diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/modules/audio_coding/neteq/expand.cc | |
parent | Initial commit. (diff) | |
download | firefox-esr-upstream.tar.xz firefox-esr-upstream.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/audio_coding/neteq/expand.cc')
-rw-r--r-- | third_party/libwebrtc/modules/audio_coding/neteq/expand.cc | 888 |
1 files changed, 888 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_coding/neteq/expand.cc b/third_party/libwebrtc/modules/audio_coding/neteq/expand.cc new file mode 100644 index 0000000000..9c3274609f --- /dev/null +++ b/third_party/libwebrtc/modules/audio_coding/neteq/expand.cc @@ -0,0 +1,888 @@ +/* + * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "modules/audio_coding/neteq/expand.h" + +#include <string.h> // memset + +#include <algorithm> // min, max +#include <limits> // numeric_limits<T> + +#include "common_audio/signal_processing/include/signal_processing_library.h" +#include "modules/audio_coding/neteq/audio_multi_vector.h" +#include "modules/audio_coding/neteq/background_noise.h" +#include "modules/audio_coding/neteq/cross_correlation.h" +#include "modules/audio_coding/neteq/dsp_helper.h" +#include "modules/audio_coding/neteq/random_vector.h" +#include "modules/audio_coding/neteq/statistics_calculator.h" +#include "modules/audio_coding/neteq/sync_buffer.h" +#include "rtc_base/numerics/safe_conversions.h" + +namespace webrtc { + +Expand::Expand(BackgroundNoise* background_noise, + SyncBuffer* sync_buffer, + RandomVector* random_vector, + StatisticsCalculator* statistics, + int fs, + size_t num_channels) + : random_vector_(random_vector), + sync_buffer_(sync_buffer), + first_expand_(true), + fs_hz_(fs), + num_channels_(num_channels), + consecutive_expands_(0), + background_noise_(background_noise), + statistics_(statistics), + overlap_length_(5 * fs / 8000), + lag_index_direction_(0), + current_lag_index_(0), + stop_muting_(false), + expand_duration_samples_(0), + channel_parameters_(new ChannelParameters[num_channels_]) { + RTC_DCHECK(fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000); + RTC_DCHECK_LE(fs, + static_cast<int>(kMaxSampleRate)); // Should not be possible. + RTC_DCHECK_GT(num_channels_, 0); + memset(expand_lags_, 0, sizeof(expand_lags_)); + Reset(); +} + +Expand::~Expand() = default; + +void Expand::Reset() { + first_expand_ = true; + consecutive_expands_ = 0; + max_lag_ = 0; + for (size_t ix = 0; ix < num_channels_; ++ix) { + channel_parameters_[ix].expand_vector0.Clear(); + channel_parameters_[ix].expand_vector1.Clear(); + } +} + +int Expand::Process(AudioMultiVector* output) { + int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30]; + int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125]; + static const int kTempDataSize = 3600; + int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this. + int16_t* voiced_vector_storage = temp_data; + int16_t* voiced_vector = &voiced_vector_storage[overlap_length_]; + static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder; + int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125]; + int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder; + int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder; + + int fs_mult = fs_hz_ / 8000; + + if (first_expand_) { + // Perform initial setup if this is the first expansion since last reset. + AnalyzeSignal(random_vector); + first_expand_ = false; + expand_duration_samples_ = 0; + } else { + // This is not the first expansion, parameters are already estimated. + // Extract a noise segment. + size_t rand_length = max_lag_; + // This only applies to SWB where length could be larger than 256. + RTC_DCHECK_LE(rand_length, kMaxSampleRate / 8000 * 120 + 30); + GenerateRandomVector(2, rand_length, random_vector); + } + + // Generate signal. + UpdateLagIndex(); + + // Voiced part. + // Generate a weighted vector with the current lag. + size_t expansion_vector_length = max_lag_ + overlap_length_; + size_t current_lag = expand_lags_[current_lag_index_]; + // Copy lag+overlap data. + size_t expansion_vector_position = + expansion_vector_length - current_lag - overlap_length_; + size_t temp_length = current_lag + overlap_length_; + for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) { + ChannelParameters& parameters = channel_parameters_[channel_ix]; + if (current_lag_index_ == 0) { + // Use only expand_vector0. + RTC_DCHECK_LE(expansion_vector_position + temp_length, + parameters.expand_vector0.Size()); + parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position, + voiced_vector_storage); + } else if (current_lag_index_ == 1) { + std::unique_ptr<int16_t[]> temp_0(new int16_t[temp_length]); + parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position, + temp_0.get()); + std::unique_ptr<int16_t[]> temp_1(new int16_t[temp_length]); + parameters.expand_vector1.CopyTo(temp_length, expansion_vector_position, + temp_1.get()); + // Mix 3/4 of expand_vector0 with 1/4 of expand_vector1. + WebRtcSpl_ScaleAndAddVectorsWithRound(temp_0.get(), 3, temp_1.get(), 1, 2, + voiced_vector_storage, temp_length); + } else if (current_lag_index_ == 2) { + // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1. + RTC_DCHECK_LE(expansion_vector_position + temp_length, + parameters.expand_vector0.Size()); + RTC_DCHECK_LE(expansion_vector_position + temp_length, + parameters.expand_vector1.Size()); + + std::unique_ptr<int16_t[]> temp_0(new int16_t[temp_length]); + parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position, + temp_0.get()); + std::unique_ptr<int16_t[]> temp_1(new int16_t[temp_length]); + parameters.expand_vector1.CopyTo(temp_length, expansion_vector_position, + temp_1.get()); + WebRtcSpl_ScaleAndAddVectorsWithRound(temp_0.get(), 1, temp_1.get(), 1, 1, + voiced_vector_storage, temp_length); + } + + // Get tapering window parameters. Values are in Q15. + int16_t muting_window, muting_window_increment; + int16_t unmuting_window, unmuting_window_increment; + if (fs_hz_ == 8000) { + muting_window = DspHelper::kMuteFactorStart8kHz; + muting_window_increment = DspHelper::kMuteFactorIncrement8kHz; + unmuting_window = DspHelper::kUnmuteFactorStart8kHz; + unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz; + } else if (fs_hz_ == 16000) { + muting_window = DspHelper::kMuteFactorStart16kHz; + muting_window_increment = DspHelper::kMuteFactorIncrement16kHz; + unmuting_window = DspHelper::kUnmuteFactorStart16kHz; + unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz; + } else if (fs_hz_ == 32000) { + muting_window = DspHelper::kMuteFactorStart32kHz; + muting_window_increment = DspHelper::kMuteFactorIncrement32kHz; + unmuting_window = DspHelper::kUnmuteFactorStart32kHz; + unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz; + } else { // fs_ == 48000 + muting_window = DspHelper::kMuteFactorStart48kHz; + muting_window_increment = DspHelper::kMuteFactorIncrement48kHz; + unmuting_window = DspHelper::kUnmuteFactorStart48kHz; + unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz; + } + + // Smooth the expanded if it has not been muted to a low amplitude and + // `current_voice_mix_factor` is larger than 0.5. + if ((parameters.mute_factor > 819) && + (parameters.current_voice_mix_factor > 8192)) { + size_t start_ix = sync_buffer_->Size() - overlap_length_; + for (size_t i = 0; i < overlap_length_; i++) { + // Do overlap add between new vector and overlap. + (*sync_buffer_)[channel_ix][start_ix + i] = + (((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) + + (((parameters.mute_factor * voiced_vector_storage[i]) >> 14) * + unmuting_window) + + 16384) >> + 15; + muting_window += muting_window_increment; + unmuting_window += unmuting_window_increment; + } + } else if (parameters.mute_factor == 0) { + // The expanded signal will consist of only comfort noise if + // mute_factor = 0. Set the output length to 15 ms for best noise + // production. + // TODO(hlundin): This has been disabled since the length of + // parameters.expand_vector0 and parameters.expand_vector1 no longer + // match with expand_lags_, causing invalid reads and writes. Is it a good + // idea to enable this again, and solve the vector size problem? + // max_lag_ = fs_mult * 120; + // expand_lags_[0] = fs_mult * 120; + // expand_lags_[1] = fs_mult * 120; + // expand_lags_[2] = fs_mult * 120; + } + + // Unvoiced part. + // Filter `scaled_random_vector` through `ar_filter_`. + memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state, + sizeof(int16_t) * kUnvoicedLpcOrder); + int32_t add_constant = 0; + if (parameters.ar_gain_scale > 0) { + add_constant = 1 << (parameters.ar_gain_scale - 1); + } + WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector, + parameters.ar_gain, add_constant, + parameters.ar_gain_scale, current_lag); + WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector, + parameters.ar_filter, kUnvoicedLpcOrder + 1, + current_lag); + memcpy(parameters.ar_filter_state, + &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]), + sizeof(int16_t) * kUnvoicedLpcOrder); + + // Combine voiced and unvoiced contributions. + + // Set a suitable cross-fading slope. + // For lag = + // <= 31 * fs_mult => go from 1 to 0 in about 8 ms; + // (>= 31 .. <= 63) * fs_mult => go from 1 to 0 in about 16 ms; + // >= 64 * fs_mult => go from 1 to 0 in about 32 ms. + // temp_shift = getbits(max_lag_) - 5. + int temp_shift = + (31 - WebRtcSpl_NormW32(rtc::dchecked_cast<int32_t>(max_lag_))) - 5; + int16_t mix_factor_increment = 256 >> temp_shift; + if (stop_muting_) { + mix_factor_increment = 0; + } + + // Create combined signal by shifting in more and more of unvoiced part. + temp_shift = 8 - temp_shift; // = getbits(mix_factor_increment). + size_t temp_length = + (parameters.current_voice_mix_factor - parameters.voice_mix_factor) >> + temp_shift; + temp_length = std::min(temp_length, current_lag); + DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_length, + ¶meters.current_voice_mix_factor, + mix_factor_increment, temp_data); + + // End of cross-fading period was reached before end of expanded signal + // path. Mix the rest with a fixed mixing factor. + if (temp_length < current_lag) { + if (mix_factor_increment != 0) { + parameters.current_voice_mix_factor = parameters.voice_mix_factor; + } + int16_t temp_scale = 16384 - parameters.current_voice_mix_factor; + WebRtcSpl_ScaleAndAddVectorsWithRound( + voiced_vector + temp_length, parameters.current_voice_mix_factor, + unvoiced_vector + temp_length, temp_scale, 14, + temp_data + temp_length, current_lag - temp_length); + } + + // Select muting slope depending on how many consecutive expands we have + // done. + if (consecutive_expands_ == 3) { + // Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms. + // mute_slope = 0.0010 / fs_mult in Q20. + parameters.mute_slope = std::max(parameters.mute_slope, 1049 / fs_mult); + } + if (consecutive_expands_ == 7) { + // Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms. + // mute_slope = 0.0020 / fs_mult in Q20. + parameters.mute_slope = std::max(parameters.mute_slope, 2097 / fs_mult); + } + + // Mute segment according to slope value. + if ((consecutive_expands_ != 0) || !parameters.onset) { + // Mute to the previous level, then continue with the muting. + WebRtcSpl_AffineTransformVector( + temp_data, temp_data, parameters.mute_factor, 8192, 14, current_lag); + + if (!stop_muting_) { + DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag); + + // Shift by 6 to go from Q20 to Q14. + // TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong. + // Legacy. + int16_t gain = static_cast<int16_t>( + 16384 - (((current_lag * parameters.mute_slope) + 8192) >> 6)); + gain = ((gain * parameters.mute_factor) + 8192) >> 14; + + // Guard against getting stuck with very small (but sometimes audible) + // gain. + if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) { + parameters.mute_factor = 0; + } else { + parameters.mute_factor = gain; + } + } + } + + // Background noise part. + background_noise_->GenerateBackgroundNoise( + random_vector, channel_ix, channel_parameters_[channel_ix].mute_slope, + TooManyExpands(), current_lag, unvoiced_array_memory); + + // Add background noise to the combined voiced-unvoiced signal. + for (size_t i = 0; i < current_lag; i++) { + temp_data[i] = temp_data[i] + noise_vector[i]; + } + if (channel_ix == 0) { + output->AssertSize(current_lag); + } else { + RTC_DCHECK_EQ(output->Size(), current_lag); + } + (*output)[channel_ix].OverwriteAt(temp_data, current_lag, 0); + } + + // Increase call number and cap it. + consecutive_expands_ = consecutive_expands_ >= kMaxConsecutiveExpands + ? kMaxConsecutiveExpands + : consecutive_expands_ + 1; + expand_duration_samples_ += output->Size(); + // Clamp the duration counter at 2 seconds. + expand_duration_samples_ = std::min(expand_duration_samples_, + rtc::dchecked_cast<size_t>(fs_hz_ * 2)); + return 0; +} + +void Expand::SetParametersForNormalAfterExpand() { + current_lag_index_ = 0; + lag_index_direction_ = 0; + stop_muting_ = true; // Do not mute signal any more. + statistics_->LogDelayedPacketOutageEvent(expand_duration_samples_, fs_hz_); + statistics_->EndExpandEvent(fs_hz_); +} + +void Expand::SetParametersForMergeAfterExpand() { + current_lag_index_ = -1; /* out of the 3 possible ones */ + lag_index_direction_ = 1; /* make sure we get the "optimal" lag */ + stop_muting_ = true; + statistics_->EndExpandEvent(fs_hz_); +} + +bool Expand::Muted() const { + if (first_expand_ || stop_muting_) + return false; + RTC_DCHECK(channel_parameters_); + for (size_t ch = 0; ch < num_channels_; ++ch) { + if (channel_parameters_[ch].mute_factor != 0) + return false; + } + return true; +} + +size_t Expand::overlap_length() const { + return overlap_length_; +} + +void Expand::InitializeForAnExpandPeriod() { + lag_index_direction_ = 1; + current_lag_index_ = -1; + stop_muting_ = false; + random_vector_->set_seed_increment(1); + consecutive_expands_ = 0; + for (size_t ix = 0; ix < num_channels_; ++ix) { + channel_parameters_[ix].current_voice_mix_factor = 16384; // 1.0 in Q14. + channel_parameters_[ix].mute_factor = 16384; // 1.0 in Q14. + // Start with 0 gain for background noise. + background_noise_->SetMuteFactor(ix, 0); + } +} + +bool Expand::TooManyExpands() { + return consecutive_expands_ >= kMaxConsecutiveExpands; +} + +void Expand::AnalyzeSignal(int16_t* random_vector) { + int32_t auto_correlation[kUnvoicedLpcOrder + 1]; + int16_t reflection_coeff[kUnvoicedLpcOrder]; + int16_t correlation_vector[kMaxSampleRate / 8000 * 102]; + size_t best_correlation_index[kNumCorrelationCandidates]; + int16_t best_correlation[kNumCorrelationCandidates]; + size_t best_distortion_index[kNumCorrelationCandidates]; + int16_t best_distortion[kNumCorrelationCandidates]; + int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1]; + int32_t best_distortion_w32[kNumCorrelationCandidates]; + static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder; + int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125]; + int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder; + + int fs_mult = fs_hz_ / 8000; + + // Pre-calculate common multiplications with fs_mult. + size_t fs_mult_4 = static_cast<size_t>(fs_mult * 4); + size_t fs_mult_20 = static_cast<size_t>(fs_mult * 20); + size_t fs_mult_120 = static_cast<size_t>(fs_mult * 120); + size_t fs_mult_dist_len = fs_mult * kDistortionLength; + size_t fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength; + + const size_t signal_length = static_cast<size_t>(256 * fs_mult); + + const size_t audio_history_position = sync_buffer_->Size() - signal_length; + std::unique_ptr<int16_t[]> audio_history(new int16_t[signal_length]); + (*sync_buffer_)[0].CopyTo(signal_length, audio_history_position, + audio_history.get()); + + // Initialize. + InitializeForAnExpandPeriod(); + + // Calculate correlation in downsampled domain (4 kHz sample rate). + size_t correlation_length = 51; // TODO(hlundin): Legacy bit-exactness. + // If it is decided to break bit-exactness `correlation_length` should be + // initialized to the return value of Correlation(). + Correlation(audio_history.get(), signal_length, correlation_vector); + + // Find peaks in correlation vector. + DspHelper::PeakDetection(correlation_vector, correlation_length, + kNumCorrelationCandidates, fs_mult, + best_correlation_index, best_correlation); + + // Adjust peak locations; cross-correlation lags start at 2.5 ms + // (20 * fs_mult samples). + best_correlation_index[0] += fs_mult_20; + best_correlation_index[1] += fs_mult_20; + best_correlation_index[2] += fs_mult_20; + + // Calculate distortion around the `kNumCorrelationCandidates` best lags. + int distortion_scale = 0; + for (size_t i = 0; i < kNumCorrelationCandidates; i++) { + size_t min_index = + std::max(fs_mult_20, best_correlation_index[i] - fs_mult_4); + size_t max_index = + std::min(fs_mult_120 - 1, best_correlation_index[i] + fs_mult_4); + best_distortion_index[i] = DspHelper::MinDistortion( + &(audio_history[signal_length - fs_mult_dist_len]), min_index, + max_index, fs_mult_dist_len, &best_distortion_w32[i]); + distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]), + distortion_scale); + } + // Shift the distortion values to fit in 16 bits. + WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates, + best_distortion_w32, distortion_scale); + + // Find the maximizing index `i` of the cost function + // f[i] = best_correlation[i] / best_distortion[i]. + int32_t best_ratio = std::numeric_limits<int32_t>::min(); + size_t best_index = std::numeric_limits<size_t>::max(); + for (size_t i = 0; i < kNumCorrelationCandidates; ++i) { + int32_t ratio; + if (best_distortion[i] > 0) { + ratio = (best_correlation[i] * (1 << 16)) / best_distortion[i]; + } else if (best_correlation[i] == 0) { + ratio = 0; // No correlation set result to zero. + } else { + ratio = std::numeric_limits<int32_t>::max(); // Denominator is zero. + } + if (ratio > best_ratio) { + best_index = i; + best_ratio = ratio; + } + } + + size_t distortion_lag = best_distortion_index[best_index]; + size_t correlation_lag = best_correlation_index[best_index]; + max_lag_ = std::max(distortion_lag, correlation_lag); + + // Calculate the exact best correlation in the range between + // `correlation_lag` and `distortion_lag`. + correlation_length = std::max(std::min(distortion_lag + 10, fs_mult_120), + static_cast<size_t>(60 * fs_mult)); + + size_t start_index = std::min(distortion_lag, correlation_lag); + size_t correlation_lags = static_cast<size_t>( + WEBRTC_SPL_ABS_W16((distortion_lag - correlation_lag)) + 1); + RTC_DCHECK_LE(correlation_lags, static_cast<size_t>(99 * fs_mult + 1)); + + for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) { + ChannelParameters& parameters = channel_parameters_[channel_ix]; + if (channel_ix > 0) { + // When channel_ix == 0, audio_history contains the correct audio. For the + // other cases, we will have to copy the correct channel into + // audio_history. + (*sync_buffer_)[channel_ix].CopyTo(signal_length, audio_history_position, + audio_history.get()); + } + + // Calculate suitable scaling. + int16_t signal_max = WebRtcSpl_MaxAbsValueW16( + &audio_history[signal_length - correlation_length - start_index - + correlation_lags], + correlation_length + start_index + correlation_lags - 1); + int correlation_scale = + (31 - WebRtcSpl_NormW32(signal_max * signal_max)) + + (31 - WebRtcSpl_NormW32(static_cast<int32_t>(correlation_length))) - 31; + correlation_scale = std::max(0, correlation_scale); + + // Calculate the correlation, store in `correlation_vector2`. + WebRtcSpl_CrossCorrelation( + correlation_vector2, + &(audio_history[signal_length - correlation_length]), + &(audio_history[signal_length - correlation_length - start_index]), + correlation_length, correlation_lags, correlation_scale, -1); + + // Find maximizing index. + best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags); + int32_t max_correlation = correlation_vector2[best_index]; + // Compensate index with start offset. + best_index = best_index + start_index; + + // Calculate energies. + int32_t energy1 = WebRtcSpl_DotProductWithScale( + &(audio_history[signal_length - correlation_length]), + &(audio_history[signal_length - correlation_length]), + correlation_length, correlation_scale); + int32_t energy2 = WebRtcSpl_DotProductWithScale( + &(audio_history[signal_length - correlation_length - best_index]), + &(audio_history[signal_length - correlation_length - best_index]), + correlation_length, correlation_scale); + + // Calculate the correlation coefficient between the two portions of the + // signal. + int32_t corr_coefficient; + if ((energy1 > 0) && (energy2 > 0)) { + int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0); + int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0); + // Make sure total scaling is even (to simplify scale factor after sqrt). + if ((energy1_scale + energy2_scale) & 1) { + // If sum is odd, add 1 to make it even. + energy1_scale += 1; + } + int32_t scaled_energy1 = energy1 >> energy1_scale; + int32_t scaled_energy2 = energy2 >> energy2_scale; + int16_t sqrt_energy_product = static_cast<int16_t>( + WebRtcSpl_SqrtFloor(scaled_energy1 * scaled_energy2)); + // Calculate max_correlation / sqrt(energy1 * energy2) in Q14. + int cc_shift = 14 - (energy1_scale + energy2_scale) / 2; + max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift); + corr_coefficient = + WebRtcSpl_DivW32W16(max_correlation, sqrt_energy_product); + // Cap at 1.0 in Q14. + corr_coefficient = std::min(16384, corr_coefficient); + } else { + corr_coefficient = 0; + } + + // Extract the two vectors expand_vector0 and expand_vector1 from + // `audio_history`. + size_t expansion_length = max_lag_ + overlap_length_; + const int16_t* vector1 = &(audio_history[signal_length - expansion_length]); + const int16_t* vector2 = vector1 - distortion_lag; + // Normalize the second vector to the same energy as the first. + energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length, + correlation_scale); + energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length, + correlation_scale); + // Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0, + // i.e., energy1 / energy2 is within 0.25 - 4. + int16_t amplitude_ratio; + if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) { + // Energy constraint fulfilled. Use both vectors and scale them + // accordingly. + int32_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0); + int32_t scaled_energy1 = scaled_energy2 - 13; + // Calculate scaled_energy1 / scaled_energy2 in Q13. + int32_t energy_ratio = + WebRtcSpl_DivW32W16(WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1), + static_cast<int16_t>(energy2 >> scaled_energy2)); + // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26). + amplitude_ratio = + static_cast<int16_t>(WebRtcSpl_SqrtFloor(energy_ratio << 13)); + // Copy the two vectors and give them the same energy. + parameters.expand_vector0.Clear(); + parameters.expand_vector0.PushBack(vector1, expansion_length); + parameters.expand_vector1.Clear(); + if (parameters.expand_vector1.Size() < expansion_length) { + parameters.expand_vector1.Extend(expansion_length - + parameters.expand_vector1.Size()); + } + std::unique_ptr<int16_t[]> temp_1(new int16_t[expansion_length]); + WebRtcSpl_AffineTransformVector( + temp_1.get(), const_cast<int16_t*>(vector2), amplitude_ratio, 4096, + 13, expansion_length); + parameters.expand_vector1.OverwriteAt(temp_1.get(), expansion_length, 0); + } else { + // Energy change constraint not fulfilled. Only use last vector. + parameters.expand_vector0.Clear(); + parameters.expand_vector0.PushBack(vector1, expansion_length); + // Copy from expand_vector0 to expand_vector1. + parameters.expand_vector0.CopyTo(¶meters.expand_vector1); + // Set the energy_ratio since it is used by muting slope. + if ((energy1 / 4 < energy2) || (energy2 == 0)) { + amplitude_ratio = 4096; // 0.5 in Q13. + } else { + amplitude_ratio = 16384; // 2.0 in Q13. + } + } + + // Set the 3 lag values. + if (distortion_lag == correlation_lag) { + expand_lags_[0] = distortion_lag; + expand_lags_[1] = distortion_lag; + expand_lags_[2] = distortion_lag; + } else { + // `distortion_lag` and `correlation_lag` are not equal; use different + // combinations of the two. + // First lag is `distortion_lag` only. + expand_lags_[0] = distortion_lag; + // Second lag is the average of the two. + expand_lags_[1] = (distortion_lag + correlation_lag) / 2; + // Third lag is the average again, but rounding towards `correlation_lag`. + if (distortion_lag > correlation_lag) { + expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2; + } else { + expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2; + } + } + + // Calculate the LPC and the gain of the filters. + + // Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function. + size_t temp_index = + signal_length - fs_mult_lpc_analysis_len - kUnvoicedLpcOrder; + // Copy signal to temporary vector to be able to pad with leading zeros. + int16_t* temp_signal = + new int16_t[fs_mult_lpc_analysis_len + kUnvoicedLpcOrder]; + memset(temp_signal, 0, + sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder)); + memcpy(&temp_signal[kUnvoicedLpcOrder], + &audio_history[temp_index + kUnvoicedLpcOrder], + sizeof(int16_t) * fs_mult_lpc_analysis_len); + CrossCorrelationWithAutoShift( + &temp_signal[kUnvoicedLpcOrder], &temp_signal[kUnvoicedLpcOrder], + fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1, -1, auto_correlation); + delete[] temp_signal; + + // Verify that variance is positive. + if (auto_correlation[0] > 0) { + // Estimate AR filter parameters using Levinson-Durbin algorithm; + // kUnvoicedLpcOrder + 1 filter coefficients. + int16_t stability = + WebRtcSpl_LevinsonDurbin(auto_correlation, parameters.ar_filter, + reflection_coeff, kUnvoicedLpcOrder); + + // Keep filter parameters only if filter is stable. + if (stability != 1) { + // Set first coefficient to 4096 (1.0 in Q12). + parameters.ar_filter[0] = 4096; + // Set remaining `kUnvoicedLpcOrder` coefficients to zero. + WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder); + } + } + + if (channel_ix == 0) { + // Extract a noise segment. + size_t noise_length; + if (distortion_lag < 40) { + noise_length = 2 * distortion_lag + 30; + } else { + noise_length = distortion_lag + 30; + } + if (noise_length <= RandomVector::kRandomTableSize) { + memcpy(random_vector, RandomVector::kRandomTable, + sizeof(int16_t) * noise_length); + } else { + // Only applies to SWB where length could be larger than + // `kRandomTableSize`. + memcpy(random_vector, RandomVector::kRandomTable, + sizeof(int16_t) * RandomVector::kRandomTableSize); + RTC_DCHECK_LE(noise_length, kMaxSampleRate / 8000 * 120 + 30); + random_vector_->IncreaseSeedIncrement(2); + random_vector_->Generate( + noise_length - RandomVector::kRandomTableSize, + &random_vector[RandomVector::kRandomTableSize]); + } + } + + // Set up state vector and calculate scale factor for unvoiced filtering. + memcpy(parameters.ar_filter_state, + &(audio_history[signal_length - kUnvoicedLpcOrder]), + sizeof(int16_t) * kUnvoicedLpcOrder); + memcpy(unvoiced_vector - kUnvoicedLpcOrder, + &(audio_history[signal_length - 128 - kUnvoicedLpcOrder]), + sizeof(int16_t) * kUnvoicedLpcOrder); + WebRtcSpl_FilterMAFastQ12(&audio_history[signal_length - 128], + unvoiced_vector, parameters.ar_filter, + kUnvoicedLpcOrder + 1, 128); + const int unvoiced_max_abs = [&] { + const int16_t max_abs = WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128); + // Since WebRtcSpl_MaxAbsValueW16 returns 2^15 - 1 when the input contains + // -2^15, we have to conservatively bump the return value by 1 + // if it is 2^15 - 1. + return max_abs == WEBRTC_SPL_WORD16_MAX ? max_abs + 1 : max_abs; + }(); + // Pick the smallest n such that 2^n > unvoiced_max_abs; then the maximum + // value of the dot product is less than 2^7 * 2^(2*n) = 2^(2*n + 7), so to + // prevent overflows we want 2n + 7 <= 31, which means we should shift by + // 2n + 7 - 31 bits, if this value is greater than zero. + int unvoiced_prescale = + std::max(0, 2 * WebRtcSpl_GetSizeInBits(unvoiced_max_abs) - 24); + + int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale( + unvoiced_vector, unvoiced_vector, 128, unvoiced_prescale); + + // Normalize `unvoiced_energy` to 28 or 29 bits to preserve sqrt() accuracy. + int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3; + // Make sure we do an odd number of shifts since we already have 7 shifts + // from dividing with 128 earlier. This will make the total scale factor + // even, which is suitable for the sqrt. + unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1); + unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale); + int16_t unvoiced_gain = + static_cast<int16_t>(WebRtcSpl_SqrtFloor(unvoiced_energy)); + parameters.ar_gain_scale = + 13 + (unvoiced_scale + 7 - unvoiced_prescale) / 2; + parameters.ar_gain = unvoiced_gain; + + // Calculate voice_mix_factor from corr_coefficient. + // Let x = corr_coefficient. Then, we compute: + // if (x > 0.48) + // voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096; + // else + // voice_mix_factor = 0; + if (corr_coefficient > 7875) { + int16_t x1, x2, x3; + // `corr_coefficient` is in Q14. + x1 = static_cast<int16_t>(corr_coefficient); + x2 = (x1 * x1) >> 14; // Shift 14 to keep result in Q14. + x3 = (x1 * x2) >> 14; + static const int kCoefficients[4] = {-5179, 19931, -16422, 5776}; + int32_t temp_sum = kCoefficients[0] * 16384; + temp_sum += kCoefficients[1] * x1; + temp_sum += kCoefficients[2] * x2; + temp_sum += kCoefficients[3] * x3; + parameters.voice_mix_factor = + static_cast<int16_t>(std::min(temp_sum / 4096, 16384)); + parameters.voice_mix_factor = + std::max(parameters.voice_mix_factor, static_cast<int16_t>(0)); + } else { + parameters.voice_mix_factor = 0; + } + + // Calculate muting slope. Reuse value from earlier scaling of + // `expand_vector0` and `expand_vector1`. + int16_t slope = amplitude_ratio; + if (slope > 12288) { + // slope > 1.5. + // Calculate (1 - (1 / slope)) / distortion_lag = + // (slope - 1) / (distortion_lag * slope). + // `slope` is in Q13, so 1 corresponds to 8192. Shift up to Q25 before + // the division. + // Shift the denominator from Q13 to Q5 before the division. The result of + // the division will then be in Q20. + int16_t denom = + rtc::saturated_cast<int16_t>((distortion_lag * slope) >> 8); + int temp_ratio = WebRtcSpl_DivW32W16((slope - 8192) << 12, denom); + if (slope > 14746) { + // slope > 1.8. + // Divide by 2, with proper rounding. + parameters.mute_slope = (temp_ratio + 1) / 2; + } else { + // Divide by 8, with proper rounding. + parameters.mute_slope = (temp_ratio + 4) / 8; + } + parameters.onset = true; + } else { + // Calculate (1 - slope) / distortion_lag. + // Shift `slope` by 7 to Q20 before the division. The result is in Q20. + parameters.mute_slope = WebRtcSpl_DivW32W16( + (8192 - slope) * 128, static_cast<int16_t>(distortion_lag)); + if (parameters.voice_mix_factor <= 13107) { + // Make sure the mute factor decreases from 1.0 to 0.9 in no more than + // 6.25 ms. + // mute_slope >= 0.005 / fs_mult in Q20. + parameters.mute_slope = std::max(5243 / fs_mult, parameters.mute_slope); + } else if (slope > 8028) { + parameters.mute_slope = 0; + } + parameters.onset = false; + } + } +} + +Expand::ChannelParameters::ChannelParameters() + : mute_factor(16384), + ar_gain(0), + ar_gain_scale(0), + voice_mix_factor(0), + current_voice_mix_factor(0), + onset(false), + mute_slope(0) { + memset(ar_filter, 0, sizeof(ar_filter)); + memset(ar_filter_state, 0, sizeof(ar_filter_state)); +} + +void Expand::Correlation(const int16_t* input, + size_t input_length, + int16_t* output) const { + // Set parameters depending on sample rate. + const int16_t* filter_coefficients; + size_t num_coefficients; + int16_t downsampling_factor; + if (fs_hz_ == 8000) { + num_coefficients = 3; + downsampling_factor = 2; + filter_coefficients = DspHelper::kDownsample8kHzTbl; + } else if (fs_hz_ == 16000) { + num_coefficients = 5; + downsampling_factor = 4; + filter_coefficients = DspHelper::kDownsample16kHzTbl; + } else if (fs_hz_ == 32000) { + num_coefficients = 7; + downsampling_factor = 8; + filter_coefficients = DspHelper::kDownsample32kHzTbl; + } else { // fs_hz_ == 48000. + num_coefficients = 7; + downsampling_factor = 12; + filter_coefficients = DspHelper::kDownsample48kHzTbl; + } + + // Correlate from lag 10 to lag 60 in downsampled domain. + // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.) + static const size_t kCorrelationStartLag = 10; + static const size_t kNumCorrelationLags = 54; + static const size_t kCorrelationLength = 60; + // Downsample to 4 kHz sample rate. + static const size_t kDownsampledLength = + kCorrelationStartLag + kNumCorrelationLags + kCorrelationLength; + int16_t downsampled_input[kDownsampledLength]; + static const size_t kFilterDelay = 0; + WebRtcSpl_DownsampleFast( + input + input_length - kDownsampledLength * downsampling_factor, + kDownsampledLength * downsampling_factor, downsampled_input, + kDownsampledLength, filter_coefficients, num_coefficients, + downsampling_factor, kFilterDelay); + + // Normalize `downsampled_input` to using all 16 bits. + int16_t max_value = + WebRtcSpl_MaxAbsValueW16(downsampled_input, kDownsampledLength); + int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value); + WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength, + downsampled_input, norm_shift); + + int32_t correlation[kNumCorrelationLags]; + CrossCorrelationWithAutoShift( + &downsampled_input[kDownsampledLength - kCorrelationLength], + &downsampled_input[kDownsampledLength - kCorrelationLength - + kCorrelationStartLag], + kCorrelationLength, kNumCorrelationLags, -1, correlation); + + // Normalize and move data from 32-bit to 16-bit vector. + int32_t max_correlation = + WebRtcSpl_MaxAbsValueW32(correlation, kNumCorrelationLags); + int16_t norm_shift2 = static_cast<int16_t>( + std::max(18 - WebRtcSpl_NormW32(max_correlation), 0)); + WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation, + norm_shift2); +} + +void Expand::UpdateLagIndex() { + current_lag_index_ = current_lag_index_ + lag_index_direction_; + // Change direction if needed. + if (current_lag_index_ <= 0) { + lag_index_direction_ = 1; + } + if (current_lag_index_ >= kNumLags - 1) { + lag_index_direction_ = -1; + } +} + +Expand* ExpandFactory::Create(BackgroundNoise* background_noise, + SyncBuffer* sync_buffer, + RandomVector* random_vector, + StatisticsCalculator* statistics, + int fs, + size_t num_channels) const { + return new Expand(background_noise, sync_buffer, random_vector, statistics, + fs, num_channels); +} + +void Expand::GenerateRandomVector(int16_t seed_increment, + size_t length, + int16_t* random_vector) { + // TODO(turajs): According to hlundin The loop should not be needed. Should be + // just as good to generate all of the vector in one call. + size_t samples_generated = 0; + const size_t kMaxRandSamples = RandomVector::kRandomTableSize; + while (samples_generated < length) { + size_t rand_length = std::min(length - samples_generated, kMaxRandSamples); + random_vector_->IncreaseSeedIncrement(seed_increment); + random_vector_->Generate(rand_length, &random_vector[samples_generated]); + samples_generated += rand_length; + } +} + +} // namespace webrtc |