the AllOf(m1, m2) matcher for a particular argument type +// T. We do not nest it inside the BothOfMatcher class template, as +// that will prevent different instantiations of BothOfMatcher from +// sharing the same BothOfMatcherImpl<T> class. +template <typename T> +class AllOfMatcherImpl : public MatcherInterface<const T&> { + public: + explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers) + : matchers_(std::move(matchers)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "("; + for (size_t i = 0; i < matchers_.size(); ++i) { + if (i != 0) *os << ") and ("; + matchers_[i].DescribeTo(os); + } + *os << ")"; + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "("; + for (size_t i = 0; i < matchers_.size(); ++i) { + if (i != 0) *os << ") or ("; + matchers_[i].DescribeNegationTo(os); + } + *os << ")"; + } + + bool MatchAndExplain(const T& x, + MatchResultListener* listener) const override { + // If either matcher1_ or matcher2_ doesn't match x, we only need + // to explain why one of them fails. + std::string all_match_result; + + for (size_t i = 0; i < matchers_.size(); ++i) { + StringMatchResultListener slistener; + if (matchers_[i].MatchAndExplain(x, &slistener)) { + if (all_match_result.empty()) { + all_match_result = slistener.str(); + } else { + std::string result = slistener.str(); + if (!result.empty()) { + all_match_result += ", and "; + all_match_result += result; + } + } + } else { + *listener << slistener.str(); + return false; + } + } + + // Otherwise we need to explain why *both* of them match. + *listener << all_match_result; + return true; + } + + private: + const std::vector<Matcher<T>> matchers_; +}; + +// VariadicMatcher is used for the variadic implementation of +// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). +// CombiningMatcher<T> is used to recursively combine the provided matchers +// (of type Args...). +template <template <typename T> class CombiningMatcher, typename... Args> +class VariadicMatcher { + public: + VariadicMatcher(const Args&... matchers) // NOLINT + : matchers_(matchers...) { + static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); + } + + VariadicMatcher(const VariadicMatcher&) = default; + VariadicMatcher& operator=(const VariadicMatcher&) = delete; + + // This template type conversion operator allows an + // VariadicMatcher<Matcher1, Matcher2...> object to match any type that + // all of the provided matchers (Matcher1, Matcher2, ...) can match. + template <typename T> + operator Matcher<T>() const { + std::vector<Matcher<T>> values; + CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); + return Matcher<T>(new CombiningMatcher<T>(std::move(values))); + } + + private: + template <typename T, size_t I> + void CreateVariadicMatcher(std::vector<Matcher<T>>* values, + std::integral_constant<size_t, I>) const { + values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); + CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); + } + + template <typename T> + void CreateVariadicMatcher( + std::vector<Matcher<T>>*, + std::integral_constant<size_t, sizeof...(Args)>) const {} + + std::tuple<Args...> matchers_; +}; + +template <typename... Args> +using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; + +// Implements the AnyOf(m1, m2) matcher for a particular argument type +// T. We do not nest it inside the AnyOfMatcher class template, as +// that will prevent different instantiations of AnyOfMatcher from +// sharing the same EitherOfMatcherImpl<T> class. +template <typename T> +class AnyOfMatcherImpl : public MatcherInterface<const T&> { + public: + explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers) + : matchers_(std::move(matchers)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "("; + for (size_t i = 0; i < matchers_.size(); ++i) { + if (i != 0) *os << ") or ("; + matchers_[i].DescribeTo(os); + } + *os << ")"; + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "("; + for (size_t i = 0; i < matchers_.size(); ++i) { + if (i != 0) *os << ") and ("; + matchers_[i].DescribeNegationTo(os); + } + *os << ")"; + } + + bool MatchAndExplain(const T& x, + MatchResultListener* listener) const override { + std::string no_match_result; + + // If either matcher1_ or matcher2_ matches x, we just need to + // explain why *one* of them matches. + for (size_t i = 0; i < matchers_.size(); ++i) { + StringMatchResultListener slistener; + if (matchers_[i].MatchAndExplain(x, &slistener)) { + *listener << slistener.str(); + return true; + } else { + if (no_match_result.empty()) { + no_match_result = slistener.str(); + } else { + std::string result = slistener.str(); + if (!result.empty()) { + no_match_result += ", and "; + no_match_result += result; + } + } + } + } + + // Otherwise we need to explain why *both* of them fail. + *listener << no_match_result; + return false; + } + + private: + const std::vector<Matcher<T>> matchers_; +}; + +// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). +template <typename... Args> +using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; + +// ConditionalMatcher is the implementation of Conditional(cond, m1, m2) +template <typename MatcherTrue, typename MatcherFalse> +class ConditionalMatcher { + public: + ConditionalMatcher(bool condition, MatcherTrue matcher_true, + MatcherFalse matcher_false) + : condition_(condition), + matcher_true_(std::move(matcher_true)), + matcher_false_(std::move(matcher_false)) {} + + template <typename T> + operator Matcher<T>() const { // NOLINT(runtime/explicit) + return condition_ ? SafeMatcherCast<T>(matcher_true_) + : SafeMatcherCast<T>(matcher_false_); + } + + private: + bool condition_; + MatcherTrue matcher_true_; + MatcherFalse matcher_false_; +}; + +// Wrapper for implementation of Any/AllOfArray(). +template <template <class> class MatcherImpl, typename T> +class SomeOfArrayMatcher { + public: + // Constructs the matcher from a sequence of element values or + // element matchers. + template <typename Iter> + SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} + + template <typename U> + operator Matcher<U>() const { // NOLINT + using RawU = typename std::decay<U>::type; + std::vector<Matcher<RawU>> matchers; + for (const auto& matcher : matchers_) { + matchers.push_back(MatcherCast<RawU>(matcher)); + } + return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); + } + + private: + const ::std::vector<T> matchers_; +}; + +template <typename T> +using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; + +template <typename T> +using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; + +// Used for implementing Truly(pred), which turns a predicate into a +// matcher. +template <typename Predicate> +class TrulyMatcher { + public: + explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} + + // This method template allows Truly(pred) to be used as a matcher + // for type T where T is the argument type of predicate 'pred'. The + // argument is passed by reference as the predicate may be + // interested in the address of the argument. + template <typename T> + bool MatchAndExplain(T& x, // NOLINT + MatchResultListener* listener) const { + // Without the if-statement, MSVC sometimes warns about converting + // a value to bool (warning 4800). + // + // We cannot write 'return !!predicate_(x);' as that doesn't work + // when predicate_(x) returns a class convertible to bool but + // having no operator!(). + if (predicate_(x)) return true; + *listener << "didn't satisfy the given predicate"; + return false; + } + + void DescribeTo(::std::ostream* os) const { + *os << "satisfies the given predicate"; + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "doesn't satisfy the given predicate"; + } + + private: + Predicate predicate_; +}; + +// Used for implementing Matches(matcher), which turns a matcher into +// a predicate. +template <typename M> +class MatcherAsPredicate { + public: + explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} + + // This template operator() allows Matches(m) to be used as a + // predicate on type T where m is a matcher on type T. + // + // The argument x is passed by reference instead of by value, as + // some matcher may be interested in its address (e.g. as in + // Matches(Ref(n))(x)). + template <typename T> + bool operator()(const T& x) const { + // We let matcher_ commit to a particular type here instead of + // when the MatcherAsPredicate object was constructed. This + // allows us to write Matches(m) where m is a polymorphic matcher + // (e.g. Eq(5)). + // + // If we write Matcher<T>(matcher_).Matches(x) here, it won't + // compile when matcher_ has type Matcher<const T&>; if we write + // Matcher<const T&>(matcher_).Matches(x) here, it won't compile + // when matcher_ has type Matcher<T>; if we just write + // matcher_.Matches(x), it won't compile when matcher_ is + // polymorphic, e.g. Eq(5). + // + // MatcherCast<const T&>() is necessary for making the code work + // in all of the above situations. + return MatcherCast<const T&>(matcher_).Matches(x); + } + + private: + M matcher_; +}; + +// For implementing ASSERT_THAT() and EXPECT_THAT(). The template +// argument M must be a type that can be converted to a matcher. +template <typename M> +class PredicateFormatterFromMatcher { + public: + explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} + + // This template () operator allows a PredicateFormatterFromMatcher + // object to act as a predicate-formatter suitable for using with + // Google Test's EXPECT_PRED_FORMAT1() macro. + template <typename T> + AssertionResult operator()(const char* value_text, const T& x) const { + // We convert matcher_ to a Matcher<const T&> *now* instead of + // when the PredicateFormatterFromMatcher object was constructed, + // as matcher_ may be polymorphic (e.g. NotNull()) and we won't + // know which type to instantiate it to until we actually see the + // type of x here. + // + // We write SafeMatcherCast<const T&>(matcher_) instead of + // Matcher<const T&>(matcher_), as the latter won't compile when + // matcher_ has type Matcher<T> (e.g. An<int>()). + // We don't write MatcherCast<const T&> either, as that allows + // potentially unsafe downcasting of the matcher argument. + const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); + + // The expected path here is that the matcher should match (i.e. that most + // tests pass) so optimize for this case. + if (matcher.Matches(x)) { + return AssertionSuccess(); + } + + ::std::stringstream ss; + ss << "Value of: " << value_text << "\n" + << "Expected: "; + matcher.DescribeTo(&ss); + + // Rerun the matcher to "PrintAndExplain" the failure. + StringMatchResultListener listener; + if (MatchPrintAndExplain(x, matcher, &listener)) { + ss << "\n The matcher failed on the initial attempt; but passed when " + "rerun to generate the explanation."; + } + ss << "\n Actual: " << listener.str(); + return AssertionFailure() << ss.str(); + } + + private: + const M matcher_; +}; + +// A helper function for converting a matcher to a predicate-formatter +// without the user needing to explicitly write the type. This is +// used for implementing ASSERT_THAT() and EXPECT_THAT(). +// Implementation detail: 'matcher' is received by-value to force decaying. +template <typename M> +inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher( + M matcher) { + return PredicateFormatterFromMatcher<M>(std::move(matcher)); +} + +// Implements the polymorphic IsNan() matcher, which matches any floating type +// value that is Nan. +class IsNanMatcher { + public: + template <typename FloatType> + bool MatchAndExplain(const FloatType& f, + MatchResultListener* /* listener */) const { + return (::std::isnan)(f); + } + + void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } + void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; } +}; + +// Implements the polymorphic floating point equality matcher, which matches +// two float values using ULP-based approximation or, optionally, a +// user-specified epsilon. The template is meant to be instantiated with +// FloatType being either float or double. +template <typename FloatType> +class FloatingEqMatcher { + public: + // Constructor for FloatingEqMatcher. + // The matcher's input will be compared with expected. The matcher treats two + // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, + // equality comparisons between NANs will always return false. We specify a + // negative max_abs_error_ term to indicate that ULP-based approximation will + // be used for comparison. + FloatingEqMatcher(FloatType expected, bool nan_eq_nan) + : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {} + + // Constructor that supports a user-specified max_abs_error that will be used + // for comparison instead of ULP-based approximation. The max absolute + // should be non-negative. + FloatingEqMatcher(FloatType expected, bool nan_eq_nan, + FloatType max_abs_error) + : expected_(expected), + nan_eq_nan_(nan_eq_nan), + max_abs_error_(max_abs_error) { + GTEST_CHECK_(max_abs_error >= 0) + << ", where max_abs_error is" << max_abs_error; + } + + // Implements floating point equality matcher as a Matcher<T>. + template <typename T> + class Impl : public MatcherInterface<T> { + public: + Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) + : expected_(expected), + nan_eq_nan_(nan_eq_nan), + max_abs_error_(max_abs_error) {} + + bool MatchAndExplain(T value, + MatchResultListener* listener) const override { + const FloatingPoint<FloatType> actual(value), expected(expected_); + + // Compares NaNs first, if nan_eq_nan_ is true. + if (actual.is_nan() || expected.is_nan()) { + if (actual.is_nan() && expected.is_nan()) { + return nan_eq_nan_; + } + // One is nan; the other is not nan. + return false; + } + if (HasMaxAbsError()) { + // We perform an equality check so that inf will match inf, regardless + // of error bounds. If the result of value - expected_ would result in + // overflow or if either value is inf, the default result is infinity, + // which should only match if max_abs_error_ is also infinity. + if (value == expected_) { + return true; + } + + const FloatType diff = value - expected_; + if (::std::fabs(diff) <= max_abs_error_) { + return true; + } + + if (listener->IsInterested()) { + *listener << "which is " << diff << " from " << expected_; + } + return false; + } else { + return actual.AlmostEquals(expected); + } + } + + void DescribeTo(::std::ostream* os) const override { + // os->precision() returns the previously set precision, which we + // store to restore the ostream to its original configuration + // after outputting. + const ::std::streamsize old_precision = + os->precision(::std::numeric_limits<FloatType>::digits10 + 2); + if (FloatingPoint<FloatType>(expected_).is_nan()) { + if (nan_eq_nan_) { + *os << "is NaN"; + } else { + *os << "never matches"; + } + } else { + *os << "is approximately " << expected_; + if (HasMaxAbsError()) { + *os << " (absolute error <= " << max_abs_error_ << ")"; + } + } + os->precision(old_precision); + } + + void DescribeNegationTo(::std::ostream* os) const override { + // As before, get original precision. + const ::std::streamsize old_precision = + os->precision(::std::numeric_limits<FloatType>::digits10 + 2); + if (FloatingPoint<FloatType>(expected_).is_nan()) { + if (nan_eq_nan_) { + *os << "isn't NaN"; + } else { + *os << "is anything"; + } + } else { + *os << "isn't approximately " << expected_; + if (HasMaxAbsError()) { + *os << " (absolute error > " << max_abs_error_ << ")"; + } + } + // Restore original precision. + os->precision(old_precision); + } + + private: + bool HasMaxAbsError() const { return max_abs_error_ >= 0; } + + const FloatType expected_; + const bool nan_eq_nan_; + // max_abs_error will be used for value comparison when >= 0. + const FloatType max_abs_error_; + }; + + // The following 3 type conversion operators allow FloatEq(expected) and + // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a + // Matcher<const float&>, or a Matcher<float&>, but nothing else. + operator Matcher<FloatType>() const { + return MakeMatcher( + new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); + } + + operator Matcher<const FloatType&>() const { + return MakeMatcher( + new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); + } + + operator Matcher<FloatType&>() const { + return MakeMatcher( + new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); + } + + private: + const FloatType expected_; + const bool nan_eq_nan_; + // max_abs_error will be used for value comparison when >= 0. + const FloatType max_abs_error_; +}; + +// A 2-tuple ("binary") wrapper around FloatingEqMatcher: +// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) +// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) +// against y. The former implements "Eq", the latter "Near". At present, there +// is no version that compares NaNs as equal. +template <typename FloatType> +class FloatingEq2Matcher { + public: + FloatingEq2Matcher() { Init(-1, false); } + + explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } + + explicit FloatingEq2Matcher(FloatType max_abs_error) { + Init(max_abs_error, false); + } + + FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { + Init(max_abs_error, nan_eq_nan); + } + + template <typename T1, typename T2> + operator Matcher<::std::tuple<T1, T2>>() const { + return MakeMatcher( + new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); + } + template <typename T1, typename T2> + operator Matcher<const ::std::tuple<T1, T2>&>() const { + return MakeMatcher( + new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); + } + + private: + static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT + return os << "an almost-equal pair"; + } + + template <typename Tuple> + class Impl : public MatcherInterface<Tuple> { + public: + Impl(FloatType max_abs_error, bool nan_eq_nan) + : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} + + bool MatchAndExplain(Tuple args, + MatchResultListener* listener) const override { + if (max_abs_error_ == -1) { + FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); + return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( + ::std::get<1>(args), listener); + } else { + FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, + max_abs_error_); + return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( + ::std::get<1>(args), listener); + } + } + void DescribeTo(::std::ostream* os) const override { + *os << "are " << GetDesc; + } + void DescribeNegationTo(::std::ostream* os) const override { + *os << "aren't " << GetDesc; + } + + private: + FloatType max_abs_error_; + const bool nan_eq_nan_; + }; + + void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { + max_abs_error_ = max_abs_error_val; + nan_eq_nan_ = nan_eq_nan_val; + } + FloatType max_abs_error_; + bool nan_eq_nan_; +}; + +// Implements the Pointee(m) matcher for matching a pointer whose +// pointee matches matcher m. The pointer can be either raw or smart. +template <typename InnerMatcher> +class PointeeMatcher { + public: + explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} + + // This type conversion operator template allows Pointee(m) to be + // used as a matcher for any pointer type whose pointee type is + // compatible with the inner matcher, where type Pointer can be + // either a raw pointer or a smart pointer. + // + // The reason we do this instead of relying on + // MakePolymorphicMatcher() is that the latter is not flexible + // enough for implementing the DescribeTo() method of Pointee(). + template <typename Pointer> + operator Matcher<Pointer>() const { + return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); + } + + private: + // The monomorphic implementation that works for a particular pointer type. + template <typename Pointer> + class Impl : public MatcherInterface<Pointer> { + public: + using Pointee = + typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( + Pointer)>::element_type; + + explicit Impl(const InnerMatcher& matcher) + : matcher_(MatcherCast<const Pointee&>(matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "points to a value that "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "does not point to a value that "; + matcher_.DescribeTo(os); + } + + bool MatchAndExplain(Pointer pointer, + MatchResultListener* listener) const override { + if (GetRawPointer(pointer) == nullptr) return false; + + *listener << "which points to "; + return MatchPrintAndExplain(*pointer, matcher_, listener); + } + + private: + const Matcher<const Pointee&> matcher_; + }; + + const InnerMatcher matcher_; +}; + +// Implements the Pointer(m) matcher +// Implements the Pointer(m) matcher for matching a pointer that matches matcher +// m. The pointer can be either raw or smart, and will match `m` against the +// raw pointer. +template <typename InnerMatcher> +class PointerMatcher { + public: + explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} + + // This type conversion operator template allows Pointer(m) to be + // used as a matcher for any pointer type whose pointer type is + // compatible with the inner matcher, where type PointerType can be + // either a raw pointer or a smart pointer. + // + // The reason we do this instead of relying on + // MakePolymorphicMatcher() is that the latter is not flexible + // enough for implementing the DescribeTo() method of Pointer(). + template <typename PointerType> + operator Matcher<PointerType>() const { // NOLINT + return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); + } + + private: + // The monomorphic implementation that works for a particular pointer type. + template <typename PointerType> + class Impl : public MatcherInterface<PointerType> { + public: + using Pointer = + const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( + PointerType)>::element_type*; + + explicit Impl(const InnerMatcher& matcher) + : matcher_(MatcherCast<Pointer>(matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "is a pointer that "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "is not a pointer that "; + matcher_.DescribeTo(os); + } + + bool MatchAndExplain(PointerType pointer, + MatchResultListener* listener) const override { + *listener << "which is a pointer that "; + Pointer p = GetRawPointer(pointer); + return MatchPrintAndExplain(p, matcher_, listener); + } + + private: + Matcher<Pointer> matcher_; + }; + + const InnerMatcher matcher_; +}; + +#if GTEST_HAS_RTTI +// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or +// reference that matches inner_matcher when dynamic_cast<T> is applied. +// The result of dynamic_cast<To> is forwarded to the inner matcher. +// If To is a pointer and the cast fails, the inner matcher will receive NULL. +// If To is a reference and the cast fails, this matcher returns false +// immediately. +template <typename To> +class WhenDynamicCastToMatcherBase { + public: + explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) + : matcher_(matcher) {} + + void DescribeTo(::std::ostream* os) const { + GetCastTypeDescription(os); + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const { + GetCastTypeDescription(os); + matcher_.DescribeNegationTo(os); + } + + protected: + const Matcher<To> matcher_; + + static std::string GetToName() { return GetTypeName<To>(); } + + private: + static void GetCastTypeDescription(::std::ostream* os) { + *os << "when dynamic_cast to " << GetToName() << ", "; + } +}; + +// Primary template. +// To is a pointer. Cast and forward the result. +template <typename To> +class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { + public: + explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) + : WhenDynamicCastToMatcherBase<To>(matcher) {} + + template <typename From> + bool MatchAndExplain(From from, MatchResultListener* listener) const { + To to = dynamic_cast<To>(from); + return MatchPrintAndExplain(to, this->matcher_, listener); + } +}; + +// Specialize for references. +// In this case we return false if the dynamic_cast fails. +template <typename To> +class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { + public: + explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) + : WhenDynamicCastToMatcherBase<To&>(matcher) {} + + template <typename From> + bool MatchAndExplain(From& from, MatchResultListener* listener) const { + // We don't want an std::bad_cast here, so do the cast with pointers. + To* to = dynamic_cast<To*>(&from); + if (to == nullptr) { + *listener << "which cannot be dynamic_cast to " << this->GetToName(); + return false; + } + return MatchPrintAndExplain(*to, this->matcher_, listener); + } +}; +#endif // GTEST_HAS_RTTI + +// Implements the Field() matcher for matching a field (i.e. member +// variable) of an object. +template <typename Class, typename FieldType> +class FieldMatcher { + public: + FieldMatcher(FieldType Class::*field, + const Matcher<const FieldType&>& matcher) + : field_(field), matcher_(matcher), whose_field_("whose given field ") {} + + FieldMatcher(const std::string& field_name, FieldType Class::*field, + const Matcher<const FieldType&>& matcher) + : field_(field), + matcher_(matcher), + whose_field_("whose field `" + field_name + "` ") {} + + void DescribeTo(::std::ostream* os) const { + *os << "is an object " << whose_field_; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "is an object " << whose_field_; + matcher_.DescribeNegationTo(os); + } + + template <typename T> + bool MatchAndExplain(const T& value, MatchResultListener* listener) const { + // FIXME: The dispatch on std::is_pointer was introduced as a workaround for + // a compiler bug, and can now be removed. + return MatchAndExplainImpl( + typename std::is_pointer<typename std::remove_const<T>::type>::type(), + value, listener); + } + + private: + bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, + const Class& obj, + MatchResultListener* listener) const { + *listener << whose_field_ << "is "; + return MatchPrintAndExplain(obj.*field_, matcher_, listener); + } + + bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, + MatchResultListener* listener) const { + if (p == nullptr) return false; + + *listener << "which points to an object "; + // Since *p has a field, it must be a class/struct/union type and + // thus cannot be a pointer. Therefore we pass false_type() as + // the first argument. + return MatchAndExplainImpl(std::false_type(), *p, listener); + } + + const FieldType Class::*field_; + const Matcher<const FieldType&> matcher_; + + // Contains either "whose given field " if the name of the field is unknown + // or "whose field `name_of_field` " if the name is known. + const std::string whose_field_; +}; + +// Implements the Property() matcher for matching a property +// (i.e. return value of a getter method) of an object. +// +// Property is a const-qualified member function of Class returning +// PropertyType. +template <typename Class, typename PropertyType, typename Property> +class PropertyMatcher { + public: + typedef const PropertyType& RefToConstProperty; + + PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) + : property_(property), + matcher_(matcher), + whose_property_("whose given property ") {} + + PropertyMatcher(const std::string& property_name, Property property, + const Matcher<RefToConstProperty>& matcher) + : property_(property), + matcher_(matcher), + whose_property_("whose property `" + property_name + "` ") {} + + void DescribeTo(::std::ostream* os) const { + *os << "is an object " << whose_property_; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const { + *os << "is an object " << whose_property_; + matcher_.DescribeNegationTo(os); + } + + template <typename T> + bool MatchAndExplain(const T& value, MatchResultListener* listener) const { + return MatchAndExplainImpl( + typename std::is_pointer<typename std::remove_const<T>::type>::type(), + value, listener); + } + + private: + bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, + const Class& obj, + MatchResultListener* listener) const { + *listener << whose_property_ << "is "; + // Cannot pass the return value (for example, int) to MatchPrintAndExplain, + // which takes a non-const reference as argument. + RefToConstProperty result = (obj.*property_)(); + return MatchPrintAndExplain(result, matcher_, listener); + } + + bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, + MatchResultListener* listener) const { + if (p == nullptr) return false; + + *listener << "which points to an object "; + // Since *p has a property method, it must be a class/struct/union + // type and thus cannot be a pointer. Therefore we pass + // false_type() as the first argument. + return MatchAndExplainImpl(std::false_type(), *p, listener); + } + + Property property_; + const Matcher<RefToConstProperty> matcher_; + + // Contains either "whose given property " if the name of the property is + // unknown or "whose property `name_of_property` " if the name is known. + const std::string whose_property_; +}; + +// Type traits specifying various features of different functors for ResultOf. +// The default template specifies features for functor objects. +template <typename Functor> +struct CallableTraits { + typedef Functor StorageType; + + static void CheckIsValid(Functor /* functor */) {} + + template <typename T> + static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { + return f(arg); + } +}; + +// Specialization for function pointers. +template <typename ArgType, typename ResType> +struct CallableTraits<ResType (*)(ArgType)> { + typedef ResType ResultType; + typedef ResType (*StorageType)(ArgType); + + static void CheckIsValid(ResType (*f)(ArgType)) { + GTEST_CHECK_(f != nullptr) + << "NULL function pointer is passed into ResultOf()."; + } + template <typename T> + static ResType Invoke(ResType (*f)(ArgType), T arg) { + return (*f)(arg); + } +}; + +// Implements the ResultOf() matcher for matching a return value of a +// unary function of an object. +template <typename Callable, typename InnerMatcher> +class ResultOfMatcher { + public: + ResultOfMatcher(Callable callable, InnerMatcher matcher) + : ResultOfMatcher(/*result_description=*/"", std::move(callable), + std::move(matcher)) {} + + ResultOfMatcher(const std::string& result_description, Callable callable, + InnerMatcher matcher) + : result_description_(result_description), + callable_(std::move(callable)), + matcher_(std::move(matcher)) { + CallableTraits<Callable>::CheckIsValid(callable_); + } + + template <typename T> + operator Matcher<T>() const { + return Matcher<T>( + new Impl<const T&>(result_description_, callable_, matcher_)); + } + + private: + typedef typename CallableTraits<Callable>::StorageType CallableStorageType; + + template <typename T> + class Impl : public MatcherInterface<T> { + using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( + std::declval<CallableStorageType>(), std::declval<T>())); + + public: + template <typename M> + Impl(const std::string& result_description, + const CallableStorageType& callable, const M& matcher) + : result_description_(result_description), + callable_(callable), + matcher_(MatcherCast<ResultType>(matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + if (result_description_.empty()) { + *os << "is mapped by the given callable to a value that "; + } else { + *os << "whose " << result_description_ << " "; + } + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + if (result_description_.empty()) { + *os << "is mapped by the given callable to a value that "; + } else { + *os << "whose " << result_description_ << " "; + } + matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(T obj, MatchResultListener* listener) const override { + if (result_description_.empty()) { + *listener << "which is mapped by the given callable to "; + } else { + *listener << "whose " << result_description_ << " is "; + } + // Cannot pass the return value directly to MatchPrintAndExplain, which + // takes a non-const reference as argument. + // Also, specifying template argument explicitly is needed because T could + // be a non-const reference (e.g. Matcher<Uncopyable&>). + ResultType result = + CallableTraits<Callable>::template Invoke<T>(callable_, obj); + return MatchPrintAndExplain(result, matcher_, listener); + } + + private: + const std::string result_description_; + // Functors often define operator() as non-const method even though + // they are actually stateless. But we need to use them even when + // 'this' is a const pointer. It's the user's responsibility not to + // use stateful callables with ResultOf(), which doesn't guarantee + // how many times the callable will be invoked. + mutable CallableStorageType callable_; + const Matcher<ResultType> matcher_; + }; // class Impl + + const std::string result_description_; + const CallableStorageType callable_; + const InnerMatcher matcher_; +}; + +// Implements a matcher that checks the size of an STL-style container. +template <typename SizeMatcher> +class SizeIsMatcher { + public: + explicit SizeIsMatcher(const SizeMatcher& size_matcher) + : size_matcher_(size_matcher) {} + + template <typename Container> + operator Matcher<Container>() const { + return Matcher<Container>(new Impl<const Container&>(size_matcher_)); + } + + template <typename Container> + class Impl : public MatcherInterface<Container> { + public: + using SizeType = decltype(std::declval<Container>().size()); + explicit Impl(const SizeMatcher& size_matcher) + : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "size "; + size_matcher_.DescribeTo(os); + } + void DescribeNegationTo(::std::ostream* os) const override { + *os << "size "; + size_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + SizeType size = container.size(); + StringMatchResultListener size_listener; + const bool result = size_matcher_.MatchAndExplain(size, &size_listener); + *listener << "whose size " << size + << (result ? " matches" : " doesn't match"); + PrintIfNotEmpty(size_listener.str(), listener->stream()); + return result; + } + + private: + const Matcher<SizeType> size_matcher_; + }; + + private: + const SizeMatcher size_matcher_; +}; + +// Implements a matcher that checks the begin()..end() distance of an STL-style +// container. +template <typename DistanceMatcher> +class BeginEndDistanceIsMatcher { + public: + explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) + : distance_matcher_(distance_matcher) {} + + template <typename Container> + operator Matcher<Container>() const { + return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); + } + + template <typename Container> + class Impl : public MatcherInterface<Container> { + public: + typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( + Container)> + ContainerView; + typedef typename std::iterator_traits< + typename ContainerView::type::const_iterator>::difference_type + DistanceType; + explicit Impl(const DistanceMatcher& distance_matcher) + : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "distance between begin() and end() "; + distance_matcher_.DescribeTo(os); + } + void DescribeNegationTo(::std::ostream* os) const override { + *os << "distance between begin() and end() "; + distance_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + using std::begin; + using std::end; + DistanceType distance = std::distance(begin(container), end(container)); + StringMatchResultListener distance_listener; + const bool result = + distance_matcher_.MatchAndExplain(distance, &distance_listener); + *listener << "whose distance between begin() and end() " << distance + << (result ? " matches" : " doesn't match"); + PrintIfNotEmpty(distance_listener.str(), listener->stream()); + return result; + } + + private: + const Matcher<DistanceType> distance_matcher_; + }; + + private: + const DistanceMatcher distance_matcher_; +}; + +// Implements an equality matcher for any STL-style container whose elements +// support ==. This matcher is like Eq(), but its failure explanations provide +// more detailed information that is useful when the container is used as a set. +// The failure message reports elements that are in one of the operands but not +// the other. The failure messages do not report duplicate or out-of-order +// elements in the containers (which don't properly matter to sets, but can +// occur if the containers are vectors or lists, for example). +// +// Uses the container's const_iterator, value_type, operator ==, +// begin(), and end(). +template <typename Container> +class ContainerEqMatcher { + public: + typedef internal::StlContainerView<Container> View; + typedef typename View::type StlContainer; + typedef typename View::const_reference StlContainerReference; + + static_assert(!std::is_const<Container>::value, + "Container type must not be const"); + static_assert(!std::is_reference<Container>::value, + "Container type must not be a reference"); + + // We make a copy of expected in case the elements in it are modified + // after this matcher is created. + explicit ContainerEqMatcher(const Container& expected) + : expected_(View::Copy(expected)) {} + + void DescribeTo(::std::ostream* os) const { + *os << "equals "; + UniversalPrint(expected_, os); + } + void DescribeNegationTo(::std::ostream* os) const { + *os << "does not equal "; + UniversalPrint(expected_, os); + } + + template <typename LhsContainer> + bool MatchAndExplain(const LhsContainer& lhs, + MatchResultListener* listener) const { + typedef internal::StlContainerView< + typename std::remove_const<LhsContainer>::type> + LhsView; + StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); + if (lhs_stl_container == expected_) return true; + + ::std::ostream* const os = listener->stream(); + if (os != nullptr) { + // Something is different. Check for extra values first. + bool printed_header = false; + for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end(); + ++it) { + if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == + expected_.end()) { + if (printed_header) { + *os << ", "; + } else { + *os << "which has these unexpected elements: "; + printed_header = true; + } + UniversalPrint(*it, os); + } + } + + // Now check for missing values. + bool printed_header2 = false; + for (auto it = expected_.begin(); it != expected_.end(); ++it) { + if (internal::ArrayAwareFind(lhs_stl_container.begin(), + lhs_stl_container.end(), + *it) == lhs_stl_container.end()) { + if (printed_header2) { + *os << ", "; + } else { + *os << (printed_header ? ",\nand" : "which") + << " doesn't have these expected elements: "; + printed_header2 = true; + } + UniversalPrint(*it, os); + } + } + } + + return false; + } + + private: + const StlContainer expected_; +}; + +// A comparator functor that uses the < operator to compare two values. +struct LessComparator { + template <typename T, typename U> + bool operator()(const T& lhs, const U& rhs) const { + return lhs < rhs; + } +}; + +// Implements WhenSortedBy(comparator, container_matcher). +template <typename Comparator, typename ContainerMatcher> +class WhenSortedByMatcher { + public: + WhenSortedByMatcher(const Comparator& comparator, + const ContainerMatcher& matcher) + : comparator_(comparator), matcher_(matcher) {} + + template <typename LhsContainer> + operator Matcher<LhsContainer>() const { + return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); + } + + template <typename LhsContainer> + class Impl : public MatcherInterface<LhsContainer> { + public: + typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( + LhsContainer)> + LhsView; + typedef typename LhsView::type LhsStlContainer; + typedef typename LhsView::const_reference LhsStlContainerReference; + // Transforms std::pair<const Key, Value> into std::pair<Key, Value> + // so that we can match associative containers. + typedef + typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type + LhsValue; + + Impl(const Comparator& comparator, const ContainerMatcher& matcher) + : comparator_(comparator), matcher_(matcher) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "(when sorted) "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "(when sorted) "; + matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(LhsContainer lhs, + MatchResultListener* listener) const override { + LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); + ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), + lhs_stl_container.end()); + ::std::sort(sorted_container.begin(), sorted_container.end(), + comparator_); + + if (!listener->IsInterested()) { + // If the listener is not interested, we do not need to + // construct the inner explanation. + return matcher_.Matches(sorted_container); + } + + *listener << "which is "; + UniversalPrint(sorted_container, listener->stream()); + *listener << " when sorted"; + + StringMatchResultListener inner_listener; + const bool match = + matcher_.MatchAndExplain(sorted_container, &inner_listener); + PrintIfNotEmpty(inner_listener.str(), listener->stream()); + return match; + } + + private: + const Comparator comparator_; + const Matcher<const ::std::vector<LhsValue>&> matcher_; + + Impl(const Impl&) = delete; + Impl& operator=(const Impl&) = delete; + }; + + private: + const Comparator comparator_; + const ContainerMatcher matcher_; +}; + +// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher +// must be able to be safely cast to Matcher<std::tuple<const T1&, const +// T2&> >, where T1 and T2 are the types of elements in the LHS +// container and the RHS container respectively. +template <typename TupleMatcher, typename RhsContainer> +class PointwiseMatcher { + static_assert( + !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, + "use UnorderedPointwise with hash tables"); + + public: + typedef internal::StlContainerView<RhsContainer> RhsView; + typedef typename RhsView::type RhsStlContainer; + typedef typename RhsStlContainer::value_type RhsValue; + + static_assert(!std::is_const<RhsContainer>::value, + "RhsContainer type must not be const"); + static_assert(!std::is_reference<RhsContainer>::value, + "RhsContainer type must not be a reference"); + + // Like ContainerEq, we make a copy of rhs in case the elements in + // it are modified after this matcher is created. + PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) + : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} + + template <typename LhsContainer> + operator Matcher<LhsContainer>() const { + static_assert( + !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, + "use UnorderedPointwise with hash tables"); + + return Matcher<LhsContainer>( + new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); + } + + template <typename LhsContainer> + class Impl : public MatcherInterface<LhsContainer> { + public: + typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( + LhsContainer)> + LhsView; + typedef typename LhsView::type LhsStlContainer; + typedef typename LhsView::const_reference LhsStlContainerReference; + typedef typename LhsStlContainer::value_type LhsValue; + // We pass the LHS value and the RHS value to the inner matcher by + // reference, as they may be expensive to copy. We must use tuple + // instead of pair here, as a pair cannot hold references (C++ 98, + // 20.2.2 [lib.pairs]). + typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; + + Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) + // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. + : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), + rhs_(rhs) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "contains " << rhs_.size() + << " values, where each value and its corresponding value in "; + UniversalPrinter<RhsStlContainer>::Print(rhs_, os); + *os << " "; + mono_tuple_matcher_.DescribeTo(os); + } + void DescribeNegationTo(::std::ostream* os) const override { + *os << "doesn't contain exactly " << rhs_.size() + << " values, or contains a value x at some index i" + << " where x and the i-th value of "; + UniversalPrint(rhs_, os); + *os << " "; + mono_tuple_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(LhsContainer lhs, + MatchResultListener* listener) const override { + LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); + const size_t actual_size = lhs_stl_container.size(); + if (actual_size != rhs_.size()) { + *listener << "which contains " << actual_size << " values"; + return false; + } + + auto left = lhs_stl_container.begin(); + auto right = rhs_.begin(); + for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { + if (listener->IsInterested()) { + StringMatchResultListener inner_listener; + // Create InnerMatcherArg as a temporarily object to avoid it outlives + // *left and *right. Dereference or the conversion to `const T&` may + // return temp objects, e.g. for vector<bool>. + if (!mono_tuple_matcher_.MatchAndExplain( + InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), + ImplicitCast_<const RhsValue&>(*right)), + &inner_listener)) { + *listener << "where the value pair ("; + UniversalPrint(*left, listener->stream()); + *listener << ", "; + UniversalPrint(*right, listener->stream()); + *listener << ") at index #" << i << " don't match"; + PrintIfNotEmpty(inner_listener.str(), listener->stream()); + return false; + } + } else { + if (!mono_tuple_matcher_.Matches( + InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), + ImplicitCast_<const RhsValue&>(*right)))) + return false; + } + } + + return true; + } + + private: + const Matcher<InnerMatcherArg> mono_tuple_matcher_; + const RhsStlContainer rhs_; + }; + + private: + const TupleMatcher tuple_matcher_; + const RhsStlContainer rhs_; +}; + +// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. +template <typename Container> +class QuantifierMatcherImpl : public MatcherInterface<Container> { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; + typedef StlContainerView<RawContainer> View; + typedef typename View::type StlContainer; + typedef typename View::const_reference StlContainerReference; + typedef typename StlContainer::value_type Element; + + template <typename InnerMatcher> + explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) + : inner_matcher_( + testing::SafeMatcherCast<const Element&>(inner_matcher)) {} + + // Checks whether: + // * All elements in the container match, if all_elements_should_match. + // * Any element in the container matches, if !all_elements_should_match. + bool MatchAndExplainImpl(bool all_elements_should_match, Container container, + MatchResultListener* listener) const { + StlContainerReference stl_container = View::ConstReference(container); + size_t i = 0; + for (auto it = stl_container.begin(); it != stl_container.end(); + ++it, ++i) { + StringMatchResultListener inner_listener; + const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); + + if (matches != all_elements_should_match) { + *listener << "whose element #" << i + << (matches ? " matches" : " doesn't match"); + PrintIfNotEmpty(inner_listener.str(), listener->stream()); + return !all_elements_should_match; + } + } + return all_elements_should_match; + } + + bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher, + Container container, + MatchResultListener* listener) const { + StlContainerReference stl_container = View::ConstReference(container); + size_t i = 0; + std::vector<size_t> match_elements; + for (auto it = stl_container.begin(); it != stl_container.end(); + ++it, ++i) { + StringMatchResultListener inner_listener; + const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); + if (matches) { + match_elements.push_back(i); + } + } + if (listener->IsInterested()) { + if (match_elements.empty()) { + *listener << "has no element that matches"; + } else if (match_elements.size() == 1) { + *listener << "whose element #" << match_elements[0] << " matches"; + } else { + *listener << "whose elements ("; + std::string sep = ""; + for (size_t e : match_elements) { + *listener << sep << e; + sep = ", "; + } + *listener << ") match"; + } + } + StringMatchResultListener count_listener; + if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) { + *listener << " and whose match quantity of " << match_elements.size() + << " matches"; + PrintIfNotEmpty(count_listener.str(), listener->stream()); + return true; + } else { + if (match_elements.empty()) { + *listener << " and"; + } else { + *listener << " but"; + } + *listener << " whose match quantity of " << match_elements.size() + << " does not match"; + PrintIfNotEmpty(count_listener.str(), listener->stream()); + return false; + } + } + + protected: + const Matcher<const Element&> inner_matcher_; +}; + +// Implements Contains(element_matcher) for the given argument type Container. +// Symmetric to EachMatcherImpl. +template <typename Container> +class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { + public: + template <typename InnerMatcher> + explicit ContainsMatcherImpl(InnerMatcher inner_matcher) + : QuantifierMatcherImpl<Container>(inner_matcher) {} + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + *os << "contains at least one element that "; + this->inner_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "doesn't contain any element that "; + this->inner_matcher_.DescribeTo(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + return this->MatchAndExplainImpl(false, container, listener); + } +}; + +// Implements Each(element_matcher) for the given argument type Container. +// Symmetric to ContainsMatcherImpl. +template <typename Container> +class EachMatcherImpl : public QuantifierMatcherImpl<Container> { + public: + template <typename InnerMatcher> + explicit EachMatcherImpl(InnerMatcher inner_matcher) + : QuantifierMatcherImpl<Container>(inner_matcher) {} + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + *os << "only contains elements that "; + this->inner_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "contains some element that "; + this->inner_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + return this->MatchAndExplainImpl(true, container, listener); + } +}; + +// Implements Contains(element_matcher).Times(n) for the given argument type +// Container. +template <typename Container> +class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> { + public: + template <typename InnerMatcher> + explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher, + Matcher<size_t> count_matcher) + : QuantifierMatcherImpl<Container>(inner_matcher), + count_matcher_(std::move(count_matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "quantity of elements that match "; + this->inner_matcher_.DescribeTo(os); + *os << " "; + count_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "quantity of elements that match "; + this->inner_matcher_.DescribeTo(os); + *os << " "; + count_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + return this->MatchAndExplainImpl(count_matcher_, container, listener); + } + + private: + const Matcher<size_t> count_matcher_; +}; + +// Implements polymorphic Contains(element_matcher).Times(n). +template <typename M> +class ContainsTimesMatcher { + public: + explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher) + : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {} + + template <typename Container> + operator Matcher<Container>() const { // NOLINT + return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>( + inner_matcher_, count_matcher_)); + } + + private: + const M inner_matcher_; + const Matcher<size_t> count_matcher_; +}; + +// Implements polymorphic Contains(element_matcher). +template <typename M> +class ContainsMatcher { + public: + explicit ContainsMatcher(M m) : inner_matcher_(m) {} + + template <typename Container> + operator Matcher<Container>() const { // NOLINT + return Matcher<Container>( + new ContainsMatcherImpl<const Container&>(inner_matcher_)); + } + + ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const { + return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher)); + } + + private: + const M inner_matcher_; +}; + +// Implements polymorphic Each(element_matcher). +template <typename M> +class EachMatcher { + public: + explicit EachMatcher(M m) : inner_matcher_(m) {} + + template <typename Container> + operator Matcher<Container>() const { // NOLINT + return Matcher<Container>( + new EachMatcherImpl<const Container&>(inner_matcher_)); + } + + private: + const M inner_matcher_; +}; + +struct Rank1 {}; +struct Rank0 : Rank1 {}; + +namespace pair_getters { +using std::get; +template <typename T> +auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT + return get<0>(x); +} +template <typename T> +auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT + return x.first; +} + +template <typename T> +auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT + return get<1>(x); +} +template <typename T> +auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT + return x.second; +} +} // namespace pair_getters + +// Implements Key(inner_matcher) for the given argument pair type. +// Key(inner_matcher) matches an std::pair whose 'first' field matches +// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an +// std::map that contains at least one element whose key is >= 5. +template <typename PairType> +class KeyMatcherImpl : public MatcherInterface<PairType> { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; + typedef typename RawPairType::first_type KeyType; + + template <typename InnerMatcher> + explicit KeyMatcherImpl(InnerMatcher inner_matcher) + : inner_matcher_( + testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {} + + // Returns true if and only if 'key_value.first' (the key) matches the inner + // matcher. + bool MatchAndExplain(PairType key_value, + MatchResultListener* listener) const override { + StringMatchResultListener inner_listener; + const bool match = inner_matcher_.MatchAndExplain( + pair_getters::First(key_value, Rank0()), &inner_listener); + const std::string explanation = inner_listener.str(); + if (explanation != "") { + *listener << "whose first field is a value " << explanation; + } + return match; + } + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + *os << "has a key that "; + inner_matcher_.DescribeTo(os); + } + + // Describes what the negation of this matcher does. + void DescribeNegationTo(::std::ostream* os) const override { + *os << "doesn't have a key that "; + inner_matcher_.DescribeTo(os); + } + + private: + const Matcher<const KeyType&> inner_matcher_; +}; + +// Implements polymorphic Key(matcher_for_key). +template <typename M> +class KeyMatcher { + public: + explicit KeyMatcher(M m) : matcher_for_key_(m) {} + + template <typename PairType> + operator Matcher<PairType>() const { + return Matcher<PairType>( + new KeyMatcherImpl<const PairType&>(matcher_for_key_)); + } + + private: + const M matcher_for_key_; +}; + +// Implements polymorphic Address(matcher_for_address). +template <typename InnerMatcher> +class AddressMatcher { + public: + explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} + + template <typename Type> + operator Matcher<Type>() const { // NOLINT + return Matcher<Type>(new Impl<const Type&>(matcher_)); + } + + private: + // The monomorphic implementation that works for a particular object type. + template <typename Type> + class Impl : public MatcherInterface<Type> { + public: + using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; + explicit Impl(const InnerMatcher& matcher) + : matcher_(MatcherCast<Address>(matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "has address that "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "does not have address that "; + matcher_.DescribeTo(os); + } + + bool MatchAndExplain(Type object, + MatchResultListener* listener) const override { + *listener << "which has address "; + Address address = std::addressof(object); + return MatchPrintAndExplain(address, matcher_, listener); + } + + private: + const Matcher<Address> matcher_; + }; + const InnerMatcher matcher_; +}; + +// Implements Pair(first_matcher, second_matcher) for the given argument pair +// type with its two matchers. See Pair() function below. +template <typename PairType> +class PairMatcherImpl : public MatcherInterface<PairType> { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; + typedef typename RawPairType::first_type FirstType; + typedef typename RawPairType::second_type SecondType; + + template <typename FirstMatcher, typename SecondMatcher> + PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) + : first_matcher_( + testing::SafeMatcherCast<const FirstType&>(first_matcher)), + second_matcher_( + testing::SafeMatcherCast<const SecondType&>(second_matcher)) {} + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + *os << "has a first field that "; + first_matcher_.DescribeTo(os); + *os << ", and has a second field that "; + second_matcher_.DescribeTo(os); + } + + // Describes what the negation of this matcher does. + void DescribeNegationTo(::std::ostream* os) const override { + *os << "has a first field that "; + first_matcher_.DescribeNegationTo(os); + *os << ", or has a second field that "; + second_matcher_.DescribeNegationTo(os); + } + + // Returns true if and only if 'a_pair.first' matches first_matcher and + // 'a_pair.second' matches second_matcher. + bool MatchAndExplain(PairType a_pair, + MatchResultListener* listener) const override { + if (!listener->IsInterested()) { + // If the listener is not interested, we don't need to construct the + // explanation. + return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && + second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); + } + StringMatchResultListener first_inner_listener; + if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), + &first_inner_listener)) { + *listener << "whose first field does not match"; + PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); + return false; + } + StringMatchResultListener second_inner_listener; + if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), + &second_inner_listener)) { + *listener << "whose second field does not match"; + PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); + return false; + } + ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), + listener); + return true; + } + + private: + void ExplainSuccess(const std::string& first_explanation, + const std::string& second_explanation, + MatchResultListener* listener) const { + *listener << "whose both fields match"; + if (first_explanation != "") { + *listener << ", where the first field is a value " << first_explanation; + } + if (second_explanation != "") { + *listener << ", "; + if (first_explanation != "") { + *listener << "and "; + } else { + *listener << "where "; + } + *listener << "the second field is a value " << second_explanation; + } + } + + const Matcher<const FirstType&> first_matcher_; + const Matcher<const SecondType&> second_matcher_; +}; + +// Implements polymorphic Pair(first_matcher, second_matcher). +template <typename FirstMatcher, typename SecondMatcher> +class PairMatcher { + public: + PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) + : first_matcher_(first_matcher), second_matcher_(second_matcher) {} + + template <typename PairType> + operator Matcher<PairType>() const { + return Matcher<PairType>( + new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); + } + + private: + const FirstMatcher first_matcher_; + const SecondMatcher second_matcher_; +}; + +template <typename T, size_t... I> +auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) + -> decltype(std::tie(get<I>(t)...)) { + static_assert(std::tuple_size<T>::value == sizeof...(I), + "Number of arguments doesn't match the number of fields."); + return std::tie(get<I>(t)...); +} + +#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { + const auto& [a] = t; + return std::tie(a); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { + const auto& [a, b] = t; + return std::tie(a, b); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { + const auto& [a, b, c] = t; + return std::tie(a, b, c); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { + const auto& [a, b, c, d] = t; + return std::tie(a, b, c, d); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { + const auto& [a, b, c, d, e] = t; + return std::tie(a, b, c, d, e); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { + const auto& [a, b, c, d, e, f] = t; + return std::tie(a, b, c, d, e, f); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { + const auto& [a, b, c, d, e, f, g] = t; + return std::tie(a, b, c, d, e, f, g); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { + const auto& [a, b, c, d, e, f, g, h] = t; + return std::tie(a, b, c, d, e, f, g, h); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { + const auto& [a, b, c, d, e, f, g, h, i] = t; + return std::tie(a, b, c, d, e, f, g, h, i); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); +} +template <typename T> +auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) { + const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t; + return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q); +} +#endif // defined(__cpp_structured_bindings) + +template <size_t I, typename T> +auto UnpackStruct(const T& t) + -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { + return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); +} + +// Helper function to do comma folding in C++11. +// The array ensures left-to-right order of evaluation. +// Usage: VariadicExpand({expr...}); +template <typename T, size_t N> +void VariadicExpand(const T (&)[N]) {} + +template <typename Struct, typename StructSize> +class FieldsAreMatcherImpl; + +template <typename Struct, size_t... I> +class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> + : public MatcherInterface<Struct> { + using UnpackedType = + decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); + using MatchersType = std::tuple< + Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; + + public: + template <typename Inner> + explicit FieldsAreMatcherImpl(const Inner& matchers) + : matchers_(testing::SafeMatcherCast< + const typename std::tuple_element<I, UnpackedType>::type&>( + std::get<I>(matchers))...) {} + + void DescribeTo(::std::ostream* os) const override { + const char* separator = ""; + VariadicExpand( + {(*os << separator << "has field #" << I << " that ", + std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); + } + + void DescribeNegationTo(::std::ostream* os) const override { + const char* separator = ""; + VariadicExpand({(*os << separator << "has field #" << I << " that ", + std::get<I>(matchers_).DescribeNegationTo(os), + separator = ", or ")...}); + } + + bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { + return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); + } + + private: + bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { + if (!listener->IsInterested()) { + // If the listener is not interested, we don't need to construct the + // explanation. + bool good = true; + VariadicExpand({good = good && std::get<I>(matchers_).Matches( + std::get<I>(tuple))...}); + return good; + } + + size_t failed_pos = ~size_t{}; + + std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); + + VariadicExpand( + {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( + std::get<I>(tuple), &inner_listener[I]) + ? failed_pos = I + : 0 ...}); + if (failed_pos != ~size_t{}) { + *listener << "whose field #" << failed_pos << " does not match"; + PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); + return false; + } + + *listener << "whose all elements match"; + const char* separator = ", where"; + for (size_t index = 0; index < sizeof...(I); ++index) { + const std::string str = inner_listener[index].str(); + if (!str.empty()) { + *listener << separator << " field #" << index << " is a value " << str; + separator = ", and"; + } + } + + return true; + } + + MatchersType matchers_; +}; + +template <typename... Inner> +class FieldsAreMatcher { + public: + explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} + + template <typename Struct> + operator Matcher<Struct>() const { // NOLINT + return Matcher<Struct>( + new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( + matchers_)); + } + + private: + std::tuple<Inner...> matchers_; +}; + +// Implements ElementsAre() and ElementsAreArray(). +template <typename Container> +class ElementsAreMatcherImpl : public MatcherInterface<Container> { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; + typedef internal::StlContainerView<RawContainer> View; + typedef typename View::type StlContainer; + typedef typename View::const_reference StlContainerReference; + typedef typename StlContainer::value_type Element; + + // Constructs the matcher from a sequence of element values or + // element matchers. + template <typename InputIter> + ElementsAreMatcherImpl(InputIter first, InputIter last) { + while (first != last) { + matchers_.push_back(MatcherCast<const Element&>(*first++)); + } + } + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + if (count() == 0) { + *os << "is empty"; + } else if (count() == 1) { + *os << "has 1 element that "; + matchers_[0].DescribeTo(os); + } else { + *os << "has " << Elements(count()) << " where\n"; + for (size_t i = 0; i != count(); ++i) { + *os << "element #" << i << " "; + matchers_[i].DescribeTo(os); + if (i + 1 < count()) { + *os << ",\n"; + } + } + } + } + + // Describes what the negation of this matcher does. + void DescribeNegationTo(::std::ostream* os) const override { + if (count() == 0) { + *os << "isn't empty"; + return; + } + + *os << "doesn't have " << Elements(count()) << ", or\n"; + for (size_t i = 0; i != count(); ++i) { + *os << "element #" << i << " "; + matchers_[i].DescribeNegationTo(os); + if (i + 1 < count()) { + *os << ", or\n"; + } + } + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + // To work with stream-like "containers", we must only walk + // through the elements in one pass. + + const bool listener_interested = listener->IsInterested(); + + // explanations[i] is the explanation of the element at index i. + ::std::vector<std::string> explanations(count()); + StlContainerReference stl_container = View::ConstReference(container); + auto it = stl_container.begin(); + size_t exam_pos = 0; + bool mismatch_found = false; // Have we found a mismatched element yet? + + // Go through the elements and matchers in pairs, until we reach + // the end of either the elements or the matchers, or until we find a + // mismatch. + for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { + bool match; // Does the current element match the current matcher? + if (listener_interested) { + StringMatchResultListener s; + match = matchers_[exam_pos].MatchAndExplain(*it, &s); + explanations[exam_pos] = s.str(); + } else { + match = matchers_[exam_pos].Matches(*it); + } + + if (!match) { + mismatch_found = true; + break; + } + } + // If mismatch_found is true, 'exam_pos' is the index of the mismatch. + + // Find how many elements the actual container has. We avoid + // calling size() s.t. this code works for stream-like "containers" + // that don't define size(). + size_t actual_count = exam_pos; + for (; it != stl_container.end(); ++it) { + ++actual_count; + } + + if (actual_count != count()) { + // The element count doesn't match. If the container is empty, + // there's no need to explain anything as Google Mock already + // prints the empty container. Otherwise we just need to show + // how many elements there actually are. + if (listener_interested && (actual_count != 0)) { + *listener << "which has " << Elements(actual_count); + } + return false; + } + + if (mismatch_found) { + // The element count matches, but the exam_pos-th element doesn't match. + if (listener_interested) { + *listener << "whose element #" << exam_pos << " doesn't match"; + PrintIfNotEmpty(explanations[exam_pos], listener->stream()); + } + return false; + } + + // Every element matches its expectation. We need to explain why + // (the obvious ones can be skipped). + if (listener_interested) { + bool reason_printed = false; + for (size_t i = 0; i != count(); ++i) { + const std::string& s = explanations[i]; + if (!s.empty()) { + if (reason_printed) { + *listener << ",\nand "; + } + *listener << "whose element #" << i << " matches, " << s; + reason_printed = true; + } + } + } + return true; + } + + private: + static Message Elements(size_t count) { + return Message() << count << (count == 1 ? " element" : " elements"); + } + + size_t count() const { return matchers_.size(); } + + ::std::vector<Matcher<const Element&>> matchers_; +}; + +// Connectivity matrix of (elements X matchers), in element-major order. +// Initially, there are no edges. +// Use NextGraph() to iterate over all possible edge configurations. +// Use Randomize() to generate a random edge configuration. +class GTEST_API_ MatchMatrix { + public: + MatchMatrix(size_t num_elements, size_t num_matchers) + : num_elements_(num_elements), + num_matchers_(num_matchers), + matched_(num_elements_ * num_matchers_, 0) {} + + size_t LhsSize() const { return num_elements_; } + size_t RhsSize() const { return num_matchers_; } + bool HasEdge(size_t ilhs, size_t irhs) const { + return matched_[SpaceIndex(ilhs, irhs)] == 1; + } + void SetEdge(size_t ilhs, size_t irhs, bool b) { + matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; + } + + // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, + // adds 1 to that number; returns false if incrementing the graph left it + // empty. + bool NextGraph(); + + void Randomize(); + + std::string DebugString() const; + + private: + size_t SpaceIndex(size_t ilhs, size_t irhs) const { + return ilhs * num_matchers_ + irhs; + } + + size_t num_elements_; + size_t num_matchers_; + + // Each element is a char interpreted as bool. They are stored as a + // flattened array in lhs-major order, use 'SpaceIndex()' to translate + // a (ilhs, irhs) matrix coordinate into an offset. + ::std::vector<char> matched_; +}; + +typedef ::std::pair<size_t, size_t> ElementMatcherPair; +typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; + +// Returns a maximum bipartite matching for the specified graph 'g'. +// The matching is represented as a vector of {element, matcher} pairs. +GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); + +struct UnorderedMatcherRequire { + enum Flags { + Superset = 1 << 0, + Subset = 1 << 1, + ExactMatch = Superset | Subset, + }; +}; + +// Untyped base class for implementing UnorderedElementsAre. By +// putting logic that's not specific to the element type here, we +// reduce binary bloat and increase compilation speed. +class GTEST_API_ UnorderedElementsAreMatcherImplBase { + protected: + explicit UnorderedElementsAreMatcherImplBase( + UnorderedMatcherRequire::Flags matcher_flags) + : match_flags_(matcher_flags) {} + + // A vector of matcher describers, one for each element matcher. + // Does not own the describers (and thus can be used only when the + // element matchers are alive). + typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; + + // Describes this UnorderedElementsAre matcher. + void DescribeToImpl(::std::ostream* os) const; + + // Describes the negation of this UnorderedElementsAre matcher. + void DescribeNegationToImpl(::std::ostream* os) const; + + bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, + const MatchMatrix& matrix, + MatchResultListener* listener) const; + + bool FindPairing(const MatchMatrix& matrix, + MatchResultListener* listener) const; + + MatcherDescriberVec& matcher_describers() { return matcher_describers_; } + + static Message Elements(size_t n) { + return Message() << n << " element" << (n == 1 ? "" : "s"); + } + + UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } + + private: + UnorderedMatcherRequire::Flags match_flags_; + MatcherDescriberVec matcher_describers_; +}; + +// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and +// IsSupersetOf. +template <typename Container> +class UnorderedElementsAreMatcherImpl + : public MatcherInterface<Container>, + public UnorderedElementsAreMatcherImplBase { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; + typedef internal::StlContainerView<RawContainer> View; + typedef typename View::type StlContainer; + typedef typename View::const_reference StlContainerReference; + typedef typename StlContainer::value_type Element; + + template <typename InputIter> + UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, + InputIter first, InputIter last) + : UnorderedElementsAreMatcherImplBase(matcher_flags) { + for (; first != last; ++first) { + matchers_.push_back(MatcherCast<const Element&>(*first)); + } + for (const auto& m : matchers_) { + matcher_describers().push_back(m.GetDescriber()); + } + } + + // Describes what this matcher does. + void DescribeTo(::std::ostream* os) const override { + return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); + } + + // Describes what the negation of this matcher does. + void DescribeNegationTo(::std::ostream* os) const override { + return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); + } + + bool MatchAndExplain(Container container, + MatchResultListener* listener) const override { + StlContainerReference stl_container = View::ConstReference(container); + ::std::vector<std::string> element_printouts; + MatchMatrix matrix = + AnalyzeElements(stl_container.begin(), stl_container.end(), + &element_printouts, listener); + + if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { + return true; + } + + if (match_flags() == UnorderedMatcherRequire::ExactMatch) { + if (matrix.LhsSize() != matrix.RhsSize()) { + // The element count doesn't match. If the container is empty, + // there's no need to explain anything as Google Mock already + // prints the empty container. Otherwise we just need to show + // how many elements there actually are. + if (matrix.LhsSize() != 0 && listener->IsInterested()) { + *listener << "which has " << Elements(matrix.LhsSize()); + } + return false; + } + } + + return VerifyMatchMatrix(element_printouts, matrix, listener) && + FindPairing(matrix, listener); + } + + private: + template <typename ElementIter> + MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, + ::std::vector<std::string>* element_printouts, + MatchResultListener* listener) const { + element_printouts->clear(); + ::std::vector<char> did_match; + size_t num_elements = 0; + DummyMatchResultListener dummy; + for (; elem_first != elem_last; ++num_elements, ++elem_first) { + if (listener->IsInterested()) { + element_printouts->push_back(PrintToString(*elem_first)); + } + for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { + did_match.push_back( + matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); + } + } + + MatchMatrix matrix(num_elements, matchers_.size()); + ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); + for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { + for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { + matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); + } + } + return matrix; + } + + ::std::vector<Matcher<const Element&>> matchers_; +}; + +// Functor for use in TransformTuple. +// Performs MatcherCast<Target> on an input argument of any type. +template <typename Target> +struct CastAndAppendTransform { + template <typename Arg> + Matcher<Target> operator()(const Arg& a) const { + return MatcherCast<Target>(a); + } +}; + +// Implements UnorderedElementsAre. +template <typename MatcherTuple> +class UnorderedElementsAreMatcher { + public: + explicit UnorderedElementsAreMatcher(const MatcherTuple& args) + : matchers_(args) {} + + template <typename Container> + operator Matcher<Container>() const { + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; + typedef typename internal::StlContainerView<RawContainer>::type View; + typedef typename View::value_type Element; + typedef ::std::vector<Matcher<const Element&>> MatcherVec; + MatcherVec matchers; + matchers.reserve(::std::tuple_size<MatcherTuple>::value); + TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, + ::std::back_inserter(matchers)); + return Matcher<Container>( + new UnorderedElementsAreMatcherImpl<const Container&>( + UnorderedMatcherRequire::ExactMatch, matchers.begin(), + matchers.end())); + } + + private: + const MatcherTuple matchers_; +}; + +// Implements ElementsAre. +template <typename MatcherTuple> +class ElementsAreMatcher { + public: + explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} + + template <typename Container> + operator Matcher<Container>() const { + static_assert( + !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || + ::std::tuple_size<MatcherTuple>::value < 2, + "use UnorderedElementsAre with hash tables"); + + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; + typedef typename internal::StlContainerView<RawContainer>::type View; + typedef typename View::value_type Element; + typedef ::std::vector<Matcher<const Element&>> MatcherVec; + MatcherVec matchers; + matchers.reserve(::std::tuple_size<MatcherTuple>::value); + TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, + ::std::back_inserter(matchers)); + return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( + matchers.begin(), matchers.end())); + } + + private: + const MatcherTuple matchers_; +}; + +// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). +template <typename T> +class UnorderedElementsAreArrayMatcher { + public: + template <typename Iter> + UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, + Iter first, Iter last) + : match_flags_(match_flags), matchers_(first, last) {} + + template <typename Container> + operator Matcher<Container>() const { + return Matcher<Container>( + new UnorderedElementsAreMatcherImpl<const Container&>( + match_flags_, matchers_.begin(), matchers_.end())); + } + + private: + UnorderedMatcherRequire::Flags match_flags_; + ::std::vector<T> matchers_; +}; + +// Implements ElementsAreArray(). +template <typename T> +class ElementsAreArrayMatcher { + public: + template <typename Iter> + ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} + + template <typename Container> + operator Matcher<Container>() const { + static_assert( + !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, + "use UnorderedElementsAreArray with hash tables"); + + return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( + matchers_.begin(), matchers_.end())); + } + + private: + const ::std::vector<T> matchers_; +}; + +// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second +// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, +// second) is a polymorphic matcher that matches a value x if and only if +// tm matches tuple (x, second). Useful for implementing +// UnorderedPointwise() in terms of UnorderedElementsAreArray(). +// +// BoundSecondMatcher is copyable and assignable, as we need to put +// instances of this class in a vector when implementing +// UnorderedPointwise(). +template <typename Tuple2Matcher, typename Second> +class BoundSecondMatcher { + public: + BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) + : tuple2_matcher_(tm), second_value_(second) {} + + BoundSecondMatcher(const BoundSecondMatcher& other) = default; + + template <typename T> + operator Matcher<T>() const { + return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); + } + + // We have to define this for UnorderedPointwise() to compile in + // C++98 mode, as it puts BoundSecondMatcher instances in a vector, + // which requires the elements to be assignable in C++98. The + // compiler cannot generate the operator= for us, as Tuple2Matcher + // and Second may not be assignable. + // + // However, this should never be called, so the implementation just + // need to assert. + void operator=(const BoundSecondMatcher& /*rhs*/) { + GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; + } + + private: + template <typename T> + class Impl : public MatcherInterface<T> { + public: + typedef ::std::tuple<T, Second> ArgTuple; + + Impl(const Tuple2Matcher& tm, const Second& second) + : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), + second_value_(second) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "and "; + UniversalPrint(second_value_, os); + *os << " "; + mono_tuple2_matcher_.DescribeTo(os); + } + + bool MatchAndExplain(T x, MatchResultListener* listener) const override { + return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), + listener); + } + + private: + const Matcher<const ArgTuple&> mono_tuple2_matcher_; + const Second second_value_; + }; + + const Tuple2Matcher tuple2_matcher_; + const Second second_value_; +}; + +// Given a 2-tuple matcher tm and a value second, +// MatcherBindSecond(tm, second) returns a matcher that matches a +// value x if and only if tm matches tuple (x, second). Useful for +// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). +template <typename Tuple2Matcher, typename Second> +BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( + const Tuple2Matcher& tm, const Second& second) { + return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); +} + +// Returns the description for a matcher defined using the MATCHER*() +// macro where the user-supplied description string is "", if +// 'negation' is false; otherwise returns the description of the +// negation of the matcher. 'param_values' contains a list of strings +// that are the print-out of the matcher's parameters. +GTEST_API_ std::string FormatMatcherDescription( + bool negation, const char* matcher_name, + const std::vector<const char*>& param_names, const Strings& param_values); + +// Implements a matcher that checks the value of a optional<> type variable. +template <typename ValueMatcher> +class OptionalMatcher { + public: + explicit OptionalMatcher(const ValueMatcher& value_matcher) + : value_matcher_(value_matcher) {} + + template <typename Optional> + operator Matcher<Optional>() const { + return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); + } + + template <typename Optional> + class Impl : public MatcherInterface<Optional> { + public: + typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; + typedef typename OptionalView::value_type ValueType; + explicit Impl(const ValueMatcher& value_matcher) + : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} + + void DescribeTo(::std::ostream* os) const override { + *os << "value "; + value_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "value "; + value_matcher_.DescribeNegationTo(os); + } + + bool MatchAndExplain(Optional optional, + MatchResultListener* listener) const override { + if (!optional) { + *listener << "which is not engaged"; + return false; + } + const ValueType& value = *optional; + StringMatchResultListener value_listener; + const bool match = value_matcher_.MatchAndExplain(value, &value_listener); + *listener << "whose value " << PrintToString(value) + << (match ? " matches" : " doesn't match"); + PrintIfNotEmpty(value_listener.str(), listener->stream()); + return match; + } + + private: + const Matcher<ValueType> value_matcher_; + }; + + private: + const ValueMatcher value_matcher_; +}; + +namespace variant_matcher { +// Overloads to allow VariantMatcher to do proper ADL lookup. +template <typename T> +void holds_alternative() {} +template <typename T> +void get() {} + +// Implements a matcher that checks the value of a variant<> type variable. +template <typename T> +class VariantMatcher { + public: + explicit VariantMatcher(::testing::Matcher<const T&> matcher) + : matcher_(std::move(matcher)) {} + + template <typename Variant> + bool MatchAndExplain(const Variant& value, + ::testing::MatchResultListener* listener) const { + using std::get; + if (!listener->IsInterested()) { + return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); + } + + if (!holds_alternative<T>(value)) { + *listener << "whose value is not of type '" << GetTypeName() << "'"; + return false; + } + + const T& elem = get<T>(value); + StringMatchResultListener elem_listener; + const bool match = matcher_.MatchAndExplain(elem, &elem_listener); + *listener << "whose value " << PrintToString(elem) + << (match ? " matches" : " doesn't match"); + PrintIfNotEmpty(elem_listener.str(), listener->stream()); + return match; + } + + void DescribeTo(std::ostream* os) const { + *os << "is a variant<> with value of type '" << GetTypeName() + << "' and the value "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(std::ostream* os) const { + *os << "is a variant<> with value of type other than '" << GetTypeName() + << "' or the value "; + matcher_.DescribeNegationTo(os); + } + + private: + static std::string GetTypeName() { +#if GTEST_HAS_RTTI + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( + return internal::GetTypeName<T>()); +#endif + return "the element type"; + } + + const ::testing::Matcher<const T&> matcher_; +}; + +} // namespace variant_matcher + +namespace any_cast_matcher { + +// Overloads to allow AnyCastMatcher to do proper ADL lookup. +template <typename T> +void any_cast() {} + +// Implements a matcher that any_casts the value. +template <typename T> +class AnyCastMatcher { + public: + explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) + : matcher_(matcher) {} + + template <typename AnyType> + bool MatchAndExplain(const AnyType& value, + ::testing::MatchResultListener* listener) const { + if (!listener->IsInterested()) { + const T* ptr = any_cast<T>(&value); + return ptr != nullptr && matcher_.Matches(*ptr); + } + + const T* elem = any_cast<T>(&value); + if (elem == nullptr) { + *listener << "whose value is not of type '" << GetTypeName() << "'"; + return false; + } + + StringMatchResultListener elem_listener; + const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); + *listener << "whose value " << PrintToString(*elem) + << (match ? " matches" : " doesn't match"); + PrintIfNotEmpty(elem_listener.str(), listener->stream()); + return match; + } + + void DescribeTo(std::ostream* os) const { + *os << "is an 'any' type with value of type '" << GetTypeName() + << "' and the value "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(std::ostream* os) const { + *os << "is an 'any' type with value of type other than '" << GetTypeName() + << "' or the value "; + matcher_.DescribeNegationTo(os); + } + + private: + static std::string GetTypeName() { +#if GTEST_HAS_RTTI + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( + return internal::GetTypeName<T>()); +#endif + return "the element type"; + } + + const ::testing::Matcher<const T&> matcher_; +}; + +} // namespace any_cast_matcher + +// Implements the Args() matcher. +template <class ArgsTuple, size_t... k> +class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { + public: + using RawArgsTuple = typename std::decay<ArgsTuple>::type; + using SelectedArgs = + std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; + using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; + + template <typename InnerMatcher> + explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) + : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} + + bool MatchAndExplain(ArgsTuple args, + MatchResultListener* listener) const override { + // Workaround spurious C4100 on MSVC<=15.7 when k is empty. + (void)args; + const SelectedArgs& selected_args = + std::forward_as_tuple(std::get<k>(args)...); + if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); + + PrintIndices(listener->stream()); + *listener << "are " << PrintToString(selected_args); + + StringMatchResultListener inner_listener; + const bool match = + inner_matcher_.MatchAndExplain(selected_args, &inner_listener); + PrintIfNotEmpty(inner_listener.str(), listener->stream()); + return match; + } + + void DescribeTo(::std::ostream* os) const override { + *os << "are a tuple "; + PrintIndices(os); + inner_matcher_.DescribeTo(os); + } + + void DescribeNegationTo(::std::ostream* os) const override { + *os << "are a tuple "; + PrintIndices(os); + inner_matcher_.DescribeNegationTo(os); + } + + private: + // Prints the indices of the selected fields. + static void PrintIndices(::std::ostream* os) { + *os << "whose fields ("; + const char* sep = ""; + // Workaround spurious C4189 on MSVC<=15.7 when k is empty. + (void)sep; + const char* dummy[] = {"", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...}; + (void)dummy; + *os << ") "; + } + + MonomorphicInnerMatcher inner_matcher_; +}; + +template <class InnerMatcher, size_t... k> +class ArgsMatcher { + public: + explicit ArgsMatcher(InnerMatcher inner_matcher) + : inner_matcher_(std::move(inner_matcher)) {} + + template <typename ArgsTuple> + operator Matcher<ArgsTuple>() const { // NOLINT + return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); + } + + private: + InnerMatcher inner_matcher_; +}; + +} // namespace internal + +// ElementsAreArray(iterator_first, iterator_last) +// ElementsAreArray(pointer, count) +// ElementsAreArray(array) +// ElementsAreArray(container) +// ElementsAreArray({ e1, e2, ..., en }) +// +// The ElementsAreArray() functions are like ElementsAre(...), except +// that they are given a homogeneous sequence rather than taking each +// element as a function argument. The sequence can be specified as an +// array, a pointer and count, a vector, an initializer list, or an +// STL iterator range. In each of these cases, the underlying sequence +// can be either a sequence of values or a sequence of matchers. +// +// All forms of ElementsAreArray() make a copy of the input matcher sequence. + +template <typename Iter> +inline internal::ElementsAreArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +ElementsAreArray(Iter first, Iter last) { + typedef typename ::std::iterator_traits<Iter>::value_type T; + return internal::ElementsAreArrayMatcher<T>(first, last); +} + +template <typename T> +inline auto ElementsAreArray(const T* pointer, size_t count) + -> decltype(ElementsAreArray(pointer, pointer + count)) { + return ElementsAreArray(pointer, pointer + count); +} + +template <typename T, size_t N> +inline auto ElementsAreArray(const T (&array)[N]) + -> decltype(ElementsAreArray(array, N)) { + return ElementsAreArray(array, N); +} + +template <typename Container> +inline auto ElementsAreArray(const Container& container) + -> decltype(ElementsAreArray(container.begin(), container.end())) { + return ElementsAreArray(container.begin(), container.end()); +} + +template <typename T> +inline auto ElementsAreArray(::std::initializer_list<T> xs) + -> decltype(ElementsAreArray(xs.begin(), xs.end())) { + return ElementsAreArray(xs.begin(), xs.end()); +} + +// UnorderedElementsAreArray(iterator_first, iterator_last) +// UnorderedElementsAreArray(pointer, count) +// UnorderedElementsAreArray(array) +// UnorderedElementsAreArray(container) +// UnorderedElementsAreArray({ e1, e2, ..., en }) +// +// UnorderedElementsAreArray() verifies that a bijective mapping onto a +// collection of matchers exists. +// +// The matchers can be specified as an array, a pointer and count, a container, +// an initializer list, or an STL iterator range. In each of these cases, the +// underlying matchers can be either values or matchers. + +template <typename Iter> +inline internal::UnorderedElementsAreArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +UnorderedElementsAreArray(Iter first, Iter last) { + typedef typename ::std::iterator_traits<Iter>::value_type T; + return internal::UnorderedElementsAreArrayMatcher<T>( + internal::UnorderedMatcherRequire::ExactMatch, first, last); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( + const T* pointer, size_t count) { + return UnorderedElementsAreArray(pointer, pointer + count); +} + +template <typename T, size_t N> +inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( + const T (&array)[N]) { + return UnorderedElementsAreArray(array, N); +} + +template <typename Container> +inline internal::UnorderedElementsAreArrayMatcher< + typename Container::value_type> +UnorderedElementsAreArray(const Container& container) { + return UnorderedElementsAreArray(container.begin(), container.end()); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( + ::std::initializer_list<T> xs) { + return UnorderedElementsAreArray(xs.begin(), xs.end()); +} + +// _ is a matcher that matches anything of any type. +// +// This definition is fine as: +// +// 1. The C++ standard permits using the name _ in a namespace that +// is not the global namespace or ::std. +// 2. The AnythingMatcher class has no data member or constructor, +// so it's OK to create global variables of this type. +// 3. c-style has approved of using _ in this case. +const internal::AnythingMatcher _ = {}; +// Creates a matcher that matches any value of the given type T. +template <typename T> +inline Matcher<T> A() { + return _; +} + +// Creates a matcher that matches any value of the given type T. +template <typename T> +inline Matcher<T> An() { + return _; +} + +template <typename T, typename M> +Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( + const M& value, std::false_type /* convertible_to_matcher */, + std::false_type /* convertible_to_T */) { + return Eq(value); +} + +// Creates a polymorphic matcher that matches any NULL pointer. +inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() { + return MakePolymorphicMatcher(internal::IsNullMatcher()); +} + +// Creates a polymorphic matcher that matches any non-NULL pointer. +// This is convenient as Not(NULL) doesn't compile (the compiler +// thinks that that expression is comparing a pointer with an integer). +inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() { + return MakePolymorphicMatcher(internal::NotNullMatcher()); +} + +// Creates a polymorphic matcher that matches any argument that +// references variable x. +template <typename T> +inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT + return internal::RefMatcher<T&>(x); +} + +// Creates a polymorphic matcher that matches any NaN floating point. +inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { + return MakePolymorphicMatcher(internal::IsNanMatcher()); +} + +// Creates a matcher that matches any double argument approximately +// equal to rhs, where two NANs are considered unequal. +inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { + return internal::FloatingEqMatcher<double>(rhs, false); +} + +// Creates a matcher that matches any double argument approximately +// equal to rhs, including NaN values when rhs is NaN. +inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { + return internal::FloatingEqMatcher<double>(rhs, true); +} + +// Creates a matcher that matches any double argument approximately equal to +// rhs, up to the specified max absolute error bound, where two NANs are +// considered unequal. The max absolute error bound must be non-negative. +inline internal::FloatingEqMatcher<double> DoubleNear(double rhs, + double max_abs_error) { + return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); +} + +// Creates a matcher that matches any double argument approximately equal to +// rhs, up to the specified max absolute error bound, including NaN values when +// rhs is NaN. The max absolute error bound must be non-negative. +inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( + double rhs, double max_abs_error) { + return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); +} + +// Creates a matcher that matches any float argument approximately +// equal to rhs, where two NANs are considered unequal. +inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { + return internal::FloatingEqMatcher<float>(rhs, false); +} + +// Creates a matcher that matches any float argument approximately +// equal to rhs, including NaN values when rhs is NaN. +inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { + return internal::FloatingEqMatcher<float>(rhs, true); +} + +// Creates a matcher that matches any float argument approximately equal to +// rhs, up to the specified max absolute error bound, where two NANs are +// considered unequal. The max absolute error bound must be non-negative. +inline internal::FloatingEqMatcher<float> FloatNear(float rhs, + float max_abs_error) { + return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); +} + +// Creates a matcher that matches any float argument approximately equal to +// rhs, up to the specified max absolute error bound, including NaN values when +// rhs is NaN. The max absolute error bound must be non-negative. +inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( + float rhs, float max_abs_error) { + return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); +} + +// Creates a matcher that matches a pointer (raw or smart) that points +// to a value that matches inner_matcher. +template <typename InnerMatcher> +inline internal::PointeeMatcher<InnerMatcher> Pointee( + const InnerMatcher& inner_matcher) { + return internal::PointeeMatcher<InnerMatcher>(inner_matcher); +} + +#if GTEST_HAS_RTTI +// Creates a matcher that matches a pointer or reference that matches +// inner_matcher when dynamic_cast<To> is applied. +// The result of dynamic_cast<To> is forwarded to the inner matcher. +// If To is a pointer and the cast fails, the inner matcher will receive NULL. +// If To is a reference and the cast fails, this matcher returns false +// immediately. +template <typename To> +inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>> +WhenDynamicCastTo(const Matcher<To>& inner_matcher) { + return MakePolymorphicMatcher( + internal::WhenDynamicCastToMatcher<To>(inner_matcher)); +} +#endif // GTEST_HAS_RTTI + +// Creates a matcher that matches an object whose given field matches +// 'matcher'. For example, +// Field(&Foo::number, Ge(5)) +// matches a Foo object x if and only if x.number >= 5. +template <typename Class, typename FieldType, typename FieldMatcher> +inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( + FieldType Class::*field, const FieldMatcher& matcher) { + return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( + field, MatcherCast<const FieldType&>(matcher))); + // The call to MatcherCast() is required for supporting inner + // matchers of compatible types. For example, it allows + // Field(&Foo::bar, m) + // to compile where bar is an int32 and m is a matcher for int64. +} + +// Same as Field() but also takes the name of the field to provide better error +// messages. +template <typename Class, typename FieldType, typename FieldMatcher> +inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( + const std::string& field_name, FieldType Class::*field, + const FieldMatcher& matcher) { + return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( + field_name, field, MatcherCast<const FieldType&>(matcher))); +} + +// Creates a matcher that matches an object whose given property +// matches 'matcher'. For example, +// Property(&Foo::str, StartsWith("hi")) +// matches a Foo object x if and only if x.str() starts with "hi". +template <typename Class, typename PropertyType, typename PropertyMatcher> +inline PolymorphicMatcher<internal::PropertyMatcher< + Class, PropertyType, PropertyType (Class::*)() const>> +Property(PropertyType (Class::*property)() const, + const PropertyMatcher& matcher) { + return MakePolymorphicMatcher( + internal::PropertyMatcher<Class, PropertyType, + PropertyType (Class::*)() const>( + property, MatcherCast<const PropertyType&>(matcher))); + // The call to MatcherCast() is required for supporting inner + // matchers of compatible types. For example, it allows + // Property(&Foo::bar, m) + // to compile where bar() returns an int32 and m is a matcher for int64. +} + +// Same as Property() above, but also takes the name of the property to provide +// better error messages. +template <typename Class, typename PropertyType, typename PropertyMatcher> +inline PolymorphicMatcher<internal::PropertyMatcher< + Class, PropertyType, PropertyType (Class::*)() const>> +Property(const std::string& property_name, + PropertyType (Class::*property)() const, + const PropertyMatcher& matcher) { + return MakePolymorphicMatcher( + internal::PropertyMatcher<Class, PropertyType, + PropertyType (Class::*)() const>( + property_name, property, MatcherCast<const PropertyType&>(matcher))); +} + +// The same as above but for reference-qualified member functions. +template <typename Class, typename PropertyType, typename PropertyMatcher> +inline PolymorphicMatcher<internal::PropertyMatcher< + Class, PropertyType, PropertyType (Class::*)() const&>> +Property(PropertyType (Class::*property)() const&, + const PropertyMatcher& matcher) { + return MakePolymorphicMatcher( + internal::PropertyMatcher<Class, PropertyType, + PropertyType (Class::*)() const&>( + property, MatcherCast<const PropertyType&>(matcher))); +} + +// Three-argument form for reference-qualified member functions. +template <typename Class, typename PropertyType, typename PropertyMatcher> +inline PolymorphicMatcher<internal::PropertyMatcher< + Class, PropertyType, PropertyType (Class::*)() const&>> +Property(const std::string& property_name, + PropertyType (Class::*property)() const&, + const PropertyMatcher& matcher) { + return MakePolymorphicMatcher( + internal::PropertyMatcher<Class, PropertyType, + PropertyType (Class::*)() const&>( + property_name, property, MatcherCast<const PropertyType&>(matcher))); +} + +// Creates a matcher that matches an object if and only if the result of +// applying a callable to x matches 'matcher'. For example, +// ResultOf(f, StartsWith("hi")) +// matches a Foo object x if and only if f(x) starts with "hi". +// `callable` parameter can be a function, function pointer, or a functor. It is +// required to keep no state affecting the results of the calls on it and make +// no assumptions about how many calls will be made. Any state it keeps must be +// protected from the concurrent access. +template <typename Callable, typename InnerMatcher> +internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( + Callable callable, InnerMatcher matcher) { + return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable), + std::move(matcher)); +} + +// Same as ResultOf() above, but also takes a description of the `callable` +// result to provide better error messages. +template <typename Callable, typename InnerMatcher> +internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( + const std::string& result_description, Callable callable, + InnerMatcher matcher) { + return internal::ResultOfMatcher<Callable, InnerMatcher>( + result_description, std::move(callable), std::move(matcher)); +} + +// String matchers. + +// Matches a string equal to str. +template <typename T = std::string> +PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq( + const internal::StringLike<T>& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); +} + +// Matches a string not equal to str. +template <typename T = std::string> +PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe( + const internal::StringLike<T>& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); +} + +// Matches a string equal to str, ignoring case. +template <typename T = std::string> +PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq( + const internal::StringLike<T>& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); +} + +// Matches a string not equal to str, ignoring case. +template <typename T = std::string> +PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe( + const internal::StringLike<T>& str) { + return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( + std::string(str), false, false)); +} + +// Creates a matcher that matches any string, std::string, or C string +// that contains the given substring. +template <typename T = std::string> +PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr( + const internal::StringLike<T>& substring) { + return MakePolymorphicMatcher( + internal::HasSubstrMatcher<std::string>(std::string(substring))); +} + +// Matches a string that starts with 'prefix' (case-sensitive). +template <typename T = std::string> +PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith( + const internal::StringLike<T>& prefix) { + return MakePolymorphicMatcher( + internal::StartsWithMatcher<std::string>(std::string(prefix))); +} + +// Matches a string that ends with 'suffix' (case-sensitive). +template <typename T = std::string> +PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith( + const internal::StringLike<T>& suffix) { + return MakePolymorphicMatcher( + internal::EndsWithMatcher<std::string>(std::string(suffix))); +} + +#if GTEST_HAS_STD_WSTRING +// Wide string matchers. + +// Matches a string equal to str. +inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq( + const std::wstring& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::wstring>(str, true, true)); +} + +// Matches a string not equal to str. +inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe( + const std::wstring& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::wstring>(str, false, true)); +} + +// Matches a string equal to str, ignoring case. +inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq( + const std::wstring& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::wstring>(str, true, false)); +} + +// Matches a string not equal to str, ignoring case. +inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe( + const std::wstring& str) { + return MakePolymorphicMatcher( + internal::StrEqualityMatcher<std::wstring>(str, false, false)); +} + +// Creates a matcher that matches any ::wstring, std::wstring, or C wide string +// that contains the given substring. +inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr( + const std::wstring& substring) { + return MakePolymorphicMatcher( + internal::HasSubstrMatcher<std::wstring>(substring)); +} + +// Matches a string that starts with 'prefix' (case-sensitive). +inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith( + const std::wstring& prefix) { + return MakePolymorphicMatcher( + internal::StartsWithMatcher<std::wstring>(prefix)); +} + +// Matches a string that ends with 'suffix' (case-sensitive). +inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith( + const std::wstring& suffix) { + return MakePolymorphicMatcher( + internal::EndsWithMatcher<std::wstring>(suffix)); +} + +#endif // GTEST_HAS_STD_WSTRING + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field == the second field. +inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field >= the second field. +inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field > the second field. +inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field <= the second field. +inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field < the second field. +inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where the +// first field != the second field. +inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } + +// Creates a polymorphic matcher that matches a 2-tuple where +// FloatEq(first field) matches the second field. +inline internal::FloatingEq2Matcher<float> FloatEq() { + return internal::FloatingEq2Matcher<float>(); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// DoubleEq(first field) matches the second field. +inline internal::FloatingEq2Matcher<double> DoubleEq() { + return internal::FloatingEq2Matcher<double>(); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// FloatEq(first field) matches the second field with NaN equality. +inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { + return internal::FloatingEq2Matcher<float>(true); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// DoubleEq(first field) matches the second field with NaN equality. +inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { + return internal::FloatingEq2Matcher<double>(true); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// FloatNear(first field, max_abs_error) matches the second field. +inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { + return internal::FloatingEq2Matcher<float>(max_abs_error); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// DoubleNear(first field, max_abs_error) matches the second field. +inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { + return internal::FloatingEq2Matcher<double>(max_abs_error); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// FloatNear(first field, max_abs_error) matches the second field with NaN +// equality. +inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( + float max_abs_error) { + return internal::FloatingEq2Matcher<float>(max_abs_error, true); +} + +// Creates a polymorphic matcher that matches a 2-tuple where +// DoubleNear(first field, max_abs_error) matches the second field with NaN +// equality. +inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( + double max_abs_error) { + return internal::FloatingEq2Matcher<double>(max_abs_error, true); +} + +// Creates a matcher that matches any value of type T that m doesn't +// match. +template <typename InnerMatcher> +inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { + return internal::NotMatcher<InnerMatcher>(m); +} + +// Returns a matcher that matches anything that satisfies the given +// predicate. The predicate can be any unary function or functor +// whose return type can be implicitly converted to bool. +template <typename Predicate> +inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly( + Predicate pred) { + return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); +} + +// Returns a matcher that matches the container size. The container must +// support both size() and size_type which all STL-like containers provide. +// Note that the parameter 'size' can be a value of type size_type as well as +// matcher. For instance: +// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. +// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. +template <typename SizeMatcher> +inline internal::SizeIsMatcher<SizeMatcher> SizeIs( + const SizeMatcher& size_matcher) { + return internal::SizeIsMatcher<SizeMatcher>(size_matcher); +} + +// Returns a matcher that matches the distance between the container's begin() +// iterator and its end() iterator, i.e. the size of the container. This matcher +// can be used instead of SizeIs with containers such as std::forward_list which +// do not implement size(). The container must provide const_iterator (with +// valid iterator_traits), begin() and end(). +template <typename DistanceMatcher> +inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs( + const DistanceMatcher& distance_matcher) { + return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); +} + +// Returns a matcher that matches an equal container. +// This matcher behaves like Eq(), but in the event of mismatch lists the +// values that are included in one container but not the other. (Duplicate +// values and order differences are not explained.) +template <typename Container> +inline PolymorphicMatcher< + internal::ContainerEqMatcher<typename std::remove_const<Container>::type>> +ContainerEq(const Container& rhs) { + return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); +} + +// Returns a matcher that matches a container that, when sorted using +// the given comparator, matches container_matcher. +template <typename Comparator, typename ContainerMatcher> +inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy( + const Comparator& comparator, const ContainerMatcher& container_matcher) { + return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( + comparator, container_matcher); +} + +// Returns a matcher that matches a container that, when sorted using +// the < operator, matches container_matcher. +template <typename ContainerMatcher> +inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> +WhenSorted(const ContainerMatcher& container_matcher) { + return internal::WhenSortedByMatcher<internal::LessComparator, + ContainerMatcher>( + internal::LessComparator(), container_matcher); +} + +// Matches an STL-style container or a native array that contains the +// same number of elements as in rhs, where its i-th element and rhs's +// i-th element (as a pair) satisfy the given pair matcher, for all i. +// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const +// T1&, const T2&> >, where T1 and T2 are the types of elements in the +// LHS container and the RHS container respectively. +template <typename TupleMatcher, typename Container> +inline internal::PointwiseMatcher<TupleMatcher, + typename std::remove_const<Container>::type> +Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { + return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, + rhs); +} + +// Supports the Pointwise(m, {a, b, c}) syntax. +template <typename TupleMatcher, typename T> +inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise( + const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { + return Pointwise(tuple_matcher, std::vector<T>(rhs)); +} + +// UnorderedPointwise(pair_matcher, rhs) matches an STL-style +// container or a native array that contains the same number of +// elements as in rhs, where in some permutation of the container, its +// i-th element and rhs's i-th element (as a pair) satisfy the given +// pair matcher, for all i. Tuple2Matcher must be able to be safely +// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are +// the types of elements in the LHS container and the RHS container +// respectively. +// +// This is like Pointwise(pair_matcher, rhs), except that the element +// order doesn't matter. +template <typename Tuple2Matcher, typename RhsContainer> +inline internal::UnorderedElementsAreArrayMatcher< + typename internal::BoundSecondMatcher< + Tuple2Matcher, + typename internal::StlContainerView< + typename std::remove_const<RhsContainer>::type>::type::value_type>> +UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, + const RhsContainer& rhs_container) { + // RhsView allows the same code to handle RhsContainer being a + // STL-style container and it being a native C-style array. + typedef typename internal::StlContainerView<RhsContainer> RhsView; + typedef typename RhsView::type RhsStlContainer; + typedef typename RhsStlContainer::value_type Second; + const RhsStlContainer& rhs_stl_container = + RhsView::ConstReference(rhs_container); + + // Create a matcher for each element in rhs_container. + ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers; + for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end(); + ++it) { + matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it)); + } + + // Delegate the work to UnorderedElementsAreArray(). + return UnorderedElementsAreArray(matchers); +} + +// Supports the UnorderedPointwise(m, {a, b, c}) syntax. +template <typename Tuple2Matcher, typename T> +inline internal::UnorderedElementsAreArrayMatcher< + typename internal::BoundSecondMatcher<Tuple2Matcher, T>> +UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, + std::initializer_list<T> rhs) { + return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); +} + +// Matches an STL-style container or a native array that contains at +// least one element matching the given value or matcher. +// +// Examples: +// ::std::set<int> page_ids; +// page_ids.insert(3); +// page_ids.insert(1); +// EXPECT_THAT(page_ids, Contains(1)); +// EXPECT_THAT(page_ids, Contains(Gt(2))); +// EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0) +// +// ::std::map<int, size_t> page_lengths; +// page_lengths[1] = 100; +// EXPECT_THAT(page_lengths, +// Contains(::std::pair<const int, size_t>(1, 100))); +// +// const char* user_ids[] = { "joe", "mike", "tom" }; +// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); +// +// The matcher supports a modifier `Times` that allows to check for arbitrary +// occurrences including testing for absence with Times(0). +// +// Examples: +// ::std::vector<int> ids; +// ids.insert(1); +// ids.insert(1); +// ids.insert(3); +// EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times +// EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present +// EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once + +template <typename M> +inline internal::ContainsMatcher<M> Contains(M matcher) { + return internal::ContainsMatcher<M>(matcher); +} + +// IsSupersetOf(iterator_first, iterator_last) +// IsSupersetOf(pointer, count) +// IsSupersetOf(array) +// IsSupersetOf(container) +// IsSupersetOf({e1, e2, ..., en}) +// +// IsSupersetOf() verifies that a surjective partial mapping onto a collection +// of matchers exists. In other words, a container matches +// IsSupersetOf({e1, ..., en}) if and only if there is a permutation +// {y1, ..., yn} of some of the container's elements where y1 matches e1, +// ..., and yn matches en. Obviously, the size of the container must be >= n +// in order to have a match. Examples: +// +// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and +// 1 matches Ne(0). +// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches +// both Eq(1) and Lt(2). The reason is that different matchers must be used +// for elements in different slots of the container. +// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches +// Eq(1) and (the second) 1 matches Lt(2). +// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) +// Gt(1) and 3 matches (the second) Gt(1). +// +// The matchers can be specified as an array, a pointer and count, a container, +// an initializer list, or an STL iterator range. In each of these cases, the +// underlying matchers can be either values or matchers. + +template <typename Iter> +inline internal::UnorderedElementsAreArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +IsSupersetOf(Iter first, Iter last) { + typedef typename ::std::iterator_traits<Iter>::value_type T; + return internal::UnorderedElementsAreArrayMatcher<T>( + internal::UnorderedMatcherRequire::Superset, first, last); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( + const T* pointer, size_t count) { + return IsSupersetOf(pointer, pointer + count); +} + +template <typename T, size_t N> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( + const T (&array)[N]) { + return IsSupersetOf(array, N); +} + +template <typename Container> +inline internal::UnorderedElementsAreArrayMatcher< + typename Container::value_type> +IsSupersetOf(const Container& container) { + return IsSupersetOf(container.begin(), container.end()); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( + ::std::initializer_list<T> xs) { + return IsSupersetOf(xs.begin(), xs.end()); +} + +// IsSubsetOf(iterator_first, iterator_last) +// IsSubsetOf(pointer, count) +// IsSubsetOf(array) +// IsSubsetOf(container) +// IsSubsetOf({e1, e2, ..., en}) +// +// IsSubsetOf() verifies that an injective mapping onto a collection of matchers +// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and +// only if there is a subset of matchers {m1, ..., mk} which would match the +// container using UnorderedElementsAre. Obviously, the size of the container +// must be <= n in order to have a match. Examples: +// +// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). +// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 +// matches Lt(0). +// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both +// match Gt(0). The reason is that different matchers must be used for +// elements in different slots of the container. +// +// The matchers can be specified as an array, a pointer and count, a container, +// an initializer list, or an STL iterator range. In each of these cases, the +// underlying matchers can be either values or matchers. + +template <typename Iter> +inline internal::UnorderedElementsAreArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +IsSubsetOf(Iter first, Iter last) { + typedef typename ::std::iterator_traits<Iter>::value_type T; + return internal::UnorderedElementsAreArrayMatcher<T>( + internal::UnorderedMatcherRequire::Subset, first, last); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( + const T* pointer, size_t count) { + return IsSubsetOf(pointer, pointer + count); +} + +template <typename T, size_t N> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( + const T (&array)[N]) { + return IsSubsetOf(array, N); +} + +template <typename Container> +inline internal::UnorderedElementsAreArrayMatcher< + typename Container::value_type> +IsSubsetOf(const Container& container) { + return IsSubsetOf(container.begin(), container.end()); +} + +template <typename T> +inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( + ::std::initializer_list<T> xs) { + return IsSubsetOf(xs.begin(), xs.end()); +} + +// Matches an STL-style container or a native array that contains only +// elements matching the given value or matcher. +// +// Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only +// the messages are different. +// +// Examples: +// ::std::set<int> page_ids; +// // Each(m) matches an empty container, regardless of what m is. +// EXPECT_THAT(page_ids, Each(Eq(1))); +// EXPECT_THAT(page_ids, Each(Eq(77))); +// +// page_ids.insert(3); +// EXPECT_THAT(page_ids, Each(Gt(0))); +// EXPECT_THAT(page_ids, Not(Each(Gt(4)))); +// page_ids.insert(1); +// EXPECT_THAT(page_ids, Not(Each(Lt(2)))); +// +// ::std::map<int, size_t> page_lengths; +// page_lengths[1] = 100; +// page_lengths[2] = 200; +// page_lengths[3] = 300; +// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); +// EXPECT_THAT(page_lengths, Each(Key(Le(3)))); +// +// const char* user_ids[] = { "joe", "mike", "tom" }; +// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); +template <typename M> +inline internal::EachMatcher<M> Each(M matcher) { + return internal::EachMatcher<M>(matcher); +} + +// Key(inner_matcher) matches an std::pair whose 'first' field matches +// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an +// std::map that contains at least one element whose key is >= 5. +template <typename M> +inline internal::KeyMatcher<M> Key(M inner_matcher) { + return internal::KeyMatcher<M>(inner_matcher); +} + +// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field +// matches first_matcher and whose 'second' field matches second_matcher. For +// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used +// to match a std::map<int, string> that contains exactly one element whose key +// is >= 5 and whose value equals "foo". +template <typename FirstMatcher, typename SecondMatcher> +inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair( + FirstMatcher first_matcher, SecondMatcher second_matcher) { + return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher, + second_matcher); +} + +namespace no_adl { +// Conditional() creates a matcher that conditionally uses either the first or +// second matcher provided. For example, we could create an `equal if, and only +// if' matcher using the Conditional wrapper as follows: +// +// EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected))); +template <typename MatcherTrue, typename MatcherFalse> +internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional( + bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) { + return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>( + condition, std::move(matcher_true), std::move(matcher_false)); +} + +// FieldsAre(matchers...) matches piecewise the fields of compatible structs. +// These include those that support `get<I>(obj)`, and when structured bindings +// are enabled any class that supports them. +// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. +template <typename... M> +internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( + M&&... matchers) { + return internal::FieldsAreMatcher<typename std::decay<M>::type...>( + std::forward<M>(matchers)...); +} + +// Creates a matcher that matches a pointer (raw or smart) that matches +// inner_matcher. +template <typename InnerMatcher> +inline internal::PointerMatcher<InnerMatcher> Pointer( + const InnerMatcher& inner_matcher) { + return internal::PointerMatcher<InnerMatcher>(inner_matcher); +} + +// Creates a matcher that matches an object that has an address that matches +// inner_matcher. +template <typename InnerMatcher> +inline internal::AddressMatcher<InnerMatcher> Address( + const InnerMatcher& inner_matcher) { + return internal::AddressMatcher<InnerMatcher>(inner_matcher); +} + +// Matches a base64 escaped string, when the unescaped string matches the +// internal matcher. +template <typename MatcherType> +internal::WhenBase64UnescapedMatcher WhenBase64Unescaped( + const MatcherType& internal_matcher) { + return internal::WhenBase64UnescapedMatcher(internal_matcher); +} +} // namespace no_adl + +// Returns a predicate that is satisfied by anything that matches the +// given matcher. +template <typename M> +inline internal::MatcherAsPredicate<M> Matches(M matcher) { + return internal::MatcherAsPredicate<M>(matcher); +} + +// Returns true if and only if the value matches the matcher. +template <typename T, typename M> +inline bool Value(const T& value, M matcher) { + return testing::Matches(matcher)(value); +} + +// Matches the value against the given matcher and explains the match +// result to listener. +template <typename T, typename M> +inline bool ExplainMatchResult(M matcher, const T& value, + MatchResultListener* listener) { + return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); +} + +// Returns a string representation of the given matcher. Useful for description +// strings of matchers defined using MATCHER_P* macros that accept matchers as +// their arguments. For example: +// +// MATCHER_P(XAndYThat, matcher, +// "X that " + DescribeMatcher<int>(matcher, negation) + +// (negation ? " or" : " and") + " Y that " + +// DescribeMatcher<double>(matcher, negation)) { +// return ExplainMatchResult(matcher, arg.x(), result_listener) && +// ExplainMatchResult(matcher, arg.y(), result_listener); +// } +template <typename T, typename M> +std::string DescribeMatcher(const M& matcher, bool negation = false) { + ::std::stringstream ss; + Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); + if (negation) { + monomorphic_matcher.DescribeNegationTo(&ss); + } else { + monomorphic_matcher.DescribeTo(&ss); + } + return ss.str(); +} + +template <typename... Args> +internal::ElementsAreMatcher< + std::tuple<typename std::decay<const Args&>::type...>> +ElementsAre(const Args&... matchers) { + return internal::ElementsAreMatcher< + std::tuple<typename std::decay<const Args&>::type...>>( + std::make_tuple(matchers...)); +} + +template <typename... Args> +internal::UnorderedElementsAreMatcher< + std::tuple<typename std::decay<const Args&>::type...>> +UnorderedElementsAre(const Args&... matchers) { + return internal::UnorderedElementsAreMatcher< + std::tuple<typename std::decay<const Args&>::type...>>( + std::make_tuple(matchers...)); +} + +// Define variadic matcher versions. +template <typename... Args> +internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( + const Args&... matchers) { + return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( + matchers...); +} + +template <typename... Args> +internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( + const Args&... matchers) { + return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( + matchers...); +} + +// AnyOfArray(array) +// AnyOfArray(pointer, count) +// AnyOfArray(container) +// AnyOfArray({ e1, e2, ..., en }) +// AnyOfArray(iterator_first, iterator_last) +// +// AnyOfArray() verifies whether a given value matches any member of a +// collection of matchers. +// +// AllOfArray(array) +// AllOfArray(pointer, count) +// AllOfArray(container) +// AllOfArray({ e1, e2, ..., en }) +// AllOfArray(iterator_first, iterator_last) +// +// AllOfArray() verifies whether a given value matches all members of a +// collection of matchers. +// +// The matchers can be specified as an array, a pointer and count, a container, +// an initializer list, or an STL iterator range. In each of these cases, the +// underlying matchers can be either values or matchers. + +template <typename Iter> +inline internal::AnyOfArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +AnyOfArray(Iter first, Iter last) { + return internal::AnyOfArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type>(first, last); +} + +template <typename Iter> +inline internal::AllOfArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type> +AllOfArray(Iter first, Iter last) { + return internal::AllOfArrayMatcher< + typename ::std::iterator_traits<Iter>::value_type>(first, last); +} + +template <typename T> +inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { + return AnyOfArray(ptr, ptr + count); +} + +template <typename T> +inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { + return AllOfArray(ptr, ptr + count); +} + +template <typename T, size_t N> +inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { + return AnyOfArray(array, N); +} + +template <typename T, size_t N> +inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { + return AllOfArray(array, N); +} + +template <typename Container> +inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( + const Container& container) { + return AnyOfArray(container.begin(), container.end()); +} + +template <typename Container> +inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( + const Container& container) { + return AllOfArray(container.begin(), container.end()); +} + +template <typename T> +inline internal::AnyOfArrayMatcher<T> AnyOfArray( + ::std::initializer_list<T> xs) { + return AnyOfArray(xs.begin(), xs.end()); +} + +template <typename T> +inline internal::AllOfArrayMatcher<T> AllOfArray( + ::std::initializer_list<T> xs) { + return AllOfArray(xs.begin(), xs.end()); +} + +// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected +// fields of it matches a_matcher. C++ doesn't support default +// arguments for function templates, so we have to overload it. +template <size_t... k, typename InnerMatcher> +internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( + InnerMatcher&& matcher) { + return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( + std::forward<InnerMatcher>(matcher)); +} + +// AllArgs(m) is a synonym of m. This is useful in +// +// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); +// +// which is easier to read than +// +// EXPECT_CALL(foo, Bar(_, _)).With(Eq()); +template <typename InnerMatcher> +inline InnerMatcher AllArgs(const InnerMatcher& matcher) { + return matcher; +} + +// Returns a matcher that matches the value of an optional<> type variable. +// The matcher implementation only uses '!arg' and requires that the optional<> +// type has a 'value_type' member type and that '*arg' is of type 'value_type' +// and is printable using 'PrintToString'. It is compatible with +// std::optional/std::experimental::optional. +// Note that to compare an optional type variable against nullopt you should +// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the +// optional value contains an optional itself. +template <typename ValueMatcher> +inline internal::OptionalMatcher<ValueMatcher> Optional( + const ValueMatcher& value_matcher) { + return internal::OptionalMatcher<ValueMatcher>(value_matcher); +} + +// Returns a matcher that matches the value of a absl::any type variable. +template <typename T> +PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith( + const Matcher<const T&>& matcher) { + return MakePolymorphicMatcher( + internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); +} + +// Returns a matcher that matches the value of a variant<> type variable. +// The matcher implementation uses ADL to find the holds_alternative and get +// functions. +// It is compatible with std::variant. +template <typename T> +PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith( + const Matcher<const T&>& matcher) { + return MakePolymorphicMatcher( + internal::variant_matcher::VariantMatcher<T>(matcher)); +} + +#if GTEST_HAS_EXCEPTIONS + +// Anything inside the `internal` namespace is internal to the implementation +// and must not be used in user code! +namespace internal { + +class WithWhatMatcherImpl { + public: + WithWhatMatcherImpl(Matcher<std::string> matcher) + : matcher_(std::move(matcher)) {} + + void DescribeTo(std::ostream* os) const { + *os << "contains .what() that "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(std::ostream* os) const { + *os << "contains .what() that does not "; + matcher_.DescribeTo(os); + } + + template <typename Err> + bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { + *listener << "which contains .what() (of value = " << err.what() + << ") that "; + return matcher_.MatchAndExplain(err.what(), listener); + } + + private: + const Matcher<std::string> matcher_; +}; + +inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( + Matcher<std::string> m) { + return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); +} + +template <typename Err> +class ExceptionMatcherImpl { + class NeverThrown { + public: + const char* what() const noexcept { + return "this exception should never be thrown"; + } + }; + + // If the matchee raises an exception of a wrong type, we'd like to + // catch it and print its message and type. To do that, we add an additional + // catch clause: + // + // try { ... } + // catch (const Err&) { /* an expected exception */ } + // catch (const std::exception&) { /* exception of a wrong type */ } + // + // However, if the `Err` itself is `std::exception`, we'd end up with two + // identical `catch` clauses: + // + // try { ... } + // catch (const std::exception&) { /* an expected exception */ } + // catch (const std::exception&) { /* exception of a wrong type */ } + // + // This can cause a warning or an error in some compilers. To resolve + // the issue, we use a fake error type whenever `Err` is `std::exception`: + // + // try { ... } + // catch (const std::exception&) { /* an expected exception */ } + // catch (const NeverThrown&) { /* exception of a wrong type */ } + using DefaultExceptionType = typename std::conditional< + std::is_same<typename std::remove_cv< + typename std::remove_reference<Err>::type>::type, + std::exception>::value, + const NeverThrown&, const std::exception&>::type; + + public: + ExceptionMatcherImpl(Matcher<const Err&> matcher) + : matcher_(std::move(matcher)) {} + + void DescribeTo(std::ostream* os) const { + *os << "throws an exception which is a " << GetTypeName<Err>(); + *os << " which "; + matcher_.DescribeTo(os); + } + + void DescribeNegationTo(std::ostream* os) const { + *os << "throws an exception which is not a " << GetTypeName<Err>(); + *os << " which "; + matcher_.DescribeNegationTo(os); + } + + template <typename T> + bool MatchAndExplain(T&& x, MatchResultListener* listener) const { + try { + (void)(std::forward<T>(x)()); + } catch (const Err& err) { + *listener << "throws an exception which is a " << GetTypeName<Err>(); + *listener << " "; + return matcher_.MatchAndExplain(err, listener); + } catch (DefaultExceptionType err) { +#if GTEST_HAS_RTTI + *listener << "throws an exception of type " << GetTypeName(typeid(err)); + *listener << " "; +#else + *listener << "throws an std::exception-derived type "; +#endif + *listener << "with description \"" << err.what() << "\""; + return false; + } catch (...) { + *listener << "throws an exception of an unknown type"; + return false; + } + + *listener << "does not throw any exception"; + return false; + } + + private: + const Matcher<const Err&> matcher_; +}; + +} // namespace internal + +// Throws() +// Throws(exceptionMatcher) +// ThrowsMessage(messageMatcher) +// +// This matcher accepts a callable and verifies that when invoked, it throws +// an exception with the given type and properties. +// +// Examples: +// +// EXPECT_THAT( +// []() { throw std::runtime_error("message"); }, +// Throws<std::runtime_error>()); +// +// EXPECT_THAT( +// []() { throw std::runtime_error("message"); }, +// ThrowsMessage<std::runtime_error>(HasSubstr("message"))); +// +// EXPECT_THAT( +// []() { throw std::runtime_error("message"); }, +// Throws<std::runtime_error>( +// Property(&std::runtime_error::what, HasSubstr("message")))); + +template <typename Err> +PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { + return MakePolymorphicMatcher( + internal::ExceptionMatcherImpl<Err>(A<const Err&>())); +} + +template <typename Err, typename ExceptionMatcher> +PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( + const ExceptionMatcher& exception_matcher) { + // Using matcher cast allows users to pass a matcher of a more broad type. + // For example user may want to pass Matcher<std::exception> + // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. + return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( + SafeMatcherCast<const Err&>(exception_matcher))); +} + +template <typename Err, typename MessageMatcher> +PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( + MessageMatcher&& message_matcher) { + static_assert(std::is_base_of<std::exception, Err>::value, + "expected an std::exception-derived type"); + return Throws<Err>(internal::WithWhat( + MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); +} + +#endif // GTEST_HAS_EXCEPTIONS + +// These macros allow using matchers to check values in Google Test +// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) +// succeed if and only if the value matches the matcher. If the assertion +// fails, the value and the description of the matcher will be printed. +#define ASSERT_THAT(value, matcher) \ + ASSERT_PRED_FORMAT1( \ + ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) +#define EXPECT_THAT(value, matcher) \ + EXPECT_PRED_FORMAT1( \ + ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) + +// MATCHER* macros itself are listed below. +#define MATCHER(name, description) \ + class name##Matcher \ + : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ + public: \ + template <typename arg_type> \ + class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ + public: \ + gmock_Impl() {} \ + bool MatchAndExplain( \ + const arg_type& arg, \ + ::testing::MatchResultListener* result_listener) const override; \ + void DescribeTo(::std::ostream* gmock_os) const override { \ + *gmock_os << FormatDescription(false); \ + } \ + void DescribeNegationTo(::std::ostream* gmock_os) const override { \ + *gmock_os << FormatDescription(true); \ + } \ + \ + private: \ + ::std::string FormatDescription(bool negation) const { \ + /* NOLINTNEXTLINE readability-redundant-string-init */ \ + ::std::string gmock_description = (description); \ + if (!gmock_description.empty()) { \ + return gmock_description; \ + } \ + return ::testing::internal::FormatMatcherDescription(negation, #name, \ + {}, {}); \ + } \ + }; \ + }; \ + GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ + template <typename arg_type> \ + bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ + const arg_type& arg, \ + ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ + const + +#define MATCHER_P(name, p0, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0)) +#define MATCHER_P2(name, p0, p1, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \ + (p0, p1)) +#define MATCHER_P3(name, p0, p1, p2, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \ + (p0, p1, p2)) +#define MATCHER_P4(name, p0, p1, p2, p3, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \ + (#p0, #p1, #p2, #p3), (p0, p1, p2, p3)) +#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ + (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4)) +#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ + (#p0, #p1, #p2, #p3, #p4, #p5), \ + (p0, p1, p2, p3, p4, p5)) +#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ + (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \ + (p0, p1, p2, p3, p4, p5, p6)) +#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ + (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \ + (p0, p1, p2, p3, p4, p5, p6, p7)) +#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ + (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \ + (p0, p1, p2, p3, p4, p5, p6, p7, p8)) +#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ + GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ + (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \ + (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) + +#define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \ + template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ + class full_name : public ::testing::internal::MatcherBaseImpl< \ + full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ + public: \ + using full_name::MatcherBaseImpl::MatcherBaseImpl; \ + template <typename arg_type> \ + class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ + public: \ + explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ + : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ + bool MatchAndExplain( \ + const arg_type& arg, \ + ::testing::MatchResultListener* result_listener) const override; \ + void DescribeTo(::std::ostream* gmock_os) const override { \ + *gmock_os << FormatDescription(false); \ + } \ + void DescribeNegationTo(::std::ostream* gmock_os) const override { \ + *gmock_os << FormatDescription(true); \ + } \ + GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ + \ + private: \ + ::std::string FormatDescription(bool negation) const { \ + ::std::string gmock_description = (description); \ + if (!gmock_description.empty()) { \ + return gmock_description; \ + } \ + return ::testing::internal::FormatMatcherDescription( \ + negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \ + ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ + ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ + GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ + } \ + }; \ + }; \ + template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ + inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ + GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ + return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ + GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ + } \ + template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ + template <typename arg_type> \ + bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ + arg_type>::MatchAndExplain(const arg_type& arg, \ + ::testing::MatchResultListener* \ + result_listener GTEST_ATTRIBUTE_UNUSED_) \ + const + +#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ + GMOCK_PP_TAIL( \ + GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) +#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ + , typename arg##_type + +#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) +#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ + , arg##_type + +#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ + GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ + GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) +#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ + , arg##_type gmock_p##i + +#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) +#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ + , arg(::std::forward<arg##_type>(gmock_p##i)) + +#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ + GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) +#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ + const arg##_type arg; + +#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) +#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg + +#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ + GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) +#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ + , gmock_p##i + +// To prevent ADL on certain functions we put them on a separate namespace. +using namespace no_adl; // NOLINT + +} // namespace testing + +GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 + +// Include any custom callback matchers added by the local installation. +// We must include this header at the end to make sure it can use the +// declarations from this file. +#include "gmock/internal/custom/gmock-matchers.h" + +#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |