summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_coding/codecs/isac
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/modules/audio_coding/codecs/isac
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/audio_coding/codecs/isac')
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/bandwidth_info.h24
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.c195
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.h25
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.c409
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.h45
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/os_specific_inline.h42
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.c695
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h32
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.c388
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.h42
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/settings.h196
-rw-r--r--third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/structs.h448
12 files changed, 2541 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/bandwidth_info.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/bandwidth_info.h
new file mode 100644
index 0000000000..c3830a5f7c
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/bandwidth_info.h
@@ -0,0 +1,24 @@
+/*
+ * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_BANDWIDTH_INFO_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_BANDWIDTH_INFO_H_
+
+#include <stdint.h>
+
+typedef struct {
+ int in_use;
+ int32_t send_bw_avg;
+ int32_t send_max_delay_avg;
+ int16_t bottleneck_idx;
+ int16_t jitter_info;
+} IsacBandwidthInfo;
+
+#endif // MODULES_AUDIO_CODING_CODECS_ISAC_BANDWIDTH_INFO_H_
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.c b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.c
new file mode 100644
index 0000000000..a4f297c5a1
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.c
@@ -0,0 +1,195 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <memory.h>
+#include <string.h>
+#ifdef WEBRTC_ANDROID
+#include <stdlib.h>
+#endif
+
+#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
+#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"
+
+static void WebRtcIsac_AllPoleFilter(double* InOut,
+ double* Coef,
+ size_t lengthInOut,
+ int orderCoef) {
+ /* the state of filter is assumed to be in InOut[-1] to InOut[-orderCoef] */
+ double scal;
+ double sum;
+ size_t n;
+ int k;
+
+ //if (fabs(Coef[0]-1.0)<0.001) {
+ if ( (Coef[0] > 0.9999) && (Coef[0] < 1.0001) )
+ {
+ for(n = 0; n < lengthInOut; n++)
+ {
+ sum = Coef[1] * InOut[-1];
+ for(k = 2; k <= orderCoef; k++){
+ sum += Coef[k] * InOut[-k];
+ }
+ *InOut++ -= sum;
+ }
+ }
+ else
+ {
+ scal = 1.0 / Coef[0];
+ for(n=0;n<lengthInOut;n++)
+ {
+ *InOut *= scal;
+ for(k=1;k<=orderCoef;k++){
+ *InOut -= scal*Coef[k]*InOut[-k];
+ }
+ InOut++;
+ }
+ }
+}
+
+static void WebRtcIsac_AllZeroFilter(double* In,
+ double* Coef,
+ size_t lengthInOut,
+ int orderCoef,
+ double* Out) {
+ /* the state of filter is assumed to be in In[-1] to In[-orderCoef] */
+
+ size_t n;
+ int k;
+ double tmp;
+
+ for(n = 0; n < lengthInOut; n++)
+ {
+ tmp = In[0] * Coef[0];
+
+ for(k = 1; k <= orderCoef; k++){
+ tmp += Coef[k] * In[-k];
+ }
+
+ *Out++ = tmp;
+ In++;
+ }
+}
+
+static void WebRtcIsac_ZeroPoleFilter(double* In,
+ double* ZeroCoef,
+ double* PoleCoef,
+ size_t lengthInOut,
+ int orderCoef,
+ double* Out) {
+ /* the state of the zero section is assumed to be in In[-1] to In[-orderCoef] */
+ /* the state of the pole section is assumed to be in Out[-1] to Out[-orderCoef] */
+
+ WebRtcIsac_AllZeroFilter(In,ZeroCoef,lengthInOut,orderCoef,Out);
+ WebRtcIsac_AllPoleFilter(Out,PoleCoef,lengthInOut,orderCoef);
+}
+
+
+void WebRtcIsac_AutoCorr(double* r, const double* x, size_t N, size_t order) {
+ size_t lag, n;
+ double sum, prod;
+ const double *x_lag;
+
+ for (lag = 0; lag <= order; lag++)
+ {
+ sum = 0.0f;
+ x_lag = &x[lag];
+ prod = x[0] * x_lag[0];
+ for (n = 1; n < N - lag; n++) {
+ sum += prod;
+ prod = x[n] * x_lag[n];
+ }
+ sum += prod;
+ r[lag] = sum;
+ }
+
+}
+
+static void WebRtcIsac_BwExpand(double* out,
+ double* in,
+ double coef,
+ size_t length) {
+ size_t i;
+ double chirp;
+
+ chirp = coef;
+
+ out[0] = in[0];
+ for (i = 1; i < length; i++) {
+ out[i] = chirp * in[i];
+ chirp *= coef;
+ }
+}
+
+void WebRtcIsac_WeightingFilter(const double* in,
+ double* weiout,
+ double* whiout,
+ WeightFiltstr* wfdata) {
+ double tmpbuffer[PITCH_FRAME_LEN + PITCH_WLPCBUFLEN];
+ double corr[PITCH_WLPCORDER+1], rc[PITCH_WLPCORDER+1];
+ double apol[PITCH_WLPCORDER+1], apolr[PITCH_WLPCORDER+1];
+ double rho=0.9, *inp, *dp, *dp2;
+ double whoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
+ double weoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
+ double *weo, *who, opol[PITCH_WLPCORDER+1], ext[PITCH_WLPCWINLEN];
+ int k, n, endpos, start;
+
+ /* Set up buffer and states */
+ memcpy(tmpbuffer, wfdata->buffer, sizeof(double) * PITCH_WLPCBUFLEN);
+ memcpy(tmpbuffer+PITCH_WLPCBUFLEN, in, sizeof(double) * PITCH_FRAME_LEN);
+ memcpy(wfdata->buffer, tmpbuffer+PITCH_FRAME_LEN, sizeof(double) * PITCH_WLPCBUFLEN);
+
+ dp=weoutbuf;
+ dp2=whoutbuf;
+ for (k=0;k<PITCH_WLPCORDER;k++) {
+ *dp++ = wfdata->weostate[k];
+ *dp2++ = wfdata->whostate[k];
+ opol[k]=0.0;
+ }
+ opol[0]=1.0;
+ opol[PITCH_WLPCORDER]=0.0;
+ weo=dp;
+ who=dp2;
+
+ endpos=PITCH_WLPCBUFLEN + PITCH_SUBFRAME_LEN;
+ inp=tmpbuffer + PITCH_WLPCBUFLEN;
+
+ for (n=0; n<PITCH_SUBFRAMES; n++) {
+ /* Windowing */
+ start=endpos-PITCH_WLPCWINLEN;
+ for (k=0; k<PITCH_WLPCWINLEN; k++) {
+ ext[k]=wfdata->window[k]*tmpbuffer[start+k];
+ }
+
+ /* Get LPC polynomial */
+ WebRtcIsac_AutoCorr(corr, ext, PITCH_WLPCWINLEN, PITCH_WLPCORDER);
+ corr[0]=1.01*corr[0]+1.0; /* White noise correction */
+ WebRtcIsac_LevDurb(apol, rc, corr, PITCH_WLPCORDER);
+ WebRtcIsac_BwExpand(apolr, apol, rho, PITCH_WLPCORDER+1);
+
+ /* Filtering */
+ WebRtcIsac_ZeroPoleFilter(inp, apol, apolr, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, weo);
+ WebRtcIsac_ZeroPoleFilter(inp, apolr, opol, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, who);
+
+ inp+=PITCH_SUBFRAME_LEN;
+ endpos+=PITCH_SUBFRAME_LEN;
+ weo+=PITCH_SUBFRAME_LEN;
+ who+=PITCH_SUBFRAME_LEN;
+ }
+
+ /* Export filter states */
+ for (k=0;k<PITCH_WLPCORDER;k++) {
+ wfdata->weostate[k]=weoutbuf[PITCH_FRAME_LEN+k];
+ wfdata->whostate[k]=whoutbuf[PITCH_FRAME_LEN+k];
+ }
+
+ /* Export output data */
+ memcpy(weiout, weoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
+ memcpy(whiout, whoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
+}
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.h
new file mode 100644
index 0000000000..a747a7f549
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/filter_functions.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTER_FUNCTIONS_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTER_FUNCTIONS_H_
+
+#include <stddef.h>
+
+#include "modules/audio_coding/codecs/isac/main/source/structs.h"
+
+void WebRtcIsac_AutoCorr(double* r, const double* x, size_t N, size_t order);
+
+void WebRtcIsac_WeightingFilter(const double* in,
+ double* weiout,
+ double* whiout,
+ WeightFiltstr* wfdata);
+
+#endif // MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTER_FUNCTIONS_H_
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.c b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.c
new file mode 100644
index 0000000000..57cf0c39da
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.c
@@ -0,0 +1,409 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"
+
+#include <math.h>
+
+void WebRtcIsac_InitPitchFilter(PitchFiltstr* pitchfiltdata) {
+ int k;
+
+ for (k = 0; k < PITCH_BUFFSIZE; k++) {
+ pitchfiltdata->ubuf[k] = 0.0;
+ }
+ pitchfiltdata->ystate[0] = 0.0;
+ for (k = 1; k < (PITCH_DAMPORDER); k++) {
+ pitchfiltdata->ystate[k] = 0.0;
+ }
+ pitchfiltdata->oldlagp[0] = 50.0;
+ pitchfiltdata->oldgainp[0] = 0.0;
+}
+
+static void WebRtcIsac_InitWeightingFilter(WeightFiltstr* wfdata) {
+ int k;
+ double t, dtmp, dtmp2, denum, denum2;
+
+ for (k = 0; k < PITCH_WLPCBUFLEN; k++)
+ wfdata->buffer[k] = 0.0;
+
+ for (k = 0; k < PITCH_WLPCORDER; k++) {
+ wfdata->istate[k] = 0.0;
+ wfdata->weostate[k] = 0.0;
+ wfdata->whostate[k] = 0.0;
+ }
+
+ /* next part should be in Matlab, writing to a global table */
+ t = 0.5;
+ denum = 1.0 / ((double)PITCH_WLPCWINLEN);
+ denum2 = denum * denum;
+ for (k = 0; k < PITCH_WLPCWINLEN; k++) {
+ dtmp = PITCH_WLPCASYM * t * denum + (1 - PITCH_WLPCASYM) * t * t * denum2;
+ dtmp *= 3.14159265;
+ dtmp2 = sin(dtmp);
+ wfdata->window[k] = dtmp2 * dtmp2;
+ t++;
+ }
+}
+
+void WebRtcIsac_InitPitchAnalysis(PitchAnalysisStruct* State) {
+ int k;
+
+ for (k = 0; k < PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 -
+ PITCH_FRAME_LEN / 2 + 2;
+ k++)
+ State->dec_buffer[k] = 0.0;
+ for (k = 0; k < 2 * ALLPASSSECTIONS + 1; k++)
+ State->decimator_state[k] = 0.0;
+ for (k = 0; k < 2; k++)
+ State->hp_state[k] = 0.0;
+ for (k = 0; k < QLOOKAHEAD; k++)
+ State->whitened_buf[k] = 0.0;
+ for (k = 0; k < QLOOKAHEAD; k++)
+ State->inbuf[k] = 0.0;
+
+ WebRtcIsac_InitPitchFilter(&(State->PFstr_wght));
+
+ WebRtcIsac_InitPitchFilter(&(State->PFstr));
+
+ WebRtcIsac_InitWeightingFilter(&(State->Wghtstr));
+}
+
+void WebRtcIsac_InitPreFilterbank(PreFiltBankstr* prefiltdata) {
+ int k;
+
+ for (k = 0; k < QLOOKAHEAD; k++) {
+ prefiltdata->INLABUF1[k] = 0;
+ prefiltdata->INLABUF2[k] = 0;
+
+ prefiltdata->INLABUF1_float[k] = 0;
+ prefiltdata->INLABUF2_float[k] = 0;
+ }
+ for (k = 0; k < 2 * (QORDER - 1); k++) {
+ prefiltdata->INSTAT1[k] = 0;
+ prefiltdata->INSTAT2[k] = 0;
+ prefiltdata->INSTATLA1[k] = 0;
+ prefiltdata->INSTATLA2[k] = 0;
+
+ prefiltdata->INSTAT1_float[k] = 0;
+ prefiltdata->INSTAT2_float[k] = 0;
+ prefiltdata->INSTATLA1_float[k] = 0;
+ prefiltdata->INSTATLA2_float[k] = 0;
+ }
+
+ /* High pass filter states */
+ prefiltdata->HPstates[0] = 0.0;
+ prefiltdata->HPstates[1] = 0.0;
+
+ prefiltdata->HPstates_float[0] = 0.0f;
+ prefiltdata->HPstates_float[1] = 0.0f;
+
+ return;
+}
+
+double WebRtcIsac_LevDurb(double* a, double* k, double* r, size_t order) {
+ const double LEVINSON_EPS = 1.0e-10;
+
+ double sum, alpha;
+ size_t m, m_h, i;
+ alpha = 0; // warning -DH
+ a[0] = 1.0;
+ if (r[0] < LEVINSON_EPS) { /* if r[0] <= 0, set LPC coeff. to zero */
+ for (i = 0; i < order; i++) {
+ k[i] = 0;
+ a[i + 1] = 0;
+ }
+ } else {
+ a[1] = k[0] = -r[1] / r[0];
+ alpha = r[0] + r[1] * k[0];
+ for (m = 1; m < order; m++) {
+ sum = r[m + 1];
+ for (i = 0; i < m; i++) {
+ sum += a[i + 1] * r[m - i];
+ }
+ k[m] = -sum / alpha;
+ alpha += k[m] * sum;
+ m_h = (m + 1) >> 1;
+ for (i = 0; i < m_h; i++) {
+ sum = a[i + 1] + k[m] * a[m - i];
+ a[m - i] += k[m] * a[i + 1];
+ a[i + 1] = sum;
+ }
+ a[m + 1] = k[m];
+ }
+ }
+ return alpha;
+}
+
+/* The upper channel all-pass filter factors */
+const float WebRtcIsac_kUpperApFactorsFloat[2] = {0.03470000000000f,
+ 0.38260000000000f};
+
+/* The lower channel all-pass filter factors */
+const float WebRtcIsac_kLowerApFactorsFloat[2] = {0.15440000000000f,
+ 0.74400000000000f};
+
+/* This function performs all-pass filtering--a series of first order all-pass
+ * sections are used to filter the input in a cascade manner.
+ * The input is overwritten!!
+ */
+void WebRtcIsac_AllPassFilter2Float(float* InOut,
+ const float* APSectionFactors,
+ int lengthInOut,
+ int NumberOfSections,
+ float* FilterState) {
+ int n, j;
+ float temp;
+ for (j = 0; j < NumberOfSections; j++) {
+ for (n = 0; n < lengthInOut; n++) {
+ temp = FilterState[j] + APSectionFactors[j] * InOut[n];
+ FilterState[j] = -APSectionFactors[j] * temp + InOut[n];
+ InOut[n] = temp;
+ }
+ }
+}
+
+/* The number of composite all-pass filter factors */
+#define NUMBEROFCOMPOSITEAPSECTIONS 4
+
+/* Function WebRtcIsac_SplitAndFilter
+ * This function creates low-pass and high-pass decimated versions of part of
+ the input signal, and part of the signal in the input 'lookahead buffer'.
+
+ INPUTS:
+ in: a length FRAMESAMPLES array of input samples
+ prefiltdata: input data structure containing the filterbank states
+ and lookahead samples from the previous encoding
+ iteration.
+ OUTPUTS:
+ LP: a FRAMESAMPLES_HALF array of low-pass filtered samples that
+ have been phase equalized. The first QLOOKAHEAD samples are
+ based on the samples in the two prefiltdata->INLABUFx arrays
+ each of length QLOOKAHEAD.
+ The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
+ on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
+ array in[].
+ HP: a FRAMESAMPLES_HALF array of high-pass filtered samples that
+ have been phase equalized. The first QLOOKAHEAD samples are
+ based on the samples in the two prefiltdata->INLABUFx arrays
+ each of length QLOOKAHEAD.
+ The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
+ on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
+ array in[].
+
+ LP_la: a FRAMESAMPLES_HALF array of low-pass filtered samples.
+ These samples are not phase equalized. They are computed
+ from the samples in the in[] array.
+ HP_la: a FRAMESAMPLES_HALF array of high-pass filtered samples
+ that are not phase equalized. They are computed from
+ the in[] vector.
+ prefiltdata: this input data structure's filterbank state and
+ lookahead sample buffers are updated for the next
+ encoding iteration.
+*/
+void WebRtcIsac_SplitAndFilterFloat(float* pin,
+ float* LP,
+ float* HP,
+ double* LP_la,
+ double* HP_la,
+ PreFiltBankstr* prefiltdata) {
+ int k, n;
+ float CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
+ float ForTransform_CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
+ float ForTransform_CompositeAPFilterState2[NUMBEROFCOMPOSITEAPSECTIONS];
+ float tempinoutvec[FRAMESAMPLES + MAX_AR_MODEL_ORDER];
+ float tempin_ch1[FRAMESAMPLES + MAX_AR_MODEL_ORDER];
+ float tempin_ch2[FRAMESAMPLES + MAX_AR_MODEL_ORDER];
+ float in[FRAMESAMPLES];
+ float ftmp;
+
+ /* HPstcoeff_in = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
+ static const float kHpStCoefInFloat[4] = {
+ -1.94895953203325f, 0.94984516000000f, -0.05101826139794f,
+ 0.05015484000000f};
+
+ /* The composite all-pass filter factors */
+ static const float WebRtcIsac_kCompositeApFactorsFloat[4] = {
+ 0.03470000000000f, 0.15440000000000f, 0.38260000000000f,
+ 0.74400000000000f};
+
+ // The matrix for transforming the backward composite state to upper channel
+ // state.
+ static const float WebRtcIsac_kTransform1Float[8] = {
+ -0.00158678506084f, 0.00127157815343f, -0.00104805672709f,
+ 0.00084837248079f, 0.00134467983258f, -0.00107756549387f,
+ 0.00088814793277f, -0.00071893072525f};
+
+ // The matrix for transforming the backward composite state to lower channel
+ // state.
+ static const float WebRtcIsac_kTransform2Float[8] = {
+ -0.00170686041697f, 0.00136780109829f, -0.00112736532350f,
+ 0.00091257055385f, 0.00103094281812f, -0.00082615076557f,
+ 0.00068092756088f, -0.00055119165484f};
+
+ /* High pass filter */
+
+ for (k = 0; k < FRAMESAMPLES; k++) {
+ in[k] = pin[k] + kHpStCoefInFloat[2] * prefiltdata->HPstates_float[0] +
+ kHpStCoefInFloat[3] * prefiltdata->HPstates_float[1];
+ ftmp = pin[k] - kHpStCoefInFloat[0] * prefiltdata->HPstates_float[0] -
+ kHpStCoefInFloat[1] * prefiltdata->HPstates_float[1];
+ prefiltdata->HPstates_float[1] = prefiltdata->HPstates_float[0];
+ prefiltdata->HPstates_float[0] = ftmp;
+ }
+
+ /* First Channel */
+
+ /*initial state of composite filter is zero */
+ for (k = 0; k < NUMBEROFCOMPOSITEAPSECTIONS; k++) {
+ CompositeAPFilterState[k] = 0.0;
+ }
+ /* put every other sample of input into a temporary vector in reverse
+ * (backward) order*/
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ tempinoutvec[k] = in[FRAMESAMPLES - 1 - 2 * k];
+ }
+
+ /* now all-pass filter the backwards vector. Output values overwrite the
+ * input vector. */
+ WebRtcIsac_AllPassFilter2Float(
+ tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat, FRAMESAMPLES_HALF,
+ NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
+
+ /* save the backwards filtered output for later forward filtering,
+ but write it in forward order*/
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ tempin_ch1[FRAMESAMPLES_HALF + QLOOKAHEAD - 1 - k] = tempinoutvec[k];
+ }
+
+ /* save the backwards filter state becaue it will be transformed
+ later into a forward state */
+ for (k = 0; k < NUMBEROFCOMPOSITEAPSECTIONS; k++) {
+ ForTransform_CompositeAPFilterState[k] = CompositeAPFilterState[k];
+ }
+
+ /* now backwards filter the samples in the lookahead buffer. The samples were
+ placed there in the encoding of the previous frame. The output samples
+ overwrite the input samples */
+ WebRtcIsac_AllPassFilter2Float(
+ prefiltdata->INLABUF1_float, WebRtcIsac_kCompositeApFactorsFloat,
+ QLOOKAHEAD, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
+
+ /* save the output, but write it in forward order */
+ /* write the lookahead samples for the next encoding iteration. Every other
+ sample at the end of the input frame is written in reverse order for the
+ lookahead length. Exported in the prefiltdata structure. */
+ for (k = 0; k < QLOOKAHEAD; k++) {
+ tempin_ch1[QLOOKAHEAD - 1 - k] = prefiltdata->INLABUF1_float[k];
+ prefiltdata->INLABUF1_float[k] = in[FRAMESAMPLES - 1 - 2 * k];
+ }
+
+ /* Second Channel. This is exactly like the first channel, except that the
+ even samples are now filtered instead (lower channel). */
+ for (k = 0; k < NUMBEROFCOMPOSITEAPSECTIONS; k++) {
+ CompositeAPFilterState[k] = 0.0;
+ }
+
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ tempinoutvec[k] = in[FRAMESAMPLES - 2 - 2 * k];
+ }
+
+ WebRtcIsac_AllPassFilter2Float(
+ tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat, FRAMESAMPLES_HALF,
+ NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
+
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ tempin_ch2[FRAMESAMPLES_HALF + QLOOKAHEAD - 1 - k] = tempinoutvec[k];
+ }
+
+ for (k = 0; k < NUMBEROFCOMPOSITEAPSECTIONS; k++) {
+ ForTransform_CompositeAPFilterState2[k] = CompositeAPFilterState[k];
+ }
+
+ WebRtcIsac_AllPassFilter2Float(
+ prefiltdata->INLABUF2_float, WebRtcIsac_kCompositeApFactorsFloat,
+ QLOOKAHEAD, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
+
+ for (k = 0; k < QLOOKAHEAD; k++) {
+ tempin_ch2[QLOOKAHEAD - 1 - k] = prefiltdata->INLABUF2_float[k];
+ prefiltdata->INLABUF2_float[k] = in[FRAMESAMPLES - 2 - 2 * k];
+ }
+
+ /* Transform filter states from backward to forward */
+ /*At this point, each of the states of the backwards composite filters for the
+ two channels are transformed into forward filtering states for the
+ corresponding forward channel filters. Each channel's forward filtering
+ state from the previous
+ encoding iteration is added to the transformed state to get a proper forward
+ state */
+
+ /* So the existing NUMBEROFCOMPOSITEAPSECTIONS x 1 (4x1) state vector is
+ multiplied by a NUMBEROFCHANNELAPSECTIONSxNUMBEROFCOMPOSITEAPSECTIONS (2x4)
+ transform matrix to get the new state that is added to the previous 2x1
+ input state */
+
+ for (k = 0; k < NUMBEROFCHANNELAPSECTIONS; k++) { /* k is row variable */
+ for (n = 0; n < NUMBEROFCOMPOSITEAPSECTIONS;
+ n++) { /* n is column variable */
+ prefiltdata->INSTAT1_float[k] +=
+ ForTransform_CompositeAPFilterState[n] *
+ WebRtcIsac_kTransform1Float[k * NUMBEROFCHANNELAPSECTIONS + n];
+ prefiltdata->INSTAT2_float[k] +=
+ ForTransform_CompositeAPFilterState2[n] *
+ WebRtcIsac_kTransform2Float[k * NUMBEROFCHANNELAPSECTIONS + n];
+ }
+ }
+
+ /*obtain polyphase components by forward all-pass filtering through each
+ * channel */
+ /* the backward filtered samples are now forward filtered with the
+ * corresponding channel filters */
+ /* The all pass filtering automatically updates the filter states which are
+ exported in the prefiltdata structure */
+ WebRtcIsac_AllPassFilter2Float(tempin_ch1, WebRtcIsac_kUpperApFactorsFloat,
+ FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,
+ prefiltdata->INSTAT1_float);
+ WebRtcIsac_AllPassFilter2Float(tempin_ch2, WebRtcIsac_kLowerApFactorsFloat,
+ FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,
+ prefiltdata->INSTAT2_float);
+
+ /* Now Construct low-pass and high-pass signals as combinations of polyphase
+ * components */
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ LP[k] = 0.5f * (tempin_ch1[k] + tempin_ch2[k]); /* low pass signal*/
+ HP[k] = 0.5f * (tempin_ch1[k] - tempin_ch2[k]); /* high pass signal*/
+ }
+
+ /* Lookahead LP and HP signals */
+ /* now create low pass and high pass signals of the input vector. However, no
+ backwards filtering is performed, and hence no phase equalization is
+ involved. Also, the input contains some samples that are lookahead samples.
+ The high pass and low pass signals that are created are used outside this
+ function for analysis (not encoding) purposes */
+
+ /* set up input */
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ tempin_ch1[k] = in[2 * k + 1];
+ tempin_ch2[k] = in[2 * k];
+ }
+
+ /* the input filter states are passed in and updated by the all-pass filtering
+ routine and exported in the prefiltdata structure*/
+ WebRtcIsac_AllPassFilter2Float(tempin_ch1, WebRtcIsac_kUpperApFactorsFloat,
+ FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,
+ prefiltdata->INSTATLA1_float);
+ WebRtcIsac_AllPassFilter2Float(tempin_ch2, WebRtcIsac_kLowerApFactorsFloat,
+ FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,
+ prefiltdata->INSTATLA2_float);
+
+ for (k = 0; k < FRAMESAMPLES_HALF; k++) {
+ LP_la[k] = (float)(0.5f * (tempin_ch1[k] + tempin_ch2[k])); /*low pass */
+ HP_la[k] = (double)(0.5f * (tempin_ch1[k] - tempin_ch2[k])); /* high pass */
+ }
+}
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.h
new file mode 100644
index 0000000000..1aecfc4046
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/isac_vad.h
@@ -0,0 +1,45 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_ISAC_VAD_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_ISAC_VAD_H_
+
+#include <stddef.h>
+
+#include "modules/audio_coding/codecs/isac/main/source/structs.h"
+
+void WebRtcIsac_InitPitchFilter(PitchFiltstr* pitchfiltdata);
+void WebRtcIsac_InitPitchAnalysis(PitchAnalysisStruct* state);
+void WebRtcIsac_InitPreFilterbank(PreFiltBankstr* prefiltdata);
+
+double WebRtcIsac_LevDurb(double* a, double* k, double* r, size_t order);
+
+/* The number of all-pass filter factors in an upper or lower channel*/
+#define NUMBEROFCHANNELAPSECTIONS 2
+
+/* The upper channel all-pass filter factors */
+extern const float WebRtcIsac_kUpperApFactorsFloat[2];
+
+/* The lower channel all-pass filter factors */
+extern const float WebRtcIsac_kLowerApFactorsFloat[2];
+
+void WebRtcIsac_AllPassFilter2Float(float* InOut,
+ const float* APSectionFactors,
+ int lengthInOut,
+ int NumberOfSections,
+ float* FilterState);
+void WebRtcIsac_SplitAndFilterFloat(float* in,
+ float* LP,
+ float* HP,
+ double* LP_la,
+ double* HP_la,
+ PreFiltBankstr* prefiltdata);
+
+#endif // MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_ISAC_VAD_H_
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/os_specific_inline.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/os_specific_inline.h
new file mode 100644
index 0000000000..fe9afa4ba2
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/os_specific_inline.h
@@ -0,0 +1,42 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_OS_SPECIFIC_INLINE_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_OS_SPECIFIC_INLINE_H_
+
+#include <math.h>
+
+#include "rtc_base/system/arch.h"
+
+#if defined(WEBRTC_POSIX)
+#define WebRtcIsac_lrint lrint
+#elif (defined(WEBRTC_ARCH_X86) && defined(WIN32))
+static __inline long int WebRtcIsac_lrint(double x_dbl) {
+ long int x_int;
+
+ __asm {
+ fld x_dbl
+ fistp x_int
+ }
+ ;
+
+ return x_int;
+}
+#else // Do a slow but correct implementation of lrint
+
+static __inline long int WebRtcIsac_lrint(double x_dbl) {
+ long int x_int;
+ x_int = (long int)floor(x_dbl + 0.499999999999);
+ return x_int;
+}
+
+#endif
+
+#endif // MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_OS_SPECIFIC_INLINE_H_
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.c b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.c
new file mode 100644
index 0000000000..8a19ac1710
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.c
@@ -0,0 +1,695 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
+
+#include <math.h>
+#include <memory.h>
+#include <string.h>
+#ifdef WEBRTC_ANDROID
+#include <stdlib.h>
+#endif
+
+#include "modules/audio_coding/codecs/isac/main/source/filter_functions.h"
+#include "modules/audio_coding/codecs/isac/main/source/pitch_filter.h"
+#include "rtc_base/system/ignore_warnings.h"
+
+static const double kInterpolWin[8] = {-0.00067556028640, 0.02184247643159, -0.12203175715679, 0.60086484101160,
+ 0.60086484101160, -0.12203175715679, 0.02184247643159, -0.00067556028640};
+
+/* interpolation filter */
+__inline static void IntrepolFilter(double *data_ptr, double *intrp)
+{
+ *intrp = kInterpolWin[0] * data_ptr[-3];
+ *intrp += kInterpolWin[1] * data_ptr[-2];
+ *intrp += kInterpolWin[2] * data_ptr[-1];
+ *intrp += kInterpolWin[3] * data_ptr[0];
+ *intrp += kInterpolWin[4] * data_ptr[1];
+ *intrp += kInterpolWin[5] * data_ptr[2];
+ *intrp += kInterpolWin[6] * data_ptr[3];
+ *intrp += kInterpolWin[7] * data_ptr[4];
+}
+
+
+/* 2D parabolic interpolation */
+/* probably some 0.5 factors can be eliminated, and the square-roots can be removed from the Cholesky fact. */
+__inline static void Intrpol2D(double T[3][3], double *x, double *y, double *peak_val)
+{
+ double c, b[2], A[2][2];
+ double t1, t2, d;
+ double delta1, delta2;
+
+
+ // double T[3][3] = {{-1.25, -.25,-.25}, {-.25, .75, .75}, {-.25, .75, .75}};
+ // should result in: delta1 = 0.5; delta2 = 0.0; peak_val = 1.0
+
+ c = T[1][1];
+ b[0] = 0.5 * (T[1][2] + T[2][1] - T[0][1] - T[1][0]);
+ b[1] = 0.5 * (T[1][0] + T[2][1] - T[0][1] - T[1][2]);
+ A[0][1] = -0.5 * (T[0][1] + T[2][1] - T[1][0] - T[1][2]);
+ t1 = 0.5 * (T[0][0] + T[2][2]) - c;
+ t2 = 0.5 * (T[2][0] + T[0][2]) - c;
+ d = (T[0][1] + T[1][2] + T[1][0] + T[2][1]) - 4.0 * c - t1 - t2;
+ A[0][0] = -t1 - 0.5 * d;
+ A[1][1] = -t2 - 0.5 * d;
+
+ /* deal with singularities or ill-conditioned cases */
+ if ( (A[0][0] < 1e-7) || ((A[0][0] * A[1][1] - A[0][1] * A[0][1]) < 1e-7) ) {
+ *peak_val = T[1][1];
+ return;
+ }
+
+ /* Cholesky decomposition: replace A by upper-triangular factor */
+ A[0][0] = sqrt(A[0][0]);
+ A[0][1] = A[0][1] / A[0][0];
+ A[1][1] = sqrt(A[1][1] - A[0][1] * A[0][1]);
+
+ /* compute [x; y] = -0.5 * inv(A) * b */
+ t1 = b[0] / A[0][0];
+ t2 = (b[1] - t1 * A[0][1]) / A[1][1];
+ delta2 = t2 / A[1][1];
+ delta1 = 0.5 * (t1 - delta2 * A[0][1]) / A[0][0];
+ delta2 *= 0.5;
+
+ /* limit norm */
+ t1 = delta1 * delta1 + delta2 * delta2;
+ if (t1 > 1.0) {
+ delta1 /= t1;
+ delta2 /= t1;
+ }
+
+ *peak_val = 0.5 * (b[0] * delta1 + b[1] * delta2) + c;
+
+ *x += delta1;
+ *y += delta2;
+}
+
+
+static void PCorr(const double *in, double *outcorr)
+{
+ double sum, ysum, prod;
+ const double *x, *inptr;
+ int k, n;
+
+ //ysum = 1e-6; /* use this with float (i.s.o. double)! */
+ ysum = 1e-13;
+ sum = 0.0;
+ x = in + PITCH_MAX_LAG/2 + 2;
+ for (n = 0; n < PITCH_CORR_LEN2; n++) {
+ ysum += in[n] * in[n];
+ sum += x[n] * in[n];
+ }
+
+ outcorr += PITCH_LAG_SPAN2 - 1; /* index of last element in array */
+ *outcorr = sum / sqrt(ysum);
+
+ for (k = 1; k < PITCH_LAG_SPAN2; k++) {
+ ysum -= in[k-1] * in[k-1];
+ ysum += in[PITCH_CORR_LEN2 + k - 1] * in[PITCH_CORR_LEN2 + k - 1];
+ sum = 0.0;
+ inptr = &in[k];
+ prod = x[0] * inptr[0];
+ for (n = 1; n < PITCH_CORR_LEN2; n++) {
+ sum += prod;
+ prod = x[n] * inptr[n];
+ }
+ sum += prod;
+ outcorr--;
+ *outcorr = sum / sqrt(ysum);
+ }
+}
+
+static void WebRtcIsac_AllpassFilterForDec(double* InOut,
+ const double* APSectionFactors,
+ size_t lengthInOut,
+ double* FilterState) {
+ // This performs all-pass filtering--a series of first order all-pass
+ // sections are used to filter the input in a cascade manner.
+ size_t n, j;
+ double temp;
+ for (j = 0; j < ALLPASSSECTIONS; j++) {
+ for (n = 0; n < lengthInOut; n += 2) {
+ temp = InOut[n]; // store input
+ InOut[n] = FilterState[j] + APSectionFactors[j] * temp;
+ FilterState[j] = -APSectionFactors[j] * InOut[n] + temp;
+ }
+ }
+}
+
+static void WebRtcIsac_DecimateAllpass(
+ const double* in,
+ double* state_in, // array of size: 2*ALLPASSSECTIONS+1
+ size_t N, // number of input samples
+ double* out) { // array of size N/2
+
+ static const double APupper[ALLPASSSECTIONS] = {0.0347, 0.3826};
+ static const double APlower[ALLPASSSECTIONS] = {0.1544, 0.744};
+
+ size_t n;
+ double data_vec[PITCH_FRAME_LEN];
+
+ /* copy input */
+ memcpy(data_vec + 1, in, sizeof(double) * (N - 1));
+
+ data_vec[0] = state_in[2 * ALLPASSSECTIONS]; // the z^(-1) state
+ state_in[2 * ALLPASSSECTIONS] = in[N - 1];
+
+ WebRtcIsac_AllpassFilterForDec(data_vec + 1, APupper, N, state_in);
+ WebRtcIsac_AllpassFilterForDec(data_vec, APlower, N,
+ state_in + ALLPASSSECTIONS);
+
+ for (n = 0; n < N / 2; n++)
+ out[n] = data_vec[2 * n] + data_vec[2 * n + 1];
+}
+
+RTC_PUSH_IGNORING_WFRAME_LARGER_THAN()
+
+static void WebRtcIsac_InitializePitch(const double* in,
+ const double old_lag,
+ const double old_gain,
+ PitchAnalysisStruct* State,
+ double* lags) {
+ double buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2];
+ double ratio, log_lag, gain_bias;
+ double bias;
+ double corrvec1[PITCH_LAG_SPAN2];
+ double corrvec2[PITCH_LAG_SPAN2];
+ int m, k;
+ // Allocating 10 extra entries at the begining of the CorrSurf
+ double corrSurfBuff[10 + (2*PITCH_BW+3)*(PITCH_LAG_SPAN2+4)];
+ double* CorrSurf[2*PITCH_BW+3];
+ double *CorrSurfPtr1, *CorrSurfPtr2;
+ double LagWin[3] = {0.2, 0.5, 0.98};
+ int ind1, ind2, peaks_ind, peak, max_ind;
+ int peaks[PITCH_MAX_NUM_PEAKS];
+ double adj, gain_tmp;
+ double corr, corr_max;
+ double intrp_a, intrp_b, intrp_c, intrp_d;
+ double peak_vals[PITCH_MAX_NUM_PEAKS];
+ double lags1[PITCH_MAX_NUM_PEAKS];
+ double lags2[PITCH_MAX_NUM_PEAKS];
+ double T[3][3];
+ int row;
+
+ for(k = 0; k < 2*PITCH_BW+3; k++)
+ {
+ CorrSurf[k] = &corrSurfBuff[10 + k * (PITCH_LAG_SPAN2+4)];
+ }
+ /* reset CorrSurf matrix */
+ memset(corrSurfBuff, 0, sizeof(double) * (10 + (2*PITCH_BW+3) * (PITCH_LAG_SPAN2+4)));
+
+ //warnings -DH
+ max_ind = 0;
+ peak = 0;
+
+ /* copy old values from state buffer */
+ memcpy(buf_dec, State->dec_buffer, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));
+
+ /* decimation; put result after the old values */
+ WebRtcIsac_DecimateAllpass(in, State->decimator_state, PITCH_FRAME_LEN,
+ &buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2]);
+
+ /* low-pass filtering */
+ for (k = PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2; k < PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2; k++)
+ buf_dec[k] += 0.75 * buf_dec[k-1] - 0.25 * buf_dec[k-2];
+
+ /* copy end part back into state buffer */
+ memcpy(State->dec_buffer, buf_dec+PITCH_FRAME_LEN/2, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));
+
+ /* compute correlation for first and second half of the frame */
+ PCorr(buf_dec, corrvec1);
+ PCorr(buf_dec + PITCH_CORR_STEP2, corrvec2);
+
+ /* bias towards pitch lag of previous frame */
+ log_lag = log(0.5 * old_lag);
+ gain_bias = 4.0 * old_gain * old_gain;
+ if (gain_bias > 0.8) gain_bias = 0.8;
+ for (k = 0; k < PITCH_LAG_SPAN2; k++)
+ {
+ ratio = log((double) (k + (PITCH_MIN_LAG/2-2))) - log_lag;
+ bias = 1.0 + gain_bias * exp(-5.0 * ratio * ratio);
+ corrvec1[k] *= bias;
+ }
+
+ /* taper correlation functions */
+ for (k = 0; k < 3; k++) {
+ gain_tmp = LagWin[k];
+ corrvec1[k] *= gain_tmp;
+ corrvec2[k] *= gain_tmp;
+ corrvec1[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
+ corrvec2[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
+ }
+
+ corr_max = 0.0;
+ /* fill middle row of correlation surface */
+ ind1 = 0;
+ ind2 = 0;
+ CorrSurfPtr1 = &CorrSurf[PITCH_BW][2];
+ for (k = 0; k < PITCH_LAG_SPAN2; k++) {
+ corr = corrvec1[ind1++] + corrvec2[ind2++];
+ CorrSurfPtr1[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ }
+ }
+ /* fill first and last rows of correlation surface */
+ ind1 = 0;
+ ind2 = PITCH_BW;
+ CorrSurfPtr1 = &CorrSurf[0][2];
+ CorrSurfPtr2 = &CorrSurf[2*PITCH_BW][PITCH_BW+2];
+ for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW; k++) {
+ ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
+ adj = 0.2 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
+ corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
+ CorrSurfPtr1[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ }
+ corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
+ CorrSurfPtr2[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
+ }
+ }
+ /* fill second and next to last rows of correlation surface */
+ ind1 = 0;
+ ind2 = PITCH_BW-1;
+ CorrSurfPtr1 = &CorrSurf[1][2];
+ CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-1][PITCH_BW+1];
+ for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+1; k++) {
+ ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
+ adj = 0.9 * ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
+ corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
+ CorrSurfPtr1[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ }
+ corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
+ CorrSurfPtr2[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
+ }
+ }
+ /* fill remainder of correlation surface */
+ for (m = 2; m < PITCH_BW; m++) {
+ ind1 = 0;
+ ind2 = PITCH_BW - m; /* always larger than ind1 */
+ CorrSurfPtr1 = &CorrSurf[m][2];
+ CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-m][PITCH_BW+2-m];
+ for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+m; k++) {
+ ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
+ adj = ratio * (2.0 - ratio); /* adjustment factor; inverse parabola as a function of ratio */
+ corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
+ CorrSurfPtr1[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ }
+ corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
+ CorrSurfPtr2[k] = corr;
+ if (corr > corr_max) {
+ corr_max = corr; /* update maximum */
+ max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
+ }
+ }
+ }
+
+ /* threshold value to qualify as a peak */
+ corr_max *= 0.6;
+
+ peaks_ind = 0;
+ /* find peaks */
+ for (m = 1; m < PITCH_BW+1; m++) {
+ if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
+ CorrSurfPtr1 = &CorrSurf[m][2];
+ for (k = 2; k < PITCH_LAG_SPAN2-PITCH_BW-2+m; k++) {
+ corr = CorrSurfPtr1[k];
+ if (corr > corr_max) {
+ if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
+ if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
+ /* found a peak; store index into matrix */
+ peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
+ }
+ }
+ }
+ }
+ }
+ for (m = PITCH_BW+1; m < 2*PITCH_BW; m++) {
+ if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
+ CorrSurfPtr1 = &CorrSurf[m][2];
+ for (k = 2+m-PITCH_BW; k < PITCH_LAG_SPAN2-2; k++) {
+ corr = CorrSurfPtr1[k];
+ if (corr > corr_max) {
+ if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
+ if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
+ /* found a peak; store index into matrix */
+ peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
+ if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
+ }
+ }
+ }
+ }
+ }
+
+ if (peaks_ind > 0) {
+ /* examine each peak */
+ CorrSurfPtr1 = &CorrSurf[0][0];
+ for (k = 0; k < peaks_ind; k++) {
+ peak = peaks[k];
+
+ /* compute four interpolated values around current peak */
+ IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)], &intrp_a);
+ IntrepolFilter(&CorrSurfPtr1[peak - 1 ], &intrp_b);
+ IntrepolFilter(&CorrSurfPtr1[peak ], &intrp_c);
+ IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)], &intrp_d);
+
+ /* determine maximum of the interpolated values */
+ corr = CorrSurfPtr1[peak];
+ corr_max = intrp_a;
+ if (intrp_b > corr_max) corr_max = intrp_b;
+ if (intrp_c > corr_max) corr_max = intrp_c;
+ if (intrp_d > corr_max) corr_max = intrp_d;
+
+ /* determine where the peak sits and fill a 3x3 matrix around it */
+ row = peak / (PITCH_LAG_SPAN2+4);
+ lags1[k] = (double) ((peak - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
+ lags2[k] = (double) (lags1[k] + PITCH_BW - row);
+ if ( corr > corr_max ) {
+ T[0][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
+ T[2][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
+ T[1][1] = corr;
+ T[0][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
+ T[2][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
+ T[1][0] = intrp_a;
+ T[0][1] = intrp_b;
+ T[2][1] = intrp_c;
+ T[1][2] = intrp_d;
+ } else {
+ if (intrp_a == corr_max) {
+ lags1[k] -= 0.5;
+ lags2[k] += 0.5;
+ IntrepolFilter(&CorrSurfPtr1[peak - 2*(PITCH_LAG_SPAN2+5)], &T[0][0]);
+ IntrepolFilter(&CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)], &T[2][0]);
+ T[1][1] = intrp_a;
+ T[0][2] = intrp_b;
+ T[2][2] = intrp_c;
+ T[1][0] = CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)];
+ T[0][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
+ T[2][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
+ T[1][2] = corr;
+ } else if (intrp_b == corr_max) {
+ lags1[k] -= 0.5;
+ lags2[k] -= 0.5;
+ IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+6)], &T[0][0]);
+ T[2][0] = intrp_a;
+ T[1][1] = intrp_b;
+ IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+3)], &T[0][2]);
+ T[2][2] = intrp_d;
+ T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
+ T[0][1] = CorrSurfPtr1[peak - 1];
+ T[2][1] = corr;
+ T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
+ } else if (intrp_c == corr_max) {
+ lags1[k] += 0.5;
+ lags2[k] += 0.5;
+ T[0][0] = intrp_a;
+ IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)], &T[2][0]);
+ T[1][1] = intrp_c;
+ T[0][2] = intrp_d;
+ IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)], &T[2][2]);
+ T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
+ T[0][1] = corr;
+ T[2][1] = CorrSurfPtr1[peak + 1];
+ T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
+ } else {
+ lags1[k] += 0.5;
+ lags2[k] -= 0.5;
+ T[0][0] = intrp_b;
+ T[2][0] = intrp_c;
+ T[1][1] = intrp_d;
+ IntrepolFilter(&CorrSurfPtr1[peak + 2*(PITCH_LAG_SPAN2+4)], &T[0][2]);
+ IntrepolFilter(&CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)], &T[2][2]);
+ T[1][0] = corr;
+ T[0][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
+ T[2][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
+ T[1][2] = CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)];
+ }
+ }
+
+ /* 2D parabolic interpolation gives more accurate lags and peak value */
+ Intrpol2D(T, &lags1[k], &lags2[k], &peak_vals[k]);
+ }
+
+ /* determine the highest peak, after applying a bias towards short lags */
+ corr_max = 0.0;
+ for (k = 0; k < peaks_ind; k++) {
+ corr = peak_vals[k] * pow(PITCH_PEAK_DECAY, log(lags1[k] + lags2[k]));
+ if (corr > corr_max) {
+ corr_max = corr;
+ peak = k;
+ }
+ }
+
+ lags1[peak] *= 2.0;
+ lags2[peak] *= 2.0;
+
+ if (lags1[peak] < (double) PITCH_MIN_LAG) lags1[peak] = (double) PITCH_MIN_LAG;
+ if (lags2[peak] < (double) PITCH_MIN_LAG) lags2[peak] = (double) PITCH_MIN_LAG;
+ if (lags1[peak] > (double) PITCH_MAX_LAG) lags1[peak] = (double) PITCH_MAX_LAG;
+ if (lags2[peak] > (double) PITCH_MAX_LAG) lags2[peak] = (double) PITCH_MAX_LAG;
+
+ /* store lags of highest peak in output array */
+ lags[0] = lags1[peak];
+ lags[1] = lags1[peak];
+ lags[2] = lags2[peak];
+ lags[3] = lags2[peak];
+ }
+ else
+ {
+ row = max_ind / (PITCH_LAG_SPAN2+4);
+ lags1[0] = (double) ((max_ind - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
+ lags2[0] = (double) (lags1[0] + PITCH_BW - row);
+
+ if (lags1[0] < (double) PITCH_MIN_LAG) lags1[0] = (double) PITCH_MIN_LAG;
+ if (lags2[0] < (double) PITCH_MIN_LAG) lags2[0] = (double) PITCH_MIN_LAG;
+ if (lags1[0] > (double) PITCH_MAX_LAG) lags1[0] = (double) PITCH_MAX_LAG;
+ if (lags2[0] > (double) PITCH_MAX_LAG) lags2[0] = (double) PITCH_MAX_LAG;
+
+ /* store lags of highest peak in output array */
+ lags[0] = lags1[0];
+ lags[1] = lags1[0];
+ lags[2] = lags2[0];
+ lags[3] = lags2[0];
+ }
+}
+
+RTC_POP_IGNORING_WFRAME_LARGER_THAN()
+
+/* create weighting matrix by orthogonalizing a basis of polynomials of increasing order
+ * t = (0:4)';
+ * A = [t.^0, t.^1, t.^2, t.^3, t.^4];
+ * [Q, dummy] = qr(A);
+ * P.Weight = Q * diag([0, .1, .5, 1, 1]) * Q'; */
+static const double kWeight[5][5] = {
+ { 0.29714285714286, -0.30857142857143, -0.05714285714286, 0.05142857142857, 0.01714285714286},
+ {-0.30857142857143, 0.67428571428571, -0.27142857142857, -0.14571428571429, 0.05142857142857},
+ {-0.05714285714286, -0.27142857142857, 0.65714285714286, -0.27142857142857, -0.05714285714286},
+ { 0.05142857142857, -0.14571428571429, -0.27142857142857, 0.67428571428571, -0.30857142857143},
+ { 0.01714285714286, 0.05142857142857, -0.05714285714286, -0.30857142857143, 0.29714285714286}
+};
+
+/* second order high-pass filter */
+static void WebRtcIsac_Highpass(const double* in,
+ double* out,
+ double* state,
+ size_t N) {
+ /* create high-pass filter ocefficients
+ * z = 0.998 * exp(j*2*pi*35/8000);
+ * p = 0.94 * exp(j*2*pi*140/8000);
+ * HP_b = [1, -2*real(z), abs(z)^2];
+ * HP_a = [1, -2*real(p), abs(p)^2]; */
+ static const double a_coef[2] = { 1.86864659625574, -0.88360000000000};
+ static const double b_coef[2] = {-1.99524591718270, 0.99600400000000};
+
+ size_t k;
+
+ for (k=0; k<N; k++) {
+ *out = *in + state[1];
+ state[1] = state[0] + b_coef[0] * *in + a_coef[0] * *out;
+ state[0] = b_coef[1] * *in++ + a_coef[1] * *out++;
+ }
+}
+
+RTC_PUSH_IGNORING_WFRAME_LARGER_THAN()
+
+void WebRtcIsac_PitchAnalysis(const double *in, /* PITCH_FRAME_LEN samples */
+ double *out, /* PITCH_FRAME_LEN+QLOOKAHEAD samples */
+ PitchAnalysisStruct *State,
+ double *lags,
+ double *gains)
+{
+ double HPin[PITCH_FRAME_LEN];
+ double Weighted[PITCH_FRAME_LEN];
+ double Whitened[PITCH_FRAME_LEN + QLOOKAHEAD];
+ double inbuf[PITCH_FRAME_LEN + QLOOKAHEAD];
+ double out_G[PITCH_FRAME_LEN + QLOOKAHEAD]; // could be removed by using out instead
+ double out_dG[4][PITCH_FRAME_LEN + QLOOKAHEAD];
+ double old_lag, old_gain;
+ double nrg_wht, tmp;
+ double Wnrg, Wfluct, Wgain;
+ double H[4][4];
+ double grad[4];
+ double dG[4];
+ int k, m, n, iter;
+
+ /* high pass filtering using second order pole-zero filter */
+ WebRtcIsac_Highpass(in, HPin, State->hp_state, PITCH_FRAME_LEN);
+
+ /* copy from state into buffer */
+ memcpy(Whitened, State->whitened_buf, sizeof(double) * QLOOKAHEAD);
+
+ /* compute weighted and whitened signals */
+ WebRtcIsac_WeightingFilter(HPin, &Weighted[0], &Whitened[QLOOKAHEAD], &(State->Wghtstr));
+
+ /* copy from buffer into state */
+ memcpy(State->whitened_buf, Whitened+PITCH_FRAME_LEN, sizeof(double) * QLOOKAHEAD);
+
+ old_lag = State->PFstr_wght.oldlagp[0];
+ old_gain = State->PFstr_wght.oldgainp[0];
+
+ /* inital pitch estimate */
+ WebRtcIsac_InitializePitch(Weighted, old_lag, old_gain, State, lags);
+
+
+ /* Iterative optimization of lags - to be done */
+
+ /* compute energy of whitened signal */
+ nrg_wht = 0.0;
+ for (k = 0; k < PITCH_FRAME_LEN + QLOOKAHEAD; k++)
+ nrg_wht += Whitened[k] * Whitened[k];
+
+
+ /* Iterative optimization of gains */
+
+ /* set weights for energy, gain fluctiation, and spectral gain penalty functions */
+ Wnrg = 1.0 / nrg_wht;
+ Wgain = 0.005;
+ Wfluct = 3.0;
+
+ /* set initial gains */
+ for (k = 0; k < 4; k++)
+ gains[k] = PITCH_MAX_GAIN_06;
+
+ /* two iterations should be enough */
+ for (iter = 0; iter < 2; iter++) {
+ /* compute Jacobian of pre-filter output towards gains */
+ WebRtcIsac_PitchfilterPre_gains(Whitened, out_G, out_dG, &(State->PFstr_wght), lags, gains);
+
+ /* gradient and approximate Hessian (lower triangle) for minimizing the filter's output power */
+ for (k = 0; k < 4; k++) {
+ tmp = 0.0;
+ for (n = 0; n < PITCH_FRAME_LEN + QLOOKAHEAD; n++)
+ tmp += out_G[n] * out_dG[k][n];
+ grad[k] = tmp * Wnrg;
+ }
+ for (k = 0; k < 4; k++) {
+ for (m = 0; m <= k; m++) {
+ tmp = 0.0;
+ for (n = 0; n < PITCH_FRAME_LEN + QLOOKAHEAD; n++)
+ tmp += out_dG[m][n] * out_dG[k][n];
+ H[k][m] = tmp * Wnrg;
+ }
+ }
+
+ /* add gradient and Hessian (lower triangle) for dampening fast gain changes */
+ for (k = 0; k < 4; k++) {
+ tmp = kWeight[k+1][0] * old_gain;
+ for (m = 0; m < 4; m++)
+ tmp += kWeight[k+1][m+1] * gains[m];
+ grad[k] += tmp * Wfluct;
+ }
+ for (k = 0; k < 4; k++) {
+ for (m = 0; m <= k; m++) {
+ H[k][m] += kWeight[k+1][m+1] * Wfluct;
+ }
+ }
+
+ /* add gradient and Hessian for dampening gain */
+ for (k = 0; k < 3; k++) {
+ tmp = 1.0 / (1 - gains[k]);
+ grad[k] += tmp * tmp * Wgain;
+ H[k][k] += 2.0 * tmp * (tmp * tmp * Wgain);
+ }
+ tmp = 1.0 / (1 - gains[3]);
+ grad[3] += 1.33 * (tmp * tmp * Wgain);
+ H[3][3] += 2.66 * tmp * (tmp * tmp * Wgain);
+
+
+ /* compute Cholesky factorization of Hessian
+ * by overwritting the upper triangle; scale factors on diagonal
+ * (for non pc-platforms store the inverse of the diagonals seperately to minimize divisions) */
+ H[0][1] = H[1][0] / H[0][0];
+ H[0][2] = H[2][0] / H[0][0];
+ H[0][3] = H[3][0] / H[0][0];
+ H[1][1] -= H[0][0] * H[0][1] * H[0][1];
+ H[1][2] = (H[2][1] - H[0][1] * H[2][0]) / H[1][1];
+ H[1][3] = (H[3][1] - H[0][1] * H[3][0]) / H[1][1];
+ H[2][2] -= H[0][0] * H[0][2] * H[0][2] + H[1][1] * H[1][2] * H[1][2];
+ H[2][3] = (H[3][2] - H[0][2] * H[3][0] - H[1][2] * H[1][1] * H[1][3]) / H[2][2];
+ H[3][3] -= H[0][0] * H[0][3] * H[0][3] + H[1][1] * H[1][3] * H[1][3] + H[2][2] * H[2][3] * H[2][3];
+
+ /* Compute update as delta_gains = -inv(H) * grad */
+ /* copy and negate */
+ for (k = 0; k < 4; k++)
+ dG[k] = -grad[k];
+ /* back substitution */
+ dG[1] -= dG[0] * H[0][1];
+ dG[2] -= dG[0] * H[0][2] + dG[1] * H[1][2];
+ dG[3] -= dG[0] * H[0][3] + dG[1] * H[1][3] + dG[2] * H[2][3];
+ /* scale */
+ for (k = 0; k < 4; k++)
+ dG[k] /= H[k][k];
+ /* back substitution */
+ dG[2] -= dG[3] * H[2][3];
+ dG[1] -= dG[3] * H[1][3] + dG[2] * H[1][2];
+ dG[0] -= dG[3] * H[0][3] + dG[2] * H[0][2] + dG[1] * H[0][1];
+
+ /* update gains and check range */
+ for (k = 0; k < 4; k++) {
+ gains[k] += dG[k];
+ if (gains[k] > PITCH_MAX_GAIN)
+ gains[k] = PITCH_MAX_GAIN;
+ else if (gains[k] < 0.0)
+ gains[k] = 0.0;
+ }
+ }
+
+ /* update state for next frame */
+ WebRtcIsac_PitchfilterPre(Whitened, out, &(State->PFstr_wght), lags, gains);
+
+ /* concatenate previous input's end and current input */
+ memcpy(inbuf, State->inbuf, sizeof(double) * QLOOKAHEAD);
+ memcpy(inbuf+QLOOKAHEAD, in, sizeof(double) * PITCH_FRAME_LEN);
+
+ /* lookahead pitch filtering for masking analysis */
+ WebRtcIsac_PitchfilterPre_la(inbuf, out, &(State->PFstr), lags, gains);
+
+ /* store last part of input */
+ for (k = 0; k < QLOOKAHEAD; k++)
+ State->inbuf[k] = inbuf[k + PITCH_FRAME_LEN];
+}
+
+RTC_POP_IGNORING_WFRAME_LARGER_THAN()
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h
new file mode 100644
index 0000000000..4ab78c20ad
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h
@@ -0,0 +1,32 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * pitch_estimator.h
+ *
+ * Pitch functions
+ *
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_ESTIMATOR_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_ESTIMATOR_H_
+
+#include <stddef.h>
+
+#include "modules/audio_coding/codecs/isac/main/source/structs.h"
+
+void WebRtcIsac_PitchAnalysis(
+ const double* in, /* PITCH_FRAME_LEN samples */
+ double* out, /* PITCH_FRAME_LEN+QLOOKAHEAD samples */
+ PitchAnalysisStruct* State,
+ double* lags,
+ double* gains);
+
+#endif /* MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_ESTIMATOR_H_ */
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.c b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.c
new file mode 100644
index 0000000000..bf03dfff2e
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.c
@@ -0,0 +1,388 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <memory.h>
+#include <stdlib.h>
+
+#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
+#include "modules/audio_coding/codecs/isac/main/source/os_specific_inline.h"
+#include "rtc_base/compile_assert_c.h"
+
+/*
+ * We are implementing the following filters;
+ *
+ * Pre-filtering:
+ * y(z) = x(z) + damper(z) * gain * (x(z) + y(z)) * z ^ (-lag);
+ *
+ * Post-filtering:
+ * y(z) = x(z) - damper(z) * gain * (x(z) + y(z)) * z ^ (-lag);
+ *
+ * Note that `lag` is a floating number so we perform an interpolation to
+ * obtain the correct `lag`.
+ *
+ */
+
+static const double kDampFilter[PITCH_DAMPORDER] = {-0.07, 0.25, 0.64, 0.25,
+ -0.07};
+
+/* interpolation coefficients; generated by design_pitch_filter.m */
+static const double kIntrpCoef[PITCH_FRACS][PITCH_FRACORDER] = {
+ {-0.02239172458614, 0.06653315052934, -0.16515880017569, 0.60701333734125,
+ 0.64671399919202, -0.20249000396417, 0.09926548334755, -0.04765933793109,
+ 0.01754159521746},
+ {-0.01985640750434, 0.05816126837866, -0.13991265473714, 0.44560418147643,
+ 0.79117042386876, -0.20266133815188, 0.09585268418555, -0.04533310458084,
+ 0.01654127246314},
+ {-0.01463300534216, 0.04229888475060, -0.09897034715253, 0.28284326017787,
+ 0.90385267956632, -0.16976950138649, 0.07704272393639, -0.03584218578311,
+ 0.01295781500709},
+ {-0.00764851320885, 0.02184035544377, -0.04985561057281, 0.13083306574393,
+ 0.97545011664662, -0.10177807997561, 0.04400901776474, -0.02010737175166,
+ 0.00719783432422},
+ {-0.00000000000000, 0.00000000000000, -0.00000000000001, 0.00000000000001,
+ 0.99999999999999, 0.00000000000001, -0.00000000000001, 0.00000000000000,
+ -0.00000000000000},
+ {0.00719783432422, -0.02010737175166, 0.04400901776474, -0.10177807997562,
+ 0.97545011664663, 0.13083306574393, -0.04985561057280, 0.02184035544377,
+ -0.00764851320885},
+ {0.01295781500710, -0.03584218578312, 0.07704272393640, -0.16976950138650,
+ 0.90385267956634, 0.28284326017785, -0.09897034715252, 0.04229888475059,
+ -0.01463300534216},
+ {0.01654127246315, -0.04533310458085, 0.09585268418557, -0.20266133815190,
+ 0.79117042386878, 0.44560418147640, -0.13991265473712, 0.05816126837865,
+ -0.01985640750433}
+};
+
+/*
+ * Enumerating the operation of the filter.
+ * iSAC has 4 different pitch-filter which are very similar in their structure.
+ *
+ * kPitchFilterPre : In this mode the filter is operating as pitch
+ * pre-filter. This is used at the encoder.
+ * kPitchFilterPost : In this mode the filter is operating as pitch
+ * post-filter. This is the inverse of pre-filter and used
+ * in the decoder.
+ * kPitchFilterPreLa : This is, in structure, similar to pre-filtering but
+ * utilizing 3 millisecond lookahead. It is used to
+ * obtain the signal for LPC analysis.
+ * kPitchFilterPreGain : This is, in structure, similar to pre-filtering but
+ * differential changes in gain is considered. This is
+ * used to find the optimal gain.
+ */
+typedef enum {
+ kPitchFilterPre, kPitchFilterPost, kPitchFilterPreLa, kPitchFilterPreGain
+} PitchFilterOperation;
+
+/*
+ * Structure with parameters used for pitch-filtering.
+ * buffer : a buffer where the sum of previous inputs and outputs
+ * are stored.
+ * damper_state : the state of the damping filter. The filter is defined by
+ * `kDampFilter`.
+ * interpol_coeff : pointer to a set of coefficient which are used to utilize
+ * fractional pitch by interpolation.
+ * gain : pitch-gain to be applied to the current segment of input.
+ * lag : pitch-lag for the current segment of input.
+ * lag_offset : the offset of lag w.r.t. current sample.
+ * sub_frame : sub-frame index, there are 4 pitch sub-frames in an iSAC
+ * frame.
+ * This specifies the usage of the filter. See
+ * 'PitchFilterOperation' for operational modes.
+ * num_samples : number of samples to be processed in each segment.
+ * index : index of the input and output sample.
+ * damper_state_dg : state of damping filter for different trial gains.
+ * gain_mult : differential changes to gain.
+ */
+typedef struct {
+ double buffer[PITCH_INTBUFFSIZE + QLOOKAHEAD];
+ double damper_state[PITCH_DAMPORDER];
+ const double *interpol_coeff;
+ double gain;
+ double lag;
+ int lag_offset;
+
+ int sub_frame;
+ PitchFilterOperation mode;
+ int num_samples;
+ int index;
+
+ double damper_state_dg[4][PITCH_DAMPORDER];
+ double gain_mult[4];
+} PitchFilterParam;
+
+/**********************************************************************
+ * FilterSegment()
+ * Filter one segment, a quarter of a frame.
+ *
+ * Inputs
+ * in_data : pointer to the input signal of 30 ms at 8 kHz sample-rate.
+ * filter_param : pitch filter parameters.
+ *
+ * Outputs
+ * out_data : pointer to a buffer where the filtered signal is written to.
+ * out_dg : [only used in kPitchFilterPreGain] pointer to a buffer
+ * where the output of different gain values (differential
+ * change to gain) is written.
+ */
+static void FilterSegment(const double* in_data, PitchFilterParam* parameters,
+ double* out_data,
+ double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
+ int n;
+ int m;
+ int j;
+ double sum;
+ double sum2;
+ /* Index of `parameters->buffer` where the output is written to. */
+ int pos = parameters->index + PITCH_BUFFSIZE;
+ /* Index of `parameters->buffer` where samples are read for fractional-lag
+ * computation. */
+ int pos_lag = pos - parameters->lag_offset;
+
+ for (n = 0; n < parameters->num_samples; ++n) {
+ /* Shift low pass filter states. */
+ for (m = PITCH_DAMPORDER - 1; m > 0; --m) {
+ parameters->damper_state[m] = parameters->damper_state[m - 1];
+ }
+ /* Filter to get fractional pitch. */
+ sum = 0.0;
+ for (m = 0; m < PITCH_FRACORDER; ++m) {
+ sum += parameters->buffer[pos_lag + m] * parameters->interpol_coeff[m];
+ }
+ /* Multiply with gain. */
+ parameters->damper_state[0] = parameters->gain * sum;
+
+ if (parameters->mode == kPitchFilterPreGain) {
+ int lag_index = parameters->index - parameters->lag_offset;
+ int m_tmp = (lag_index < 0) ? -lag_index : 0;
+ /* Update the damper state for the new sample. */
+ for (m = PITCH_DAMPORDER - 1; m > 0; --m) {
+ for (j = 0; j < 4; ++j) {
+ parameters->damper_state_dg[j][m] =
+ parameters->damper_state_dg[j][m - 1];
+ }
+ }
+
+ for (j = 0; j < parameters->sub_frame + 1; ++j) {
+ /* Filter for fractional pitch. */
+ sum2 = 0.0;
+ for (m = PITCH_FRACORDER-1; m >= m_tmp; --m) {
+ /* `lag_index + m` is always larger than or equal to zero, see how
+ * m_tmp is computed. This is equivalent to assume samples outside
+ * `out_dg[j]` are zero. */
+ sum2 += out_dg[j][lag_index + m] * parameters->interpol_coeff[m];
+ }
+ /* Add the contribution of differential gain change. */
+ parameters->damper_state_dg[j][0] = parameters->gain_mult[j] * sum +
+ parameters->gain * sum2;
+ }
+
+ /* Filter with damping filter, and store the results. */
+ for (j = 0; j < parameters->sub_frame + 1; ++j) {
+ sum = 0.0;
+ for (m = 0; m < PITCH_DAMPORDER; ++m) {
+ sum -= parameters->damper_state_dg[j][m] * kDampFilter[m];
+ }
+ out_dg[j][parameters->index] = sum;
+ }
+ }
+ /* Filter with damping filter. */
+ sum = 0.0;
+ for (m = 0; m < PITCH_DAMPORDER; ++m) {
+ sum += parameters->damper_state[m] * kDampFilter[m];
+ }
+
+ /* Subtract from input and update buffer. */
+ out_data[parameters->index] = in_data[parameters->index] - sum;
+ parameters->buffer[pos] = in_data[parameters->index] +
+ out_data[parameters->index];
+
+ ++parameters->index;
+ ++pos;
+ ++pos_lag;
+ }
+ return;
+}
+
+/* Update filter parameters based on the pitch-gains and pitch-lags. */
+static void Update(PitchFilterParam* parameters) {
+ double fraction;
+ int fraction_index;
+ /* Compute integer lag-offset. */
+ parameters->lag_offset = WebRtcIsac_lrint(parameters->lag + PITCH_FILTDELAY +
+ 0.5);
+ /* Find correct set of coefficients for computing fractional pitch. */
+ fraction = parameters->lag_offset - (parameters->lag + PITCH_FILTDELAY);
+ fraction_index = WebRtcIsac_lrint(PITCH_FRACS * fraction - 0.5);
+ parameters->interpol_coeff = kIntrpCoef[fraction_index];
+
+ if (parameters->mode == kPitchFilterPreGain) {
+ /* If in this mode make a differential change to pitch gain. */
+ parameters->gain_mult[parameters->sub_frame] += 0.2;
+ if (parameters->gain_mult[parameters->sub_frame] > 1.0) {
+ parameters->gain_mult[parameters->sub_frame] = 1.0;
+ }
+ if (parameters->sub_frame > 0) {
+ parameters->gain_mult[parameters->sub_frame - 1] -= 0.2;
+ }
+ }
+}
+
+/******************************************************************************
+ * FilterFrame()
+ * Filter a frame of 30 millisecond, given pitch-lags and pitch-gains.
+ *
+ * Inputs
+ * in_data : pointer to the input signal of 30 ms at 8 kHz sample-rate.
+ * lags : pointer to pitch-lags, 4 lags per frame.
+ * gains : pointer to pitch-gians, 4 gains per frame.
+ * mode : defining the functionality of the filter. It takes the
+ * following values.
+ * kPitchFilterPre: Pitch pre-filter, used at encoder.
+ * kPitchFilterPost: Pitch post-filter, used at decoder.
+ * kPitchFilterPreLa: Pitch pre-filter with lookahead.
+ * kPitchFilterPreGain: Pitch pre-filter used to otain optimal
+ * pitch-gains.
+ *
+ * Outputs
+ * out_data : pointer to a buffer where the filtered signal is written to.
+ * out_dg : [only used in kPitchFilterPreGain] pointer to a buffer
+ * where the output of different gain values (differential
+ * change to gain) is written.
+ */
+static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
+ double* lags, double* gains, PitchFilterOperation mode,
+ double* out_data,
+ double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
+ PitchFilterParam filter_parameters;
+ double gain_delta, lag_delta;
+ double old_lag, old_gain;
+ int n;
+ int m;
+ const double kEnhancer = 1.3;
+
+ /* Set up buffer and states. */
+ filter_parameters.index = 0;
+ filter_parameters.lag_offset = 0;
+ filter_parameters.mode = mode;
+ /* Copy states to local variables. */
+ memcpy(filter_parameters.buffer, filter_state->ubuf,
+ sizeof(filter_state->ubuf));
+ RTC_COMPILE_ASSERT(sizeof(filter_parameters.buffer) >=
+ sizeof(filter_state->ubuf));
+ memset(filter_parameters.buffer +
+ sizeof(filter_state->ubuf) / sizeof(filter_state->ubuf[0]),
+ 0, sizeof(filter_parameters.buffer) - sizeof(filter_state->ubuf));
+ memcpy(filter_parameters.damper_state, filter_state->ystate,
+ sizeof(filter_state->ystate));
+
+ if (mode == kPitchFilterPreGain) {
+ /* Clear buffers. */
+ memset(filter_parameters.gain_mult, 0, sizeof(filter_parameters.gain_mult));
+ memset(filter_parameters.damper_state_dg, 0,
+ sizeof(filter_parameters.damper_state_dg));
+ for (n = 0; n < PITCH_SUBFRAMES; ++n) {
+ //memset(out_dg[n], 0, sizeof(double) * (PITCH_FRAME_LEN + QLOOKAHEAD));
+ memset(out_dg[n], 0, sizeof(out_dg[n]));
+ }
+ } else if (mode == kPitchFilterPost) {
+ /* Make output more periodic. Negative sign is to change the structure
+ * of the filter. */
+ for (n = 0; n < PITCH_SUBFRAMES; ++n) {
+ gains[n] *= -kEnhancer;
+ }
+ }
+
+ old_lag = *filter_state->oldlagp;
+ old_gain = *filter_state->oldgainp;
+
+ /* No interpolation if pitch lag step is big. */
+ if ((lags[0] > (PITCH_UPSTEP * old_lag)) ||
+ (lags[0] < (PITCH_DOWNSTEP * old_lag))) {
+ old_lag = lags[0];
+ old_gain = gains[0];
+
+ if (mode == kPitchFilterPreGain) {
+ filter_parameters.gain_mult[0] = 1.0;
+ }
+ }
+
+ filter_parameters.num_samples = PITCH_UPDATE;
+ for (m = 0; m < PITCH_SUBFRAMES; ++m) {
+ /* Set the sub-frame value. */
+ filter_parameters.sub_frame = m;
+ /* Calculate interpolation steps for pitch-lag and pitch-gain. */
+ lag_delta = (lags[m] - old_lag) / PITCH_GRAN_PER_SUBFRAME;
+ filter_parameters.lag = old_lag;
+ gain_delta = (gains[m] - old_gain) / PITCH_GRAN_PER_SUBFRAME;
+ filter_parameters.gain = old_gain;
+ /* Store for the next sub-frame. */
+ old_lag = lags[m];
+ old_gain = gains[m];
+
+ for (n = 0; n < PITCH_GRAN_PER_SUBFRAME; ++n) {
+ /* Step-wise interpolation of pitch gains and lags. As pitch-lag changes,
+ * some parameters of filter need to be update. */
+ filter_parameters.gain += gain_delta;
+ filter_parameters.lag += lag_delta;
+ /* Update parameters according to new lag value. */
+ Update(&filter_parameters);
+ /* Filter a segment of input. */
+ FilterSegment(in_data, &filter_parameters, out_data, out_dg);
+ }
+ }
+
+ if (mode != kPitchFilterPreGain) {
+ /* Export buffer and states. */
+ memcpy(filter_state->ubuf, &filter_parameters.buffer[PITCH_FRAME_LEN],
+ sizeof(filter_state->ubuf));
+ memcpy(filter_state->ystate, filter_parameters.damper_state,
+ sizeof(filter_state->ystate));
+
+ /* Store for the next frame. */
+ *filter_state->oldlagp = old_lag;
+ *filter_state->oldgainp = old_gain;
+ }
+
+ if ((mode == kPitchFilterPreGain) || (mode == kPitchFilterPreLa)) {
+ /* Filter the lookahead segment, this is treated as the last sub-frame. So
+ * set `pf_param` to last sub-frame. */
+ filter_parameters.sub_frame = PITCH_SUBFRAMES - 1;
+ filter_parameters.num_samples = QLOOKAHEAD;
+ FilterSegment(in_data, &filter_parameters, out_data, out_dg);
+ }
+}
+
+void WebRtcIsac_PitchfilterPre(double* in_data, double* out_data,
+ PitchFiltstr* pf_state, double* lags,
+ double* gains) {
+ FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPre, out_data, NULL);
+}
+
+void WebRtcIsac_PitchfilterPre_la(double* in_data, double* out_data,
+ PitchFiltstr* pf_state, double* lags,
+ double* gains) {
+ FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreLa, out_data,
+ NULL);
+}
+
+void WebRtcIsac_PitchfilterPre_gains(
+ double* in_data, double* out_data,
+ double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD], PitchFiltstr *pf_state,
+ double* lags, double* gains) {
+ FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreGain, out_data,
+ out_dg);
+}
+
+void WebRtcIsac_PitchfilterPost(double* in_data, double* out_data,
+ PitchFiltstr* pf_state, double* lags,
+ double* gains) {
+ FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPost, out_data, NULL);
+}
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.h
new file mode 100644
index 0000000000..9a232de87b
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/pitch_filter.h
@@ -0,0 +1,42 @@
+/*
+ * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_FILTER_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_FILTER_H_
+
+#include "modules/audio_coding/codecs/isac/main/source/structs.h"
+
+void WebRtcIsac_PitchfilterPre(double* indat,
+ double* outdat,
+ PitchFiltstr* pfp,
+ double* lags,
+ double* gains);
+
+void WebRtcIsac_PitchfilterPost(double* indat,
+ double* outdat,
+ PitchFiltstr* pfp,
+ double* lags,
+ double* gains);
+
+void WebRtcIsac_PitchfilterPre_la(double* indat,
+ double* outdat,
+ PitchFiltstr* pfp,
+ double* lags,
+ double* gains);
+
+void WebRtcIsac_PitchfilterPre_gains(
+ double* indat,
+ double* outdat,
+ double out_dG[][PITCH_FRAME_LEN + QLOOKAHEAD],
+ PitchFiltstr* pfp,
+ double* lags,
+ double* gains);
+
+#endif // MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_PITCH_FILTER_H_
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/settings.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/settings.h
new file mode 100644
index 0000000000..abce90c4f5
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/settings.h
@@ -0,0 +1,196 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * settings.h
+ *
+ * Declaration of #defines used in the iSAC codec
+ *
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_SETTINGS_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_SETTINGS_H_
+
+/* sampling frequency (Hz) */
+#define FS 16000
+
+/* number of samples per frame (either 320 (20ms), 480 (30ms) or 960 (60ms)) */
+#define INITIAL_FRAMESAMPLES 960
+
+/* do not modify the following; this will have to be modified if we
+ * have a 20ms framesize option */
+/**********************************************************************/
+/* miliseconds */
+#define FRAMESIZE 30
+/* number of samples per frame processed in the encoder, 480 */
+#define FRAMESAMPLES 480 /* ((FRAMESIZE*FS)/1000) */
+#define FRAMESAMPLES_HALF 240
+#define FRAMESAMPLES_QUARTER 120
+/**********************************************************************/
+
+/* max number of samples per frame (= 60 ms frame) */
+#define MAX_FRAMESAMPLES 960
+#define MAX_SWBFRAMESAMPLES (MAX_FRAMESAMPLES * 2)
+/* number of samples per 10ms frame */
+#define FRAMESAMPLES_10ms ((10 * FS) / 1000)
+#define SWBFRAMESAMPLES_10ms (FRAMESAMPLES_10ms * 2)
+/* number of samples in 30 ms frame */
+#define FRAMESAMPLES_30ms 480
+/* number of subframes */
+#define SUBFRAMES 6
+/* length of a subframe */
+#define UPDATE 80
+/* length of half a subframe (low/high band) */
+#define HALF_SUBFRAMELEN (UPDATE / 2)
+/* samples of look ahead (in a half-band, so actually
+ * half the samples of look ahead @ FS) */
+#define QLOOKAHEAD 24 /* 3 ms */
+/* order of AR model in spectral entropy coder */
+#define AR_ORDER 6
+/* order of LP model in spectral entropy coder */
+#define LP_ORDER 0
+
+/* window length (masking analysis) */
+#define WINLEN 256
+/* order of low-band pole filter used to approximate masking curve */
+#define ORDERLO 12
+/* order of hi-band pole filter used to approximate masking curve */
+#define ORDERHI 6
+
+#define UB_LPC_ORDER 4
+#define UB_LPC_VEC_PER_FRAME 2
+#define UB16_LPC_VEC_PER_FRAME 4
+#define UB_ACTIVE_SUBFRAMES 2
+#define UB_MAX_LPC_ORDER 6
+#define UB_INTERPOL_SEGMENTS 1
+#define UB16_INTERPOL_SEGMENTS 3
+#define LB_TOTAL_DELAY_SAMPLES 48
+enum ISACBandwidth { isac8kHz = 8, isac12kHz = 12, isac16kHz = 16 };
+enum ISACBand {
+ kIsacLowerBand = 0,
+ kIsacUpperBand12 = 1,
+ kIsacUpperBand16 = 2
+};
+enum IsacSamplingRate { kIsacWideband = 16, kIsacSuperWideband = 32 };
+#define UB_LPC_GAIN_DIM SUBFRAMES
+#define FB_STATE_SIZE_WORD32 6
+
+/* order for post_filter_bank */
+#define POSTQORDER 3
+/* order for pre-filterbank */
+#define QORDER 3
+/* another order */
+#define QORDER_ALL (POSTQORDER + QORDER - 1)
+/* for decimator */
+#define ALLPASSSECTIONS 2
+
+/* array size for byte stream in number of bytes. */
+/* The old maximum size still needed for the decoding */
+#define STREAM_SIZE_MAX 600
+#define STREAM_SIZE_MAX_30 200 /* 200 bytes=53.4 kbps @ 30 ms.framelength */
+#define STREAM_SIZE_MAX_60 400 /* 400 bytes=53.4 kbps @ 60 ms.framelength */
+
+/* storage size for bit counts */
+#define BIT_COUNTER_SIZE 30
+/* maximum order of any AR model or filter */
+#define MAX_AR_MODEL_ORDER 12 // 50
+
+/* For pitch analysis */
+#define PITCH_FRAME_LEN (FRAMESAMPLES_HALF) /* 30 ms */
+#define PITCH_MAX_LAG 140 /* 57 Hz */
+#define PITCH_MIN_LAG 20 /* 400 Hz */
+#define PITCH_MAX_GAIN 0.45
+#define PITCH_MAX_GAIN_06 0.27 /* PITCH_MAX_GAIN*0.6 */
+#define PITCH_MAX_GAIN_Q12 1843
+#define PITCH_LAG_SPAN2 (PITCH_MAX_LAG / 2 - PITCH_MIN_LAG / 2 + 5)
+#define PITCH_CORR_LEN2 60 /* 15 ms */
+#define PITCH_CORR_STEP2 (PITCH_FRAME_LEN / 4)
+#define PITCH_BW 11 /* half the band width of correlation surface */
+#define PITCH_SUBFRAMES 4
+#define PITCH_GRAN_PER_SUBFRAME 5
+#define PITCH_SUBFRAME_LEN (PITCH_FRAME_LEN / PITCH_SUBFRAMES)
+#define PITCH_UPDATE (PITCH_SUBFRAME_LEN / PITCH_GRAN_PER_SUBFRAME)
+/* maximum number of peaks to be examined in correlation surface */
+#define PITCH_MAX_NUM_PEAKS 10
+#define PITCH_PEAK_DECAY 0.85
+/* For weighting filter */
+#define PITCH_WLPCORDER 6
+#define PITCH_WLPCWINLEN PITCH_FRAME_LEN
+#define PITCH_WLPCASYM 0.3 /* asymmetry parameter */
+#define PITCH_WLPCBUFLEN PITCH_WLPCWINLEN
+/* For pitch filter */
+/* Extra 50 for fraction and LP filters */
+#define PITCH_BUFFSIZE (PITCH_MAX_LAG + 50)
+#define PITCH_INTBUFFSIZE (PITCH_FRAME_LEN + PITCH_BUFFSIZE)
+/* Max rel. step for interpolation */
+#define PITCH_UPSTEP 1.5
+/* Max rel. step for interpolation */
+#define PITCH_DOWNSTEP 0.67
+#define PITCH_FRACS 8
+#define PITCH_FRACORDER 9
+#define PITCH_DAMPORDER 5
+#define PITCH_FILTDELAY 1.5f
+/* stepsize for quantization of the pitch Gain */
+#define PITCH_GAIN_STEPSIZE 0.125
+
+/* Order of high pass filter */
+#define HPORDER 2
+
+/* some mathematical constants */
+/* log2(exp) */
+#define LOG2EXP 1.44269504088896
+#define PI 3.14159265358979
+
+/* Maximum number of iterations allowed to limit payload size */
+#define MAX_PAYLOAD_LIMIT_ITERATION 5
+
+/* Redundant Coding */
+#define RCU_BOTTLENECK_BPS 16000
+#define RCU_TRANSCODING_SCALE 0.40f
+#define RCU_TRANSCODING_SCALE_INVERSE 2.5f
+
+#define RCU_TRANSCODING_SCALE_UB 0.50f
+#define RCU_TRANSCODING_SCALE_UB_INVERSE 2.0f
+
+/* Define Error codes */
+/* 6000 General */
+#define ISAC_MEMORY_ALLOCATION_FAILED 6010
+#define ISAC_MODE_MISMATCH 6020
+#define ISAC_DISALLOWED_BOTTLENECK 6030
+#define ISAC_DISALLOWED_FRAME_LENGTH 6040
+#define ISAC_UNSUPPORTED_SAMPLING_FREQUENCY 6050
+
+/* 6200 Bandwidth estimator */
+#define ISAC_RANGE_ERROR_BW_ESTIMATOR 6240
+/* 6400 Encoder */
+#define ISAC_ENCODER_NOT_INITIATED 6410
+#define ISAC_DISALLOWED_CODING_MODE 6420
+#define ISAC_DISALLOWED_FRAME_MODE_ENCODER 6430
+#define ISAC_DISALLOWED_BITSTREAM_LENGTH 6440
+#define ISAC_PAYLOAD_LARGER_THAN_LIMIT 6450
+#define ISAC_DISALLOWED_ENCODER_BANDWIDTH 6460
+/* 6600 Decoder */
+#define ISAC_DECODER_NOT_INITIATED 6610
+#define ISAC_EMPTY_PACKET 6620
+#define ISAC_DISALLOWED_FRAME_MODE_DECODER 6630
+#define ISAC_RANGE_ERROR_DECODE_FRAME_LENGTH 6640
+#define ISAC_RANGE_ERROR_DECODE_BANDWIDTH 6650
+#define ISAC_RANGE_ERROR_DECODE_PITCH_GAIN 6660
+#define ISAC_RANGE_ERROR_DECODE_PITCH_LAG 6670
+#define ISAC_RANGE_ERROR_DECODE_LPC 6680
+#define ISAC_RANGE_ERROR_DECODE_SPECTRUM 6690
+#define ISAC_LENGTH_MISMATCH 6730
+#define ISAC_RANGE_ERROR_DECODE_BANDWITH 6740
+#define ISAC_DISALLOWED_BANDWIDTH_MODE_DECODER 6750
+#define ISAC_DISALLOWED_LPC_MODEL 6760
+/* 6800 Call setup formats */
+#define ISAC_INCOMPATIBLE_FORMATS 6810
+
+#endif /* MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_SETTINGS_H_ */
diff --git a/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/structs.h b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/structs.h
new file mode 100644
index 0000000000..6861ca42bd
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_coding/codecs/isac/main/source/structs.h
@@ -0,0 +1,448 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * structs.h
+ *
+ * This header file contains all the structs used in the ISAC codec
+ *
+ */
+
+#ifndef MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_STRUCTS_H_
+#define MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_STRUCTS_H_
+
+#include "modules/audio_coding/codecs/isac/bandwidth_info.h"
+#include "modules/audio_coding/codecs/isac/main/source/settings.h"
+#include "modules/third_party/fft/fft.h"
+
+typedef struct Bitstreamstruct {
+ uint8_t stream[STREAM_SIZE_MAX];
+ uint32_t W_upper;
+ uint32_t streamval;
+ uint32_t stream_index;
+
+} Bitstr;
+
+typedef struct {
+ double DataBufferLo[WINLEN];
+ double DataBufferHi[WINLEN];
+
+ double CorrBufLo[ORDERLO + 1];
+ double CorrBufHi[ORDERHI + 1];
+
+ float PreStateLoF[ORDERLO + 1];
+ float PreStateLoG[ORDERLO + 1];
+ float PreStateHiF[ORDERHI + 1];
+ float PreStateHiG[ORDERHI + 1];
+ float PostStateLoF[ORDERLO + 1];
+ float PostStateLoG[ORDERLO + 1];
+ float PostStateHiF[ORDERHI + 1];
+ float PostStateHiG[ORDERHI + 1];
+
+ double OldEnergy;
+
+} MaskFiltstr;
+
+typedef struct {
+ // state vectors for each of the two analysis filters
+ double INSTAT1[2 * (QORDER - 1)];
+ double INSTAT2[2 * (QORDER - 1)];
+ double INSTATLA1[2 * (QORDER - 1)];
+ double INSTATLA2[2 * (QORDER - 1)];
+ double INLABUF1[QLOOKAHEAD];
+ double INLABUF2[QLOOKAHEAD];
+
+ float INSTAT1_float[2 * (QORDER - 1)];
+ float INSTAT2_float[2 * (QORDER - 1)];
+ float INSTATLA1_float[2 * (QORDER - 1)];
+ float INSTATLA2_float[2 * (QORDER - 1)];
+ float INLABUF1_float[QLOOKAHEAD];
+ float INLABUF2_float[QLOOKAHEAD];
+
+ /* High pass filter */
+ double HPstates[HPORDER];
+ float HPstates_float[HPORDER];
+
+} PreFiltBankstr;
+
+typedef struct {
+ // state vectors for each of the two analysis filters
+ double STATE_0_LOWER[2 * POSTQORDER];
+ double STATE_0_UPPER[2 * POSTQORDER];
+
+ /* High pass filter */
+ double HPstates1[HPORDER];
+ double HPstates2[HPORDER];
+
+ float STATE_0_LOWER_float[2 * POSTQORDER];
+ float STATE_0_UPPER_float[2 * POSTQORDER];
+
+ float HPstates1_float[HPORDER];
+ float HPstates2_float[HPORDER];
+
+} PostFiltBankstr;
+
+typedef struct {
+ // data buffer for pitch filter
+ double ubuf[PITCH_BUFFSIZE];
+
+ // low pass state vector
+ double ystate[PITCH_DAMPORDER];
+
+ // old lag and gain
+ double oldlagp[1];
+ double oldgainp[1];
+
+} PitchFiltstr;
+
+typedef struct {
+ // data buffer
+ double buffer[PITCH_WLPCBUFLEN];
+
+ // state vectors
+ double istate[PITCH_WLPCORDER];
+ double weostate[PITCH_WLPCORDER];
+ double whostate[PITCH_WLPCORDER];
+
+ // LPC window -> should be a global array because constant
+ double window[PITCH_WLPCWINLEN];
+
+} WeightFiltstr;
+
+typedef struct {
+ // for inital estimator
+ double dec_buffer[PITCH_CORR_LEN2 + PITCH_CORR_STEP2 + PITCH_MAX_LAG / 2 -
+ PITCH_FRAME_LEN / 2 + 2];
+ double decimator_state[2 * ALLPASSSECTIONS + 1];
+ double hp_state[2];
+
+ double whitened_buf[QLOOKAHEAD];
+
+ double inbuf[QLOOKAHEAD];
+
+ PitchFiltstr PFstr_wght;
+ PitchFiltstr PFstr;
+ WeightFiltstr Wghtstr;
+
+} PitchAnalysisStruct;
+
+/* Have instance of struct together with other iSAC structs */
+typedef struct {
+ /* Previous frame length (in ms) */
+ int32_t prev_frame_length;
+
+ /* Previous RTP timestamp from received
+ packet (in samples relative beginning) */
+ int32_t prev_rec_rtp_number;
+
+ /* Send timestamp for previous packet (in ms using timeGetTime()) */
+ uint32_t prev_rec_send_ts;
+
+ /* Arrival time for previous packet (in ms using timeGetTime()) */
+ uint32_t prev_rec_arr_ts;
+
+ /* rate of previous packet, derived from RTP timestamps (in bits/s) */
+ float prev_rec_rtp_rate;
+
+ /* Time sinse the last update of the BN estimate (in ms) */
+ uint32_t last_update_ts;
+
+ /* Time sinse the last reduction (in ms) */
+ uint32_t last_reduction_ts;
+
+ /* How many times the estimate was update in the beginning */
+ int32_t count_tot_updates_rec;
+
+ /* The estimated bottle neck rate from there to here (in bits/s) */
+ int32_t rec_bw;
+ float rec_bw_inv;
+ float rec_bw_avg;
+ float rec_bw_avg_Q;
+
+ /* The estimated mean absolute jitter value,
+ as seen on this side (in ms) */
+ float rec_jitter;
+ float rec_jitter_short_term;
+ float rec_jitter_short_term_abs;
+ float rec_max_delay;
+ float rec_max_delay_avg_Q;
+
+ /* (assumed) bitrate for headers (bps) */
+ float rec_header_rate;
+
+ /* The estimated bottle neck rate from here to there (in bits/s) */
+ float send_bw_avg;
+
+ /* The estimated mean absolute jitter value, as seen on
+ the other siee (in ms) */
+ float send_max_delay_avg;
+
+ // number of packets received since last update
+ int num_pkts_rec;
+
+ int num_consec_rec_pkts_over_30k;
+
+ // flag for marking that a high speed network has been
+ // detected downstream
+ int hsn_detect_rec;
+
+ int num_consec_snt_pkts_over_30k;
+
+ // flag for marking that a high speed network has
+ // been detected upstream
+ int hsn_detect_snd;
+
+ uint32_t start_wait_period;
+
+ int in_wait_period;
+
+ int change_to_WB;
+
+ uint32_t senderTimestamp;
+ uint32_t receiverTimestamp;
+ // enum IsacSamplingRate incomingStreamSampFreq;
+ uint16_t numConsecLatePkts;
+ float consecLatency;
+ int16_t inWaitLatePkts;
+
+ IsacBandwidthInfo external_bw_info;
+} BwEstimatorstr;
+
+typedef struct {
+ /* boolean, flags if previous packet exceeded B.N. */
+ int PrevExceed;
+ /* ms */
+ int ExceedAgo;
+ /* packets left to send in current burst */
+ int BurstCounter;
+ /* packets */
+ int InitCounter;
+ /* ms remaining in buffer when next packet will be sent */
+ double StillBuffered;
+
+} RateModel;
+
+/* The following strutc is used to store data from encoding, to make it
+ fast and easy to construct a new bitstream with a different Bandwidth
+ estimate. All values (except framelength and minBytes) is double size to
+ handle 60 ms of data.
+*/
+typedef struct {
+ /* Used to keep track of if it is first or second part of 60 msec packet */
+ int startIdx;
+
+ /* Frame length in samples */
+ int16_t framelength;
+
+ /* Pitch Gain */
+ int pitchGain_index[2];
+
+ /* Pitch Lag */
+ double meanGain[2];
+ int pitchIndex[PITCH_SUBFRAMES * 2];
+
+ /* LPC */
+ int LPCindex_s[108 * 2]; /* KLT_ORDER_SHAPE = 108 */
+ int LPCindex_g[12 * 2]; /* KLT_ORDER_GAIN = 12 */
+ double LPCcoeffs_lo[(ORDERLO + 1) * SUBFRAMES * 2];
+ double LPCcoeffs_hi[(ORDERHI + 1) * SUBFRAMES * 2];
+
+ /* Encode Spec */
+ int16_t fre[FRAMESAMPLES];
+ int16_t fim[FRAMESAMPLES];
+ int16_t AvgPitchGain[2];
+
+ /* Used in adaptive mode only */
+ int minBytes;
+
+} IsacSaveEncoderData;
+
+typedef struct {
+ int indexLPCShape[UB_LPC_ORDER * UB16_LPC_VEC_PER_FRAME];
+ double lpcGain[SUBFRAMES << 1];
+ int lpcGainIndex[SUBFRAMES << 1];
+
+ Bitstr bitStreamObj;
+
+ int16_t realFFT[FRAMESAMPLES_HALF];
+ int16_t imagFFT[FRAMESAMPLES_HALF];
+} ISACUBSaveEncDataStruct;
+
+typedef struct {
+ Bitstr bitstr_obj;
+ MaskFiltstr maskfiltstr_obj;
+ PreFiltBankstr prefiltbankstr_obj;
+ PitchFiltstr pitchfiltstr_obj;
+ PitchAnalysisStruct pitchanalysisstr_obj;
+ FFTstr fftstr_obj;
+ IsacSaveEncoderData SaveEnc_obj;
+
+ int buffer_index;
+ int16_t current_framesamples;
+
+ float data_buffer_float[FRAMESAMPLES_30ms];
+
+ int frame_nb;
+ double bottleneck;
+ int16_t new_framelength;
+ double s2nr;
+
+ /* Maximum allowed number of bits for a 30 msec packet */
+ int16_t payloadLimitBytes30;
+ /* Maximum allowed number of bits for a 30 msec packet */
+ int16_t payloadLimitBytes60;
+ /* Maximum allowed number of bits for both 30 and 60 msec packet */
+ int16_t maxPayloadBytes;
+ /* Maximum allowed rate in bytes per 30 msec packet */
+ int16_t maxRateInBytes;
+
+ /*---
+ If set to 1 iSAC will not adapt the frame-size, if used in
+ channel-adaptive mode. The initial value will be used for all rates.
+ ---*/
+ int16_t enforceFrameSize;
+
+ /*-----
+ This records the BWE index the encoder injected into the bit-stream.
+ It will be used in RCU. The same BWE index of main payload will be in
+ the redundant payload. We can not retrieve it from BWE because it is
+ a recursive procedure (WebRtcIsac_GetDownlinkBwJitIndexImpl) and has to be
+ called only once per each encode.
+ -----*/
+ int16_t lastBWIdx;
+} ISACLBEncStruct;
+
+typedef struct {
+ Bitstr bitstr_obj;
+ MaskFiltstr maskfiltstr_obj;
+ PreFiltBankstr prefiltbankstr_obj;
+ FFTstr fftstr_obj;
+ ISACUBSaveEncDataStruct SaveEnc_obj;
+
+ int buffer_index;
+ float data_buffer_float[MAX_FRAMESAMPLES + LB_TOTAL_DELAY_SAMPLES];
+ double bottleneck;
+ /* Maximum allowed number of bits for a 30 msec packet */
+ // int16_t payloadLimitBytes30;
+ /* Maximum allowed number of bits for both 30 and 60 msec packet */
+ // int16_t maxPayloadBytes;
+ int16_t maxPayloadSizeBytes;
+
+ double lastLPCVec[UB_LPC_ORDER];
+ int16_t numBytesUsed;
+ int16_t lastJitterInfo;
+} ISACUBEncStruct;
+
+typedef struct {
+ Bitstr bitstr_obj;
+ MaskFiltstr maskfiltstr_obj;
+ PostFiltBankstr postfiltbankstr_obj;
+ PitchFiltstr pitchfiltstr_obj;
+ FFTstr fftstr_obj;
+
+} ISACLBDecStruct;
+
+typedef struct {
+ Bitstr bitstr_obj;
+ MaskFiltstr maskfiltstr_obj;
+ PostFiltBankstr postfiltbankstr_obj;
+ FFTstr fftstr_obj;
+
+} ISACUBDecStruct;
+
+typedef struct {
+ ISACLBEncStruct ISACencLB_obj;
+ ISACLBDecStruct ISACdecLB_obj;
+} ISACLBStruct;
+
+typedef struct {
+ ISACUBEncStruct ISACencUB_obj;
+ ISACUBDecStruct ISACdecUB_obj;
+} ISACUBStruct;
+
+/*
+ This struct is used to take a snapshot of the entropy coder and LPC gains
+ right before encoding LPC gains. This allows us to go back to that state
+ if we like to limit the payload size.
+*/
+typedef struct {
+ /* 6 lower-band & 6 upper-band */
+ double loFiltGain[SUBFRAMES];
+ double hiFiltGain[SUBFRAMES];
+ /* Upper boundary of interval W */
+ uint32_t W_upper;
+ uint32_t streamval;
+ /* Index to the current position in bytestream */
+ uint32_t stream_index;
+ uint8_t stream[3];
+} transcode_obj;
+
+typedef struct {
+ // TODO(kwiberg): The size of these tables could be reduced by storing floats
+ // instead of doubles, and by making use of the identity cos(x) =
+ // sin(x+pi/2). They could also be made global constants that we fill in at
+ // compile time.
+ double costab1[FRAMESAMPLES_HALF];
+ double sintab1[FRAMESAMPLES_HALF];
+ double costab2[FRAMESAMPLES_QUARTER];
+ double sintab2[FRAMESAMPLES_QUARTER];
+} TransformTables;
+
+typedef struct {
+ // lower-band codec instance
+ ISACLBStruct instLB;
+ // upper-band codec instance
+ ISACUBStruct instUB;
+
+ // Bandwidth Estimator and model for the rate.
+ BwEstimatorstr bwestimator_obj;
+ RateModel rate_data_obj;
+ double MaxDelay;
+
+ /* 0 = adaptive; 1 = instantaneous */
+ int16_t codingMode;
+
+ // overall bottleneck of the codec
+ int32_t bottleneck;
+
+ // QMF Filter state
+ int32_t analysisFBState1[FB_STATE_SIZE_WORD32];
+ int32_t analysisFBState2[FB_STATE_SIZE_WORD32];
+ int32_t synthesisFBState1[FB_STATE_SIZE_WORD32];
+ int32_t synthesisFBState2[FB_STATE_SIZE_WORD32];
+
+ // Error Code
+ int16_t errorCode;
+
+ // bandwidth of the encoded audio 8, 12 or 16 kHz
+ enum ISACBandwidth bandwidthKHz;
+ // Sampling rate of audio, encoder and decode, 8 or 16 kHz
+ enum IsacSamplingRate encoderSamplingRateKHz;
+ enum IsacSamplingRate decoderSamplingRateKHz;
+ // Flag to keep track of initializations, lower & upper-band
+ // encoder and decoder.
+ int16_t initFlag;
+
+ // Flag to to indicate signal bandwidth switch
+ int16_t resetFlag_8kHz;
+
+ // Maximum allowed rate, measured in Bytes per 30 ms.
+ int16_t maxRateBytesPer30Ms;
+ // Maximum allowed payload-size, measured in Bytes.
+ int16_t maxPayloadSizeBytes;
+ /* The expected sampling rate of the input signal. Valid values are 16000
+ * and 32000. This is not the operation sampling rate of the codec. */
+ uint16_t in_sample_rate_hz;
+
+ // Trig tables for WebRtcIsac_Time2Spec and WebRtcIsac_Spec2time.
+ TransformTables transform_tables;
+} ISACMainStruct;
+
+#endif /* MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_STRUCTS_H_ */