summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/rtp_rtcp/test
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/modules/rtp_rtcp/test
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/rtp_rtcp/test')
-rw-r--r--third_party/libwebrtc/modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h57
-rw-r--r--third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_fec.cc474
-rw-r--r--third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_packet_masks_metrics.cc1060
3 files changed, 1591 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h
new file mode 100644
index 0000000000..0bc2f56917
--- /dev/null
+++ b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h
@@ -0,0 +1,57 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#ifndef MODULES_RTP_RTCP_TEST_TESTFEC_AVERAGE_RESIDUAL_LOSS_XOR_CODES_H_
+#define MODULES_RTP_RTCP_TEST_TESTFEC_AVERAGE_RESIDUAL_LOSS_XOR_CODES_H_
+
+namespace webrtc {
+
+// Maximum number of media packets allowed in this test. The burst mask types
+// are currently defined up to (kMaxMediaPacketsTest, kMaxMediaPacketsTest).
+const int kMaxMediaPacketsTest = 12;
+
+// Maximum number of FEC codes considered in this test.
+const int kNumberCodes = kMaxMediaPacketsTest * (kMaxMediaPacketsTest + 1) / 2;
+
+// For the random mask type: reference level for the maximum average residual
+// loss expected for each code size up to:
+// (kMaxMediaPacketsTest, kMaxMediaPacketsTest).
+const float kMaxResidualLossRandomMask[kNumberCodes] = {
+ 0.009463f, 0.022436f, 0.007376f, 0.033895f, 0.012423f, 0.004644f, 0.043438f,
+ 0.019937f, 0.008820f, 0.003438f, 0.051282f, 0.025795f, 0.012872f, 0.006458f,
+ 0.003195f, 0.057728f, 0.032146f, 0.016708f, 0.009242f, 0.005054f, 0.003078f,
+ 0.063050f, 0.037261f, 0.021767f, 0.012447f, 0.007099f, 0.003826f, 0.002504f,
+ 0.067476f, 0.042348f, 0.026169f, 0.015695f, 0.009478f, 0.005887f, 0.003568f,
+ 0.001689f, 0.071187f, 0.046575f, 0.031697f, 0.019797f, 0.012433f, 0.007027f,
+ 0.004845f, 0.002777f, 0.001753f, 0.074326f, 0.050628f, 0.034978f, 0.021955f,
+ 0.014821f, 0.009462f, 0.006393f, 0.004181f, 0.003105f, 0.001231f, 0.077008f,
+ 0.054226f, 0.038407f, 0.026251f, 0.018634f, 0.011568f, 0.008130f, 0.004957f,
+ 0.003334f, 0.002069f, 0.001304f, 0.079318f, 0.057180f, 0.041268f, 0.028842f,
+ 0.020033f, 0.014061f, 0.009636f, 0.006411f, 0.004583f, 0.002817f, 0.001770f,
+ 0.001258f};
+
+// For the bursty mask type: reference level for the maximum average residual
+// loss expected for each code size up to:
+// (kMaxMediaPacketsTestf, kMaxMediaPacketsTest).
+const float kMaxResidualLossBurstyMask[kNumberCodes] = {
+ 0.033236f, 0.053344f, 0.026616f, 0.064129f, 0.036589f, 0.021892f, 0.071055f,
+ 0.043890f, 0.028009f, 0.018524f, 0.075968f, 0.049828f, 0.033288f, 0.022791f,
+ 0.016088f, 0.079672f, 0.054586f, 0.037872f, 0.026679f, 0.019326f, 0.014293f,
+ 0.082582f, 0.058719f, 0.042045f, 0.030504f, 0.022391f, 0.016894f, 0.012946f,
+ 0.084935f, 0.062169f, 0.045620f, 0.033713f, 0.025570f, 0.019439f, 0.015121f,
+ 0.011920f, 0.086881f, 0.065267f, 0.048721f, 0.037613f, 0.028278f, 0.022152f,
+ 0.017314f, 0.013791f, 0.011130f, 0.088516f, 0.067911f, 0.051709f, 0.040819f,
+ 0.030777f, 0.024547f, 0.019689f, 0.015877f, 0.012773f, 0.010516f, 0.089909f,
+ 0.070332f, 0.054402f, 0.043210f, 0.034096f, 0.026625f, 0.021823f, 0.017648f,
+ 0.014649f, 0.011982f, 0.010035f, 0.091109f, 0.072428f, 0.056775f, 0.045418f,
+ 0.036679f, 0.028599f, 0.023693f, 0.019966f, 0.016603f, 0.013690f, 0.011359f,
+ 0.009657f};
+
+} // namespace webrtc
+#endif // MODULES_RTP_RTCP_TEST_TESTFEC_AVERAGE_RESIDUAL_LOSS_XOR_CODES_H_
diff --git a/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_fec.cc b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_fec.cc
new file mode 100644
index 0000000000..5ac8feca21
--- /dev/null
+++ b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_fec.cc
@@ -0,0 +1,474 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * Test application for core FEC algorithm. Calls encoding and decoding
+ * functions in ForwardErrorCorrection directly.
+ */
+
+#include <string.h>
+#include <time.h>
+
+#include <list>
+
+#include "modules/rtp_rtcp/source/byte_io.h"
+#include "modules/rtp_rtcp/source/forward_error_correction.h"
+#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
+#include "rtc_base/random.h"
+#include "test/gtest.h"
+#include "test/testsupport/file_utils.h"
+
+// #define VERBOSE_OUTPUT
+
+namespace webrtc {
+namespace fec_private_tables {
+extern const uint8_t** kPacketMaskBurstyTbl[12];
+}
+namespace test {
+using fec_private_tables::kPacketMaskBurstyTbl;
+
+void ReceivePackets(
+ std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
+ to_decode_list,
+ std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>*
+ received_packet_list,
+ size_t num_packets_to_decode,
+ float reorder_rate,
+ float duplicate_rate,
+ Random* random) {
+ RTC_DCHECK(to_decode_list->empty());
+ RTC_DCHECK_LE(num_packets_to_decode, received_packet_list->size());
+
+ for (size_t i = 0; i < num_packets_to_decode; i++) {
+ auto it = received_packet_list->begin();
+ // Reorder packets.
+ float random_variable = random->Rand<float>();
+ while (random_variable < reorder_rate) {
+ ++it;
+ if (it == received_packet_list->end()) {
+ --it;
+ break;
+ }
+ random_variable = random->Rand<float>();
+ }
+ to_decode_list->push_back(std::move(*it));
+ received_packet_list->erase(it);
+
+ // Duplicate packets.
+ ForwardErrorCorrection::ReceivedPacket* received_packet =
+ to_decode_list->back().get();
+ random_variable = random->Rand<float>();
+ while (random_variable < duplicate_rate) {
+ std::unique_ptr<ForwardErrorCorrection::ReceivedPacket> duplicate_packet(
+ new ForwardErrorCorrection::ReceivedPacket());
+ *duplicate_packet = *received_packet;
+ duplicate_packet->pkt = new ForwardErrorCorrection::Packet();
+ duplicate_packet->pkt->data = received_packet->pkt->data;
+
+ to_decode_list->push_back(std::move(duplicate_packet));
+ random_variable = random->Rand<float>();
+ }
+ }
+}
+
+void RunTest(bool use_flexfec) {
+ // TODO(marpan): Split this function into subroutines/helper functions.
+ enum { kMaxNumberMediaPackets = 48 };
+ enum { kMaxNumberFecPackets = 48 };
+
+ const uint32_t kNumMaskBytesL0 = 2;
+ const uint32_t kNumMaskBytesL1 = 6;
+
+ // FOR UEP
+ const bool kUseUnequalProtection = true;
+
+ // FEC mask types.
+ const FecMaskType kMaskTypes[] = {kFecMaskRandom, kFecMaskBursty};
+ const int kNumFecMaskTypes = sizeof(kMaskTypes) / sizeof(*kMaskTypes);
+
+ // Maximum number of media packets allowed for the mask type.
+ const uint16_t kMaxMediaPackets[] = {
+ kMaxNumberMediaPackets,
+ sizeof(kPacketMaskBurstyTbl) / sizeof(*kPacketMaskBurstyTbl)};
+
+ ASSERT_EQ(12, kMaxMediaPackets[1]) << "Max media packets for bursty mode not "
+ "equal to 12.";
+
+ ForwardErrorCorrection::PacketList media_packet_list;
+ std::list<ForwardErrorCorrection::Packet*> fec_packet_list;
+ std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
+ to_decode_list;
+ std::vector<std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>>
+ received_packet_list;
+ ForwardErrorCorrection::RecoveredPacketList recovered_packet_list;
+ std::list<uint8_t*> fec_mask_list;
+
+ // Running over only two loss rates to limit execution time.
+ const float loss_rate[] = {0.05f, 0.01f};
+ const uint32_t loss_rate_size = sizeof(loss_rate) / sizeof(*loss_rate);
+ const float reorder_rate = 0.1f;
+ const float duplicate_rate = 0.1f;
+
+ uint8_t media_loss_mask[kMaxNumberMediaPackets];
+ uint8_t fec_loss_mask[kMaxNumberFecPackets];
+ uint8_t fec_packet_masks[kMaxNumberFecPackets][kMaxNumberMediaPackets];
+
+ // Seed the random number generator, storing the seed to file in order to
+ // reproduce past results.
+ const unsigned int random_seed = static_cast<unsigned int>(time(nullptr));
+ Random random(random_seed);
+ std::string filename = webrtc::test::OutputPath() + "randomSeedLog.txt";
+ FILE* random_seed_file = fopen(filename.c_str(), "a");
+ fprintf(random_seed_file, "%u\n", random_seed);
+ fclose(random_seed_file);
+ random_seed_file = nullptr;
+
+ uint16_t seq_num = 0;
+ uint32_t timestamp = random.Rand<uint32_t>();
+ const uint32_t media_ssrc = random.Rand(1u, 0xfffffffe);
+ uint32_t fec_ssrc;
+ uint16_t fec_seq_num_offset;
+ if (use_flexfec) {
+ fec_ssrc = random.Rand(1u, 0xfffffffe);
+ fec_seq_num_offset = random.Rand(0, 1 << 15);
+ } else {
+ fec_ssrc = media_ssrc;
+ fec_seq_num_offset = 0;
+ }
+
+ std::unique_ptr<ForwardErrorCorrection> fec;
+ if (use_flexfec) {
+ fec = ForwardErrorCorrection::CreateFlexfec(fec_ssrc, media_ssrc);
+ } else {
+ RTC_DCHECK_EQ(media_ssrc, fec_ssrc);
+ fec = ForwardErrorCorrection::CreateUlpfec(fec_ssrc);
+ }
+
+ // Loop over the mask types: random and bursty.
+ for (int mask_type_idx = 0; mask_type_idx < kNumFecMaskTypes;
+ ++mask_type_idx) {
+ for (uint32_t loss_rate_idx = 0; loss_rate_idx < loss_rate_size;
+ ++loss_rate_idx) {
+ printf("Loss rate: %.2f, Mask type %d \n", loss_rate[loss_rate_idx],
+ mask_type_idx);
+
+ const uint32_t packet_mask_max = kMaxMediaPackets[mask_type_idx];
+ std::unique_ptr<uint8_t[]> packet_mask(
+ new uint8_t[packet_mask_max * kNumMaskBytesL1]);
+
+ FecMaskType fec_mask_type = kMaskTypes[mask_type_idx];
+
+ for (uint32_t num_media_packets = 1; num_media_packets <= packet_mask_max;
+ num_media_packets++) {
+ internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
+
+ for (uint32_t num_fec_packets = 1;
+ num_fec_packets <= num_media_packets &&
+ num_fec_packets <= packet_mask_max;
+ num_fec_packets++) {
+ // Loop over num_imp_packets: usually <= (0.3*num_media_packets).
+ // For this test we check up to ~ (num_media_packets / 4).
+ uint32_t max_num_imp_packets = num_media_packets / 4 + 1;
+ for (uint32_t num_imp_packets = 0;
+ num_imp_packets <= max_num_imp_packets &&
+ num_imp_packets <= packet_mask_max;
+ num_imp_packets++) {
+ uint8_t protection_factor =
+ static_cast<uint8_t>(num_fec_packets * 255 / num_media_packets);
+
+ const uint32_t mask_bytes_per_fec_packet =
+ (num_media_packets > 16) ? kNumMaskBytesL1 : kNumMaskBytesL0;
+
+ memset(packet_mask.get(), 0,
+ num_media_packets * mask_bytes_per_fec_packet);
+
+ // Transfer packet masks from bit-mask to byte-mask.
+ internal::GeneratePacketMasks(
+ num_media_packets, num_fec_packets, num_imp_packets,
+ kUseUnequalProtection, &mask_table, packet_mask.get());
+
+#ifdef VERBOSE_OUTPUT
+ printf(
+ "%u media packets, %u FEC packets, %u num_imp_packets, "
+ "loss rate = %.2f \n",
+ num_media_packets, num_fec_packets, num_imp_packets,
+ loss_rate[loss_rate_idx]);
+ printf("Packet mask matrix \n");
+#endif
+
+ for (uint32_t i = 0; i < num_fec_packets; i++) {
+ for (uint32_t j = 0; j < num_media_packets; j++) {
+ const uint8_t byte_mask =
+ packet_mask[i * mask_bytes_per_fec_packet + j / 8];
+ const uint32_t bit_position = (7 - j % 8);
+ fec_packet_masks[i][j] =
+ (byte_mask & (1 << bit_position)) >> bit_position;
+#ifdef VERBOSE_OUTPUT
+ printf("%u ", fec_packet_masks[i][j]);
+#endif
+ }
+#ifdef VERBOSE_OUTPUT
+ printf("\n");
+#endif
+ }
+#ifdef VERBOSE_OUTPUT
+ printf("\n");
+#endif
+ // Check for all zero rows or columns: indicates incorrect mask.
+ uint32_t row_limit = num_media_packets;
+ for (uint32_t i = 0; i < num_fec_packets; ++i) {
+ uint32_t row_sum = 0;
+ for (uint32_t j = 0; j < row_limit; ++j) {
+ row_sum += fec_packet_masks[i][j];
+ }
+ ASSERT_NE(0u, row_sum) << "Row is all zero " << i;
+ }
+ for (uint32_t j = 0; j < row_limit; ++j) {
+ uint32_t column_sum = 0;
+ for (uint32_t i = 0; i < num_fec_packets; ++i) {
+ column_sum += fec_packet_masks[i][j];
+ }
+ ASSERT_NE(0u, column_sum) << "Column is all zero " << j;
+ }
+
+ // Construct media packets.
+ // Reset the sequence number here for each FEC code/mask tested
+ // below, to avoid sequence number wrap-around. In actual decoding,
+ // old FEC packets in list are dropped if sequence number wrap
+ // around is detected. This case is currently not handled below.
+ seq_num = 0;
+ for (uint32_t i = 0; i < num_media_packets; ++i) {
+ std::unique_ptr<ForwardErrorCorrection::Packet> media_packet(
+ new ForwardErrorCorrection::Packet());
+ const uint32_t kMinPacketSize = 12;
+ const uint32_t kMaxPacketSize = static_cast<uint32_t>(
+ IP_PACKET_SIZE - 12 - 28 - fec->MaxPacketOverhead());
+ size_t packet_length =
+ random.Rand(kMinPacketSize, kMaxPacketSize);
+ media_packet->data.SetSize(packet_length);
+
+ uint8_t* data = media_packet->data.MutableData();
+ // Generate random values for the first 2 bytes.
+ data[0] = random.Rand<uint8_t>();
+ data[1] = random.Rand<uint8_t>();
+
+ // The first two bits are assumed to be 10 by the
+ // FEC encoder. In fact the FEC decoder will set the
+ // two first bits to 10 regardless of what they
+ // actually were. Set the first two bits to 10
+ // so that a memcmp can be performed for the
+ // whole restored packet.
+ data[0] |= 0x80;
+ data[0] &= 0xbf;
+
+ // FEC is applied to a whole frame.
+ // A frame is signaled by multiple packets without
+ // the marker bit set followed by the last packet of
+ // the frame for which the marker bit is set.
+ // Only push one (fake) frame to the FEC.
+ data[1] &= 0x7f;
+
+ ByteWriter<uint16_t>::WriteBigEndian(&data[2], seq_num);
+ ByteWriter<uint32_t>::WriteBigEndian(&data[4], timestamp);
+ ByteWriter<uint32_t>::WriteBigEndian(&data[8], media_ssrc);
+ // Generate random values for payload
+ for (size_t j = 12; j < packet_length; ++j) {
+ data[j] = random.Rand<uint8_t>();
+ }
+ media_packet_list.push_back(std::move(media_packet));
+ seq_num++;
+ }
+ media_packet_list.back()->data.MutableData()[1] |= 0x80;
+
+ ASSERT_EQ(0, fec->EncodeFec(media_packet_list, protection_factor,
+ num_imp_packets, kUseUnequalProtection,
+ fec_mask_type, &fec_packet_list))
+ << "EncodeFec() failed";
+
+ ASSERT_EQ(num_fec_packets, fec_packet_list.size())
+ << "We requested " << num_fec_packets
+ << " FEC packets, but "
+ "EncodeFec() produced "
+ << fec_packet_list.size();
+
+ memset(media_loss_mask, 0, sizeof(media_loss_mask));
+ uint32_t media_packet_idx = 0;
+ for (const auto& media_packet : media_packet_list) {
+ // We want a value between 0 and 1.
+ const float loss_random_variable = random.Rand<float>();
+
+ if (loss_random_variable >= loss_rate[loss_rate_idx]) {
+ media_loss_mask[media_packet_idx] = 1;
+ std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
+ received_packet(
+ new ForwardErrorCorrection::ReceivedPacket());
+ received_packet->pkt = new ForwardErrorCorrection::Packet();
+ received_packet->pkt->data = media_packet->data;
+ received_packet->ssrc = media_ssrc;
+ received_packet->seq_num = ByteReader<uint16_t>::ReadBigEndian(
+ media_packet->data.data() + 2);
+ received_packet->is_fec = false;
+ received_packet_list.push_back(std::move(received_packet));
+ }
+ media_packet_idx++;
+ }
+
+ memset(fec_loss_mask, 0, sizeof(fec_loss_mask));
+ uint32_t fec_packet_idx = 0;
+ for (auto* fec_packet : fec_packet_list) {
+ const float loss_random_variable = random.Rand<float>();
+ if (loss_random_variable >= loss_rate[loss_rate_idx]) {
+ fec_loss_mask[fec_packet_idx] = 1;
+ std::unique_ptr<ForwardErrorCorrection::ReceivedPacket>
+ received_packet(
+ new ForwardErrorCorrection::ReceivedPacket());
+ received_packet->pkt = new ForwardErrorCorrection::Packet();
+ received_packet->pkt->data = fec_packet->data;
+ received_packet->seq_num = fec_seq_num_offset + seq_num;
+ received_packet->is_fec = true;
+ received_packet->ssrc = fec_ssrc;
+ received_packet_list.push_back(std::move(received_packet));
+
+ fec_mask_list.push_back(fec_packet_masks[fec_packet_idx]);
+ }
+ ++fec_packet_idx;
+ ++seq_num;
+ }
+
+#ifdef VERBOSE_OUTPUT
+ printf("Media loss mask:\n");
+ for (uint32_t i = 0; i < num_media_packets; i++) {
+ printf("%u ", media_loss_mask[i]);
+ }
+ printf("\n\n");
+
+ printf("FEC loss mask:\n");
+ for (uint32_t i = 0; i < num_fec_packets; i++) {
+ printf("%u ", fec_loss_mask[i]);
+ }
+ printf("\n\n");
+#endif
+
+ auto fec_mask_it = fec_mask_list.begin();
+ while (fec_mask_it != fec_mask_list.end()) {
+ uint32_t hamming_dist = 0;
+ uint32_t recovery_position = 0;
+ for (uint32_t i = 0; i < num_media_packets; i++) {
+ if (media_loss_mask[i] == 0 && (*fec_mask_it)[i] == 1) {
+ recovery_position = i;
+ ++hamming_dist;
+ }
+ }
+ auto item_to_delete = fec_mask_it;
+ ++fec_mask_it;
+
+ if (hamming_dist == 1) {
+ // Recovery possible. Restart search.
+ media_loss_mask[recovery_position] = 1;
+ fec_mask_it = fec_mask_list.begin();
+ } else if (hamming_dist == 0) {
+ // FEC packet cannot provide further recovery.
+ fec_mask_list.erase(item_to_delete);
+ }
+ }
+#ifdef VERBOSE_OUTPUT
+ printf("Recovery mask:\n");
+ for (uint32_t i = 0; i < num_media_packets; ++i) {
+ printf("%u ", media_loss_mask[i]);
+ }
+ printf("\n\n");
+#endif
+ // For error-checking frame completion.
+ bool fec_packet_received = false;
+ while (!received_packet_list.empty()) {
+ size_t num_packets_to_decode = random.Rand(
+ 1u, static_cast<uint32_t>(received_packet_list.size()));
+ ReceivePackets(&to_decode_list, &received_packet_list,
+ num_packets_to_decode, reorder_rate,
+ duplicate_rate, &random);
+
+ if (fec_packet_received == false) {
+ for (const auto& received_packet : to_decode_list) {
+ if (received_packet->is_fec) {
+ fec_packet_received = true;
+ }
+ }
+ }
+ for (const auto& received_packet : to_decode_list) {
+ fec->DecodeFec(*received_packet, &recovered_packet_list);
+ }
+ to_decode_list.clear();
+ }
+ media_packet_idx = 0;
+ for (const auto& media_packet : media_packet_list) {
+ if (media_loss_mask[media_packet_idx] == 1) {
+ // Should have recovered this packet.
+ auto recovered_packet_list_it = recovered_packet_list.cbegin();
+
+ ASSERT_FALSE(recovered_packet_list_it ==
+ recovered_packet_list.end())
+ << "Insufficient number of recovered packets.";
+ ForwardErrorCorrection::RecoveredPacket* recovered_packet =
+ recovered_packet_list_it->get();
+
+ ASSERT_EQ(recovered_packet->pkt->data.size(),
+ media_packet->data.size())
+ << "Recovered packet length not identical to original "
+ "media packet";
+ ASSERT_EQ(0, memcmp(recovered_packet->pkt->data.cdata(),
+ media_packet->data.cdata(),
+ media_packet->data.size()))
+ << "Recovered packet payload not identical to original "
+ "media packet";
+ recovered_packet_list.pop_front();
+ }
+ ++media_packet_idx;
+ }
+ fec->ResetState(&recovered_packet_list);
+ ASSERT_TRUE(recovered_packet_list.empty())
+ << "Excessive number of recovered packets.\t size is: "
+ << recovered_packet_list.size();
+ // -- Teardown --
+ media_packet_list.clear();
+
+ // Clear FEC packet list, so we don't pass in a non-empty
+ // list in the next call to DecodeFec().
+ fec_packet_list.clear();
+
+ // Delete received packets we didn't pass to DecodeFec(), due to
+ // early frame completion.
+ received_packet_list.clear();
+
+ while (!fec_mask_list.empty()) {
+ fec_mask_list.pop_front();
+ }
+ timestamp += 90000 / 30;
+ } // loop over num_imp_packets
+ } // loop over FecPackets
+ } // loop over num_media_packets
+ } // loop over loss rates
+ } // loop over mask types
+
+ // Have DecodeFec clear the recovered packet list.
+ fec->ResetState(&recovered_packet_list);
+ ASSERT_TRUE(recovered_packet_list.empty())
+ << "Recovered packet list is not empty";
+}
+
+TEST(FecTest, UlpfecTest) {
+ RunTest(false);
+}
+
+TEST(FecTest, FlexfecTest) {
+ RunTest(true);
+}
+
+} // namespace test
+} // namespace webrtc
diff --git a/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_packet_masks_metrics.cc b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_packet_masks_metrics.cc
new file mode 100644
index 0000000000..25ceee585a
--- /dev/null
+++ b/third_party/libwebrtc/modules/rtp_rtcp/test/testFec/test_packet_masks_metrics.cc
@@ -0,0 +1,1060 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+/*
+ * The purpose of this test is to compute metrics to characterize the properties
+ * and efficiency of the packets masks used in the generic XOR FEC code.
+ *
+ * The metrics measure the efficiency (recovery potential or residual loss) of
+ * the FEC code, under various statistical loss models for the packet/symbol
+ * loss events. Various constraints on the behavior of these metrics are
+ * verified, and compared to the reference RS (Reed-Solomon) code. This serves
+ * in some way as a basic check/benchmark for the packet masks.
+ *
+ * By an FEC code, we mean an erasure packet/symbol code, characterized by:
+ * (1) The code size parameters (k,m), where k = number of source/media packets,
+ * and m = number of FEC packets,
+ * (2) The code type: XOR or RS.
+ * In the case of XOR, the residual loss is determined via the set of packet
+ * masks (generator matrix). In the case of RS, the residual loss is determined
+ * directly from the MDS (maximum distance separable) property of RS.
+ *
+ * Currently two classes of packets masks are available (random type and bursty
+ * type), so three codes are considered below: RS, XOR-random, and XOR-bursty.
+ * The bursty class is defined up to k=12, so (k=12,m=12) is largest code size
+ * considered in this test.
+ *
+ * The XOR codes are defined via the RFC 5109 and correspond to the class of
+ * LDGM (low density generator matrix) codes, which is a subset of the LDPC
+ * (low density parity check) codes. Future implementation will consider
+ * extending our XOR codes to include LDPC codes, which explicitly include
+ * protection of FEC packets.
+ *
+ * The type of packet/symbol loss models considered in this test are:
+ * (1) Random loss: Bernoulli process, characterized by the average loss rate.
+ * (2) Bursty loss: Markov chain (Gilbert-Elliot model), characterized by two
+ * parameters: average loss rate and average burst length.
+ */
+
+#include <cmath>
+#include <memory>
+
+#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
+#include "modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h"
+#include "test/gtest.h"
+#include "test/testsupport/file_utils.h"
+
+namespace webrtc {
+
+// Maximum number of media packets allows for XOR (RFC 5109) code.
+enum { kMaxNumberMediaPackets = 48 };
+
+// Maximum number of media packets allowed for each mask type.
+const uint16_t kMaxMediaPackets[] = {kMaxNumberMediaPackets, 12};
+
+// Maximum gap size for characterizing the consecutiveness of the loss.
+const int kMaxGapSize = 2 * kMaxMediaPacketsTest;
+
+// Number of gap levels written to file/output.
+const int kGapSizeOutput = 5;
+
+// Maximum number of states for characterizing the residual loss distribution.
+const int kNumStatesDistribution = 2 * kMaxMediaPacketsTest * kMaxGapSize + 1;
+
+// The code type.
+enum CodeType {
+ xor_random_code, // XOR with random mask type.
+ xor_bursty_code, // XOR with bursty mask type.
+ rs_code // Reed_solomon.
+};
+
+// The code size parameters.
+struct CodeSizeParams {
+ int num_media_packets;
+ int num_fec_packets;
+ // Protection level: num_fec_packets / (num_media_packets + num_fec_packets).
+ float protection_level;
+ // Number of loss configurations, for a given loss number and gap number.
+ // The gap number refers to the maximum gap/hole of a loss configuration
+ // (used to measure the "consecutiveness" of the loss).
+ int configuration_density[kNumStatesDistribution];
+};
+
+// The type of loss models.
+enum LossModelType { kRandomLossModel, kBurstyLossModel };
+
+struct LossModel {
+ LossModelType loss_type;
+ float average_loss_rate;
+ float average_burst_length;
+};
+
+// Average loss rates.
+const float kAverageLossRate[] = {0.025f, 0.05f, 0.1f, 0.25f};
+
+// Average burst lengths. The case of |kAverageBurstLength = 1.0| refers to
+// the random model. Note that for the random (Bernoulli) model, the average
+// burst length is determined by the average loss rate, i.e.,
+// AverageBurstLength = 1 / (1 - AverageLossRate) for random model.
+const float kAverageBurstLength[] = {1.0f, 2.0f, 4.0f};
+
+// Total number of loss models: For each burst length case, there are
+// a number of models corresponding to the loss rates.
+const int kNumLossModels =
+ (sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength)) *
+ (sizeof(kAverageLossRate) / sizeof(*kAverageLossRate));
+
+// Thresholds on the average loss rate of the packet loss model, below which
+// certain properties of the codes are expected.
+float loss_rate_upper_threshold = 0.20f;
+float loss_rate_lower_threshold = 0.025f;
+
+// Set of thresholds on the expected average recovery rate, for each code type.
+// These are global thresholds for now; in future version we may condition them
+// on the code length/size and protection level.
+const float kRecoveryRateXorRandom[3] = {0.94f, 0.50f, 0.19f};
+const float kRecoveryRateXorBursty[3] = {0.90f, 0.54f, 0.22f};
+
+// Metrics for a given FEC code; each code is defined by the code type
+// (RS, XOR-random/bursty), and the code size parameters (k,m), where
+// k = num_media_packets, m = num_fec_packets.
+struct MetricsFecCode {
+ // The average and variance of the residual loss, as a function of the
+ // packet/symbol loss model. The average/variance is computed by averaging
+ // over all loss configurations wrt the loss probability given by the
+ // underlying loss model.
+ double average_residual_loss[kNumLossModels];
+ double variance_residual_loss[kNumLossModels];
+ // The residual loss, as a function of the loss number and the gap number of
+ // the loss configurations. The gap number refers to the maximum gap/hole of
+ // a loss configuration (used to measure the "consecutiveness" of the loss).
+ double residual_loss_per_loss_gap[kNumStatesDistribution];
+ // The recovery rate as a function of the loss number.
+ double recovery_rate_per_loss[2 * kMaxMediaPacketsTest + 1];
+};
+
+MetricsFecCode kMetricsXorRandom[kNumberCodes];
+MetricsFecCode kMetricsXorBursty[kNumberCodes];
+MetricsFecCode kMetricsReedSolomon[kNumberCodes];
+
+class FecPacketMaskMetricsTest : public ::testing::Test {
+ protected:
+ FecPacketMaskMetricsTest() {}
+
+ int max_num_codes_;
+ LossModel loss_model_[kNumLossModels];
+ CodeSizeParams code_params_[kNumberCodes];
+
+ uint8_t fec_packet_masks_[kMaxNumberMediaPackets][kMaxNumberMediaPackets];
+ FILE* fp_mask_;
+
+ // Measure of the gap of the loss for configuration given by `state`.
+ // This is to measure degree of consecutiveness for the loss configuration.
+ // Useful if the packets are sent out in order of sequence numbers and there
+ // is little/no re-ordering during transmission.
+ int GapLoss(int tot_num_packets, uint8_t* state) {
+ int max_gap_loss = 0;
+ // Find the first loss.
+ int first_loss = 0;
+ for (int i = 0; i < tot_num_packets; i++) {
+ if (state[i] == 1) {
+ first_loss = i;
+ break;
+ }
+ }
+ int prev_loss = first_loss;
+ for (int i = first_loss + 1; i < tot_num_packets; i++) {
+ if (state[i] == 1) { // Lost state.
+ int gap_loss = (i - prev_loss) - 1;
+ if (gap_loss > max_gap_loss) {
+ max_gap_loss = gap_loss;
+ }
+ prev_loss = i;
+ }
+ }
+ return max_gap_loss;
+ }
+
+ // Returns the number of recovered media packets for the XOR code, given the
+ // packet mask `fec_packet_masks_`, for the loss state/configuration given by
+ // `state`.
+ int RecoveredMediaPackets(int num_media_packets,
+ int num_fec_packets,
+ uint8_t* state) {
+ std::unique_ptr<uint8_t[]> state_tmp(
+ new uint8_t[num_media_packets + num_fec_packets]);
+ memcpy(state_tmp.get(), state, num_media_packets + num_fec_packets);
+ int num_recovered_packets = 0;
+ bool loop_again = true;
+ while (loop_again) {
+ loop_again = false;
+ bool recovered_new_packet = false;
+ // Check if we can recover anything: loop over all possible FEC packets.
+ for (int i = 0; i < num_fec_packets; i++) {
+ if (state_tmp[i + num_media_packets] == 0) {
+ // We have this FEC packet.
+ int num_packets_in_mask = 0;
+ int num_received_packets_in_mask = 0;
+ for (int j = 0; j < num_media_packets; j++) {
+ if (fec_packet_masks_[i][j] == 1) {
+ num_packets_in_mask++;
+ if (state_tmp[j] == 0) {
+ num_received_packets_in_mask++;
+ }
+ }
+ }
+ if ((num_packets_in_mask - 1) == num_received_packets_in_mask) {
+ // We can recover the missing media packet for this FEC packet.
+ num_recovered_packets++;
+ recovered_new_packet = true;
+ int jsel = -1;
+ int check_num_recovered = 0;
+ // Update the state with newly recovered media packet.
+ for (int j = 0; j < num_media_packets; j++) {
+ if (fec_packet_masks_[i][j] == 1 && state_tmp[j] == 1) {
+ // This is the lost media packet we will recover.
+ jsel = j;
+ check_num_recovered++;
+ }
+ }
+ // Check that we can only recover 1 packet.
+ RTC_DCHECK_EQ(check_num_recovered, 1);
+ // Update the state with the newly recovered media packet.
+ state_tmp[jsel] = 0;
+ }
+ }
+ } // Go to the next FEC packet in the loop.
+ // If we have recovered at least one new packet in this FEC loop,
+ // go through loop again, otherwise we leave loop.
+ if (recovered_new_packet) {
+ loop_again = true;
+ }
+ }
+ return num_recovered_packets;
+ }
+
+ // Compute the probability of occurence of the loss state/configuration,
+ // given by `state`, for all the loss models considered in this test.
+ void ComputeProbabilityWeight(double* prob_weight,
+ uint8_t* state,
+ int tot_num_packets) {
+ // Loop over the loss models.
+ for (int k = 0; k < kNumLossModels; k++) {
+ double loss_rate = static_cast<double>(loss_model_[k].average_loss_rate);
+ double burst_length =
+ static_cast<double>(loss_model_[k].average_burst_length);
+ double result = 1.0;
+ if (loss_model_[k].loss_type == kRandomLossModel) {
+ for (int i = 0; i < tot_num_packets; i++) {
+ if (state[i] == 0) {
+ result *= (1.0 - loss_rate);
+ } else {
+ result *= loss_rate;
+ }
+ }
+ } else { // Gilbert-Elliot model for burst model.
+ RTC_DCHECK_EQ(loss_model_[k].loss_type, kBurstyLossModel);
+ // Transition probabilities: from previous to current state.
+ // Prob. of previous = lost --> current = received.
+ double prob10 = 1.0 / burst_length;
+ // Prob. of previous = lost --> currrent = lost.
+ double prob11 = 1.0 - prob10;
+ // Prob. of previous = received --> current = lost.
+ double prob01 = prob10 * (loss_rate / (1.0 - loss_rate));
+ // Prob. of previous = received --> current = received.
+ double prob00 = 1.0 - prob01;
+
+ // Use stationary probability for first state/packet.
+ if (state[0] == 0) { // Received
+ result = (1.0 - loss_rate);
+ } else { // Lost
+ result = loss_rate;
+ }
+
+ // Subsequent states: use transition probabilities.
+ for (int i = 1; i < tot_num_packets; i++) {
+ // Current state is received
+ if (state[i] == 0) {
+ if (state[i - 1] == 0) {
+ result *= prob00; // Previous received, current received.
+ } else {
+ result *= prob10; // Previous lost, current received.
+ }
+ } else { // Current state is lost
+ if (state[i - 1] == 0) {
+ result *= prob01; // Previous received, current lost.
+ } else {
+ result *= prob11; // Previous lost, current lost.
+ }
+ }
+ }
+ }
+ prob_weight[k] = result;
+ }
+ }
+
+ void CopyMetrics(MetricsFecCode* metrics_output,
+ MetricsFecCode metrics_input) {
+ memcpy(metrics_output->average_residual_loss,
+ metrics_input.average_residual_loss,
+ sizeof(double) * kNumLossModels);
+ memcpy(metrics_output->variance_residual_loss,
+ metrics_input.variance_residual_loss,
+ sizeof(double) * kNumLossModels);
+ memcpy(metrics_output->residual_loss_per_loss_gap,
+ metrics_input.residual_loss_per_loss_gap,
+ sizeof(double) * kNumStatesDistribution);
+ memcpy(metrics_output->recovery_rate_per_loss,
+ metrics_input.recovery_rate_per_loss,
+ sizeof(double) * 2 * kMaxMediaPacketsTest);
+ }
+
+ // Compute the residual loss per gap, by summing the
+ // `residual_loss_per_loss_gap` over all loss configurations up to loss number
+ // = `num_fec_packets`.
+ double ComputeResidualLossPerGap(MetricsFecCode metrics,
+ int gap_number,
+ int num_fec_packets,
+ int code_index) {
+ double residual_loss_gap = 0.0;
+ int tot_num_configs = 0;
+ for (int loss = 1; loss <= num_fec_packets; loss++) {
+ int index = gap_number * (2 * kMaxMediaPacketsTest) + loss;
+ residual_loss_gap += metrics.residual_loss_per_loss_gap[index];
+ tot_num_configs += code_params_[code_index].configuration_density[index];
+ }
+ // Normalize, to compare across code sizes.
+ if (tot_num_configs > 0) {
+ residual_loss_gap =
+ residual_loss_gap / static_cast<double>(tot_num_configs);
+ }
+ return residual_loss_gap;
+ }
+
+ // Compute the recovery rate per loss number, by summing the
+ // `residual_loss_per_loss_gap` over all gap configurations.
+ void ComputeRecoveryRatePerLoss(MetricsFecCode* metrics,
+ int num_media_packets,
+ int num_fec_packets,
+ int code_index) {
+ for (int loss = 1; loss <= num_media_packets + num_fec_packets; loss++) {
+ metrics->recovery_rate_per_loss[loss] = 0.0;
+ int tot_num_configs = 0;
+ double arl = 0.0;
+ for (int gap = 0; gap < kMaxGapSize; gap++) {
+ int index = gap * (2 * kMaxMediaPacketsTest) + loss;
+ arl += metrics->residual_loss_per_loss_gap[index];
+ tot_num_configs +=
+ code_params_[code_index].configuration_density[index];
+ }
+ // Normalize, to compare across code sizes.
+ if (tot_num_configs > 0) {
+ arl = arl / static_cast<double>(tot_num_configs);
+ }
+ // Recovery rate for a given loss `loss` is 1 minus the scaled `arl`,
+ // where the scale factor is relative to code size/parameters.
+ double scaled_loss =
+ static_cast<double>(loss * num_media_packets) /
+ static_cast<double>(num_media_packets + num_fec_packets);
+ metrics->recovery_rate_per_loss[loss] = 1.0 - arl / scaled_loss;
+ }
+ }
+
+ void SetMetricsZero(MetricsFecCode* metrics) {
+ memset(metrics->average_residual_loss, 0, sizeof(double) * kNumLossModels);
+ memset(metrics->variance_residual_loss, 0, sizeof(double) * kNumLossModels);
+ memset(metrics->residual_loss_per_loss_gap, 0,
+ sizeof(double) * kNumStatesDistribution);
+ memset(metrics->recovery_rate_per_loss, 0,
+ sizeof(double) * 2 * kMaxMediaPacketsTest + 1);
+ }
+
+ // Compute the metrics for an FEC code, given by the code type `code_type`
+ // (XOR-random/ bursty or RS), and by the code index `code_index`
+ // (which containes the code size parameters/protection length).
+ void ComputeMetricsForCode(CodeType code_type, int code_index) {
+ std::unique_ptr<double[]> prob_weight(new double[kNumLossModels]);
+ memset(prob_weight.get(), 0, sizeof(double) * kNumLossModels);
+ MetricsFecCode metrics_code;
+ SetMetricsZero(&metrics_code);
+
+ int num_media_packets = code_params_[code_index].num_media_packets;
+ int num_fec_packets = code_params_[code_index].num_fec_packets;
+ int tot_num_packets = num_media_packets + num_fec_packets;
+ std::unique_ptr<uint8_t[]> state(new uint8_t[tot_num_packets]);
+ memset(state.get(), 0, tot_num_packets);
+
+ int num_loss_configurations = 1 << tot_num_packets;
+ // Loop over all loss configurations for the symbol sequence of length
+ // `tot_num_packets`. In this version we process up to (k=12, m=12) codes,
+ // and get exact expressions for the residual loss.
+ // TODO(marpan): For larger codes, loop over some random sample of loss
+ // configurations, sampling driven by the underlying statistical loss model
+ // (importance sampling).
+
+ // The symbols/packets are arranged as a sequence of source/media packets
+ // followed by FEC packets. This is the sequence ordering used in the RTP.
+ // A configuration refers to a sequence of received/lost (0/1 bit) states
+ // for the string of packets/symbols. For example, for a (k=4,m=3) code
+ // (4 media packets, 3 FEC packets), with 2 losses (one media and one FEC),
+ // the loss configurations is:
+ // Media1 Media2 Media3 Media4 FEC1 FEC2 FEC3
+ // 0 0 1 0 0 1 0
+ for (int i = 1; i < num_loss_configurations; i++) {
+ // Counter for number of packets lost.
+ int num_packets_lost = 0;
+ // Counters for the number of media packets lost.
+ int num_media_packets_lost = 0;
+
+ // Map configuration number to a loss state.
+ for (int j = 0; j < tot_num_packets; j++) {
+ state[j] = 0; // Received state.
+ int bit_value = i >> (tot_num_packets - j - 1) & 1;
+ if (bit_value == 1) {
+ state[j] = 1; // Lost state.
+ num_packets_lost++;
+ if (j < num_media_packets) {
+ num_media_packets_lost++;
+ }
+ }
+ } // Done with loop over total number of packets.
+ RTC_DCHECK_LE(num_media_packets_lost, num_media_packets);
+ RTC_DCHECK_LE(num_packets_lost, tot_num_packets && num_packets_lost > 0);
+ double residual_loss = 0.0;
+ // Only need to compute residual loss (number of recovered packets) for
+ // configurations that have at least one media packet lost.
+ if (num_media_packets_lost >= 1) {
+ // Compute the number of recovered packets.
+ int num_recovered_packets = 0;
+ if (code_type == xor_random_code || code_type == xor_bursty_code) {
+ num_recovered_packets = RecoveredMediaPackets(
+ num_media_packets, num_fec_packets, state.get());
+ } else {
+ // For the RS code, we can either completely recover all the packets
+ // if the loss is less than or equal to the number of FEC packets,
+ // otherwise we can recover none of the missing packets. This is the
+ // all or nothing (MDS) property of the RS code.
+ if (num_packets_lost <= num_fec_packets) {
+ num_recovered_packets = num_media_packets_lost;
+ }
+ }
+ RTC_DCHECK_LE(num_recovered_packets, num_media_packets);
+ // Compute the residual loss. We only care about recovering media/source
+ // packets, so residual loss is based on lost/recovered media packets.
+ residual_loss =
+ static_cast<double>(num_media_packets_lost - num_recovered_packets);
+ // Compute the probability weights for this configuration.
+ ComputeProbabilityWeight(prob_weight.get(), state.get(),
+ tot_num_packets);
+ // Update the average and variance of the residual loss.
+ for (int k = 0; k < kNumLossModels; k++) {
+ metrics_code.average_residual_loss[k] +=
+ residual_loss * prob_weight[k];
+ metrics_code.variance_residual_loss[k] +=
+ residual_loss * residual_loss * prob_weight[k];
+ }
+ } // Done with processing for num_media_packets_lost >= 1.
+ // Update the distribution statistics.
+ // Compute the gap of the loss (the "consecutiveness" of the loss).
+ int gap_loss = GapLoss(tot_num_packets, state.get());
+ RTC_DCHECK_LT(gap_loss, kMaxGapSize);
+ int index = gap_loss * (2 * kMaxMediaPacketsTest) + num_packets_lost;
+ RTC_DCHECK_LT(index, kNumStatesDistribution);
+ metrics_code.residual_loss_per_loss_gap[index] += residual_loss;
+ if (code_type == xor_random_code) {
+ // The configuration density is only a function of the code length and
+ // only needs to computed for the first `code_type` passed here.
+ code_params_[code_index].configuration_density[index]++;
+ }
+ } // Done with loop over configurations.
+ // Normalize the average residual loss and compute/normalize the variance.
+ for (int k = 0; k < kNumLossModels; k++) {
+ // Normalize the average residual loss by the total number of packets
+ // `tot_num_packets` (i.e., the code length). For a code with no (zero)
+ // recovery, the average residual loss for that code would be reduced like
+ // ~`average_loss_rate` * `num_media_packets` / `tot_num_packets`. This is
+ // the expected reduction in the average residual loss just from adding
+ // FEC packets to the symbol sequence.
+ metrics_code.average_residual_loss[k] =
+ metrics_code.average_residual_loss[k] /
+ static_cast<double>(tot_num_packets);
+ metrics_code.variance_residual_loss[k] =
+ metrics_code.variance_residual_loss[k] /
+ static_cast<double>(num_media_packets * num_media_packets);
+ metrics_code.variance_residual_loss[k] =
+ metrics_code.variance_residual_loss[k] -
+ (metrics_code.average_residual_loss[k] *
+ metrics_code.average_residual_loss[k]);
+ RTC_DCHECK_GE(metrics_code.variance_residual_loss[k], 0.0);
+ RTC_DCHECK_GT(metrics_code.average_residual_loss[k], 0.0);
+ metrics_code.variance_residual_loss[k] =
+ std::sqrt(metrics_code.variance_residual_loss[k]) /
+ metrics_code.average_residual_loss[k];
+ }
+
+ // Compute marginal distribution as a function of loss parameter.
+ ComputeRecoveryRatePerLoss(&metrics_code, num_media_packets,
+ num_fec_packets, code_index);
+ if (code_type == rs_code) {
+ CopyMetrics(&kMetricsReedSolomon[code_index], metrics_code);
+ } else if (code_type == xor_random_code) {
+ CopyMetrics(&kMetricsXorRandom[code_index], metrics_code);
+ } else if (code_type == xor_bursty_code) {
+ CopyMetrics(&kMetricsXorBursty[code_index], metrics_code);
+ } else {
+ RTC_DCHECK_NOTREACHED();
+ }
+ }
+
+ void WriteOutMetricsAllFecCodes() {
+ std::string filename = test::OutputPath() + "data_metrics_all_codes";
+ FILE* fp = fopen(filename.c_str(), "wb");
+ // Loop through codes up to `kMaxMediaPacketsTest`.
+ int code_index = 0;
+ for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
+ num_media_packets++) {
+ for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
+ num_fec_packets++) {
+ fprintf(fp, "FOR CODE: (%d, %d) \n", num_media_packets,
+ num_fec_packets);
+ for (int k = 0; k < kNumLossModels; k++) {
+ float loss_rate = loss_model_[k].average_loss_rate;
+ float burst_length = loss_model_[k].average_burst_length;
+ fprintf(
+ fp,
+ "Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f"
+ " **** %.4f %.4f %.4f \n",
+ loss_rate, burst_length,
+ 100 * kMetricsReedSolomon[code_index].average_residual_loss[k],
+ 100 * kMetricsXorRandom[code_index].average_residual_loss[k],
+ 100 * kMetricsXorBursty[code_index].average_residual_loss[k],
+ kMetricsReedSolomon[code_index].variance_residual_loss[k],
+ kMetricsXorRandom[code_index].variance_residual_loss[k],
+ kMetricsXorBursty[code_index].variance_residual_loss[k]);
+ }
+ for (int gap = 0; gap < kGapSizeOutput; gap++) {
+ double rs_residual_loss =
+ ComputeResidualLossPerGap(kMetricsReedSolomon[code_index], gap,
+ num_fec_packets, code_index);
+ double xor_random_residual_loss = ComputeResidualLossPerGap(
+ kMetricsXorRandom[code_index], gap, num_fec_packets, code_index);
+ double xor_bursty_residual_loss = ComputeResidualLossPerGap(
+ kMetricsXorBursty[code_index], gap, num_fec_packets, code_index);
+ fprintf(fp,
+ "Residual loss as a function of gap "
+ "%d: %.4f %.4f %.4f \n",
+ gap, rs_residual_loss, xor_random_residual_loss,
+ xor_bursty_residual_loss);
+ }
+ fprintf(fp, "Recovery rate as a function of loss number \n");
+ for (int loss = 1; loss <= num_media_packets + num_fec_packets;
+ loss++) {
+ fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n", loss,
+ kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss],
+ kMetricsXorRandom[code_index].recovery_rate_per_loss[loss],
+ kMetricsXorBursty[code_index].recovery_rate_per_loss[loss]);
+ }
+ fprintf(fp, "******************\n");
+ fprintf(fp, "\n");
+ code_index++;
+ }
+ }
+ fclose(fp);
+ }
+
+ void SetLossModels() {
+ int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
+ int num_burst_lengths =
+ sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
+ int num_loss_models = 0;
+ for (int k = 0; k < num_burst_lengths; k++) {
+ for (int k2 = 0; k2 < num_loss_rates; k2++) {
+ loss_model_[num_loss_models].average_loss_rate = kAverageLossRate[k2];
+ loss_model_[num_loss_models].average_burst_length =
+ kAverageBurstLength[k];
+ // First set of loss models are of random type.
+ if (k == 0) {
+ loss_model_[num_loss_models].loss_type = kRandomLossModel;
+ } else {
+ loss_model_[num_loss_models].loss_type = kBurstyLossModel;
+ }
+ num_loss_models++;
+ }
+ }
+ RTC_DCHECK_EQ(num_loss_models, kNumLossModels);
+ }
+
+ void SetCodeParams() {
+ int code_index = 0;
+ for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
+ num_media_packets++) {
+ for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
+ num_fec_packets++) {
+ code_params_[code_index].num_media_packets = num_media_packets;
+ code_params_[code_index].num_fec_packets = num_fec_packets;
+ code_params_[code_index].protection_level =
+ static_cast<float>(num_fec_packets) /
+ static_cast<float>(num_media_packets + num_fec_packets);
+ for (int k = 0; k < kNumStatesDistribution; k++) {
+ code_params_[code_index].configuration_density[k] = 0;
+ }
+ code_index++;
+ }
+ }
+ max_num_codes_ = code_index;
+ }
+
+ // Make some basic checks on the packet masks. Return -1 if any of these
+ // checks fail.
+ int RejectInvalidMasks(int num_media_packets, int num_fec_packets) {
+ // Make sure every FEC packet protects something.
+ for (int i = 0; i < num_fec_packets; i++) {
+ int row_degree = 0;
+ for (int j = 0; j < num_media_packets; j++) {
+ if (fec_packet_masks_[i][j] == 1) {
+ row_degree++;
+ }
+ }
+ if (row_degree == 0) {
+ printf(
+ "Invalid mask: FEC packet has empty mask (does not protect "
+ "anything) %d %d %d \n",
+ i, num_media_packets, num_fec_packets);
+ return -1;
+ }
+ }
+ // Mask sure every media packet has some protection.
+ for (int j = 0; j < num_media_packets; j++) {
+ int column_degree = 0;
+ for (int i = 0; i < num_fec_packets; i++) {
+ if (fec_packet_masks_[i][j] == 1) {
+ column_degree++;
+ }
+ }
+ if (column_degree == 0) {
+ printf(
+ "Invalid mask: Media packet has no protection at all %d %d %d "
+ "\n",
+ j, num_media_packets, num_fec_packets);
+ return -1;
+ }
+ }
+ // Make sure we do not have two identical FEC packets.
+ for (int i = 0; i < num_fec_packets; i++) {
+ for (int i2 = i + 1; i2 < num_fec_packets; i2++) {
+ int overlap = 0;
+ for (int j = 0; j < num_media_packets; j++) {
+ if (fec_packet_masks_[i][j] == fec_packet_masks_[i2][j]) {
+ overlap++;
+ }
+ }
+ if (overlap == num_media_packets) {
+ printf("Invalid mask: Two FEC packets are identical %d %d %d %d \n",
+ i, i2, num_media_packets, num_fec_packets);
+ return -1;
+ }
+ }
+ }
+ // Avoid codes that have two media packets with full protection (all 1s in
+ // their corresponding columns). This would mean that if we lose those
+ // two packets, we can never recover them even if we receive all the other
+ // packets. Exclude the special cases of 1 or 2 FEC packets.
+ if (num_fec_packets > 2) {
+ for (int j = 0; j < num_media_packets; j++) {
+ for (int j2 = j + 1; j2 < num_media_packets; j2++) {
+ int degree = 0;
+ for (int i = 0; i < num_fec_packets; i++) {
+ if (fec_packet_masks_[i][j] == fec_packet_masks_[i][j2] &&
+ fec_packet_masks_[i][j] == 1) {
+ degree++;
+ }
+ }
+ if (degree == num_fec_packets) {
+ printf(
+ "Invalid mask: Two media packets are have full degree "
+ "%d %d %d %d \n",
+ j, j2, num_media_packets, num_fec_packets);
+ return -1;
+ }
+ }
+ }
+ }
+ return 0;
+ }
+
+ void GetPacketMaskConvertToBitMask(uint8_t* packet_mask,
+ int num_media_packets,
+ int num_fec_packets,
+ int mask_bytes_fec_packet,
+ CodeType code_type) {
+ for (int i = 0; i < num_fec_packets; i++) {
+ for (int j = 0; j < num_media_packets; j++) {
+ const uint8_t byte_mask =
+ packet_mask[i * mask_bytes_fec_packet + j / 8];
+ const int bit_position = (7 - j % 8);
+ fec_packet_masks_[i][j] =
+ (byte_mask & (1 << bit_position)) >> bit_position;
+ fprintf(fp_mask_, "%d ", fec_packet_masks_[i][j]);
+ }
+ fprintf(fp_mask_, "\n");
+ }
+ fprintf(fp_mask_, "\n");
+ }
+
+ int ProcessXORPacketMasks(CodeType code_type, FecMaskType fec_mask_type) {
+ int code_index = 0;
+ // Maximum number of media packets allowed for the mask type.
+ const int packet_mask_max = kMaxMediaPackets[fec_mask_type];
+ std::unique_ptr<uint8_t[]> packet_mask(
+ new uint8_t[packet_mask_max * kUlpfecMaxPacketMaskSize]);
+ // Loop through codes up to `kMaxMediaPacketsTest`.
+ for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
+ ++num_media_packets) {
+ const int mask_bytes_fec_packet =
+ static_cast<int>(internal::PacketMaskSize(num_media_packets));
+ internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
+ for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
+ num_fec_packets++) {
+ memset(packet_mask.get(), 0, num_media_packets * mask_bytes_fec_packet);
+ rtc::ArrayView<const uint8_t> mask =
+ mask_table.LookUp(num_media_packets, num_fec_packets);
+ memcpy(packet_mask.get(), &mask[0], mask.size());
+ // Convert to bit mask.
+ GetPacketMaskConvertToBitMask(packet_mask.get(), num_media_packets,
+ num_fec_packets, mask_bytes_fec_packet,
+ code_type);
+ if (RejectInvalidMasks(num_media_packets, num_fec_packets) < 0) {
+ return -1;
+ }
+ // Compute the metrics for this code/mask.
+ ComputeMetricsForCode(code_type, code_index);
+ code_index++;
+ }
+ }
+ RTC_DCHECK_EQ(code_index, kNumberCodes);
+ return 0;
+ }
+
+ void ProcessRS(CodeType code_type) {
+ int code_index = 0;
+ for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
+ num_media_packets++) {
+ for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
+ num_fec_packets++) {
+ // Compute the metrics for this code type.
+ ComputeMetricsForCode(code_type, code_index);
+ code_index++;
+ }
+ }
+ }
+
+ // Compute metrics for all code types and sizes.
+ void ComputeMetricsAllCodes() {
+ SetLossModels();
+ SetCodeParams();
+ // Get metrics for XOR code with packet masks of random type.
+ std::string filename = test::OutputPath() + "data_packet_masks";
+ fp_mask_ = fopen(filename.c_str(), "wb");
+ fprintf(fp_mask_, "MASK OF TYPE RANDOM: \n");
+ EXPECT_EQ(ProcessXORPacketMasks(xor_random_code, kFecMaskRandom), 0);
+ // Get metrics for XOR code with packet masks of bursty type.
+ fprintf(fp_mask_, "MASK OF TYPE BURSTY: \n");
+ EXPECT_EQ(ProcessXORPacketMasks(xor_bursty_code, kFecMaskBursty), 0);
+ fclose(fp_mask_);
+ // Get metrics for Reed-Solomon code.
+ ProcessRS(rs_code);
+ }
+};
+
+// Verify that the average residual loss, averaged over loss models
+// appropriate to each mask type, is below some maximum acceptable level. The
+// acceptable levels are read in from a file, and correspond to a current set
+// of packet masks. The levels for each code may be updated over time.
+TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) {
+ SetLossModels();
+ SetCodeParams();
+ ComputeMetricsAllCodes();
+ WriteOutMetricsAllFecCodes();
+ int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
+ int num_burst_lengths =
+ sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ double sum_residual_loss_random_mask_random_loss = 0.0;
+ double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
+ // Compute the sum residual loss across the models, for each mask type.
+ for (int k = 0; k < kNumLossModels; k++) {
+ if (loss_model_[k].loss_type == kRandomLossModel) {
+ sum_residual_loss_random_mask_random_loss +=
+ kMetricsXorRandom[code_index].average_residual_loss[k];
+ } else if (loss_model_[k].loss_type == kBurstyLossModel) {
+ sum_residual_loss_bursty_mask_bursty_loss +=
+ kMetricsXorBursty[code_index].average_residual_loss[k];
+ }
+ }
+ float average_residual_loss_random_mask_random_loss =
+ sum_residual_loss_random_mask_random_loss / num_loss_rates;
+ float average_residual_loss_bursty_mask_bursty_loss =
+ sum_residual_loss_bursty_mask_bursty_loss /
+ (num_loss_rates * (num_burst_lengths - 1));
+ const float ref_random_mask = kMaxResidualLossRandomMask[code_index];
+ const float ref_bursty_mask = kMaxResidualLossBurstyMask[code_index];
+ EXPECT_LE(average_residual_loss_random_mask_random_loss, ref_random_mask);
+ EXPECT_LE(average_residual_loss_bursty_mask_bursty_loss, ref_bursty_mask);
+ }
+}
+
+// Verify the behavior of the XOR codes vs the RS codes.
+// For random loss model with average loss rates <= the code protection level,
+// the RS code (optimal MDS code) is more efficient than XOR codes.
+// However, for larger loss rates (above protection level) and/or bursty
+// loss models, the RS is not always more efficient than XOR (though in most
+// cases it still is).
+TEST_F(FecPacketMaskMetricsTest, FecXorVsRS) {
+ SetLossModels();
+ SetCodeParams();
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ for (int k = 0; k < kNumLossModels; k++) {
+ float loss_rate = loss_model_[k].average_loss_rate;
+ float protection_level = code_params_[code_index].protection_level;
+ // Under these conditions we expect XOR to not be better than RS.
+ if (loss_model_[k].loss_type == kRandomLossModel &&
+ loss_rate <= protection_level) {
+ EXPECT_GE(kMetricsXorRandom[code_index].average_residual_loss[k],
+ kMetricsReedSolomon[code_index].average_residual_loss[k]);
+ EXPECT_GE(kMetricsXorBursty[code_index].average_residual_loss[k],
+ kMetricsReedSolomon[code_index].average_residual_loss[k]);
+ }
+ // TODO(marpan): There are some cases (for high loss rates and/or
+ // burst loss models) where XOR is better than RS. Is there some pattern
+ // we can identify and enforce as a constraint?
+ }
+ }
+}
+
+// Verify the trend (change) in the average residual loss, as a function of
+// loss rate, of the XOR code relative to the RS code.
+// The difference between XOR and RS should not get worse as we increase
+// the average loss rate.
+TEST_F(FecPacketMaskMetricsTest, FecTrendXorVsRsLossRate) {
+ SetLossModels();
+ SetCodeParams();
+ // TODO(marpan): Examine this further to see if the condition can be strictly
+ // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
+ double scale = 0.90;
+ int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
+ int num_burst_lengths =
+ sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ for (int i = 0; i < num_burst_lengths; i++) {
+ for (int j = 0; j < num_loss_rates - 1; j++) {
+ int k = num_loss_rates * i + j;
+ // For XOR random.
+ if (kMetricsXorRandom[code_index].average_residual_loss[k] >
+ kMetricsReedSolomon[code_index].average_residual_loss[k]) {
+ double diff_rs_xor_random_loss1 =
+ (kMetricsXorRandom[code_index].average_residual_loss[k] -
+ kMetricsReedSolomon[code_index].average_residual_loss[k]) /
+ kMetricsXorRandom[code_index].average_residual_loss[k];
+ double diff_rs_xor_random_loss2 =
+ (kMetricsXorRandom[code_index].average_residual_loss[k + 1] -
+ kMetricsReedSolomon[code_index].average_residual_loss[k + 1]) /
+ kMetricsXorRandom[code_index].average_residual_loss[k + 1];
+ EXPECT_GE(diff_rs_xor_random_loss1, scale * diff_rs_xor_random_loss2);
+ }
+ // TODO(marpan): Investigate the cases for the bursty mask where
+ // this trend is not strictly satisfied.
+ }
+ }
+ }
+}
+
+// Verify the average residual loss behavior via the protection level and
+// the code length. The average residual loss for a given (k1,m1) code
+// should generally be higher than that of another code (k2,m2), which has
+// either of the two conditions satisfied:
+// 1) higher protection & code length at least as large: (k2+m2) >= (k1+m1),
+// 2) equal protection and larger code length: (k2+m2) > (k1+m1).
+// Currently does not hold for some cases of the XOR code with random mask.
+TEST_F(FecPacketMaskMetricsTest, FecBehaviorViaProtectionLevelAndLength) {
+ SetLossModels();
+ SetCodeParams();
+ for (int code_index1 = 0; code_index1 < max_num_codes_; code_index1++) {
+ float protection_level1 = code_params_[code_index1].protection_level;
+ int length1 = code_params_[code_index1].num_media_packets +
+ code_params_[code_index1].num_fec_packets;
+ for (int code_index2 = 0; code_index2 < max_num_codes_; code_index2++) {
+ float protection_level2 = code_params_[code_index2].protection_level;
+ int length2 = code_params_[code_index2].num_media_packets +
+ code_params_[code_index2].num_fec_packets;
+ // Codes with higher protection are more efficient, conditioned on the
+ // length of the code (higher protection but shorter length codes are
+ // generally not more efficient). For two codes with equal protection,
+ // the longer code is generally more efficient. For high loss rate
+ // models, this condition may be violated for some codes with equal or
+ // very close protection levels. High loss rate case is excluded below.
+ if ((protection_level2 > protection_level1 && length2 >= length1) ||
+ (protection_level2 == protection_level1 && length2 > length1)) {
+ for (int k = 0; k < kNumLossModels; k++) {
+ float loss_rate = loss_model_[k].average_loss_rate;
+ if (loss_rate < loss_rate_upper_threshold) {
+ EXPECT_LT(
+ kMetricsReedSolomon[code_index2].average_residual_loss[k],
+ kMetricsReedSolomon[code_index1].average_residual_loss[k]);
+ // TODO(marpan): There are some corner cases where this is not
+ // satisfied with the current packet masks. Look into updating
+ // these cases to see if this behavior should/can be satisfied,
+ // with overall lower residual loss for those XOR codes.
+ // EXPECT_LT(
+ // kMetricsXorBursty[code_index2].average_residual_loss[k],
+ // kMetricsXorBursty[code_index1].average_residual_loss[k]);
+ // EXPECT_LT(
+ // kMetricsXorRandom[code_index2].average_residual_loss[k],
+ // kMetricsXorRandom[code_index1].average_residual_loss[k]);
+ }
+ }
+ }
+ }
+ }
+}
+
+// Verify the beheavior of the variance of the XOR codes.
+// The partial recovery of the XOR versus the all or nothing behavior of the RS
+// code means that the variance of the residual loss for XOR should generally
+// not be worse than RS.
+TEST_F(FecPacketMaskMetricsTest, FecVarianceBehaviorXorVsRs) {
+ SetLossModels();
+ SetCodeParams();
+ // The condition is not strictly satisfied with the current masks,
+ // i.e., for some codes, the variance of XOR may be slightly higher than RS.
+ // TODO(marpan): Examine this further to see if the condition can be strictly
+ // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
+ double scale = 0.95;
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ for (int k = 0; k < kNumLossModels; k++) {
+ EXPECT_LE(scale * kMetricsXorRandom[code_index].variance_residual_loss[k],
+ kMetricsReedSolomon[code_index].variance_residual_loss[k]);
+ EXPECT_LE(scale * kMetricsXorBursty[code_index].variance_residual_loss[k],
+ kMetricsReedSolomon[code_index].variance_residual_loss[k]);
+ }
+ }
+}
+
+// For the bursty mask type, the residual loss must be strictly zero for all
+// consecutive losses (i.e, gap = 0) with number of losses <= num_fec_packets.
+// This is a design property of the bursty mask type.
+TEST_F(FecPacketMaskMetricsTest, FecXorBurstyPerfectRecoveryConsecutiveLoss) {
+ SetLossModels();
+ SetCodeParams();
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ int num_fec_packets = code_params_[code_index].num_fec_packets;
+ for (int loss = 1; loss <= num_fec_packets; loss++) {
+ int index = loss; // `gap` is zero.
+ EXPECT_EQ(kMetricsXorBursty[code_index].residual_loss_per_loss_gap[index],
+ 0.0);
+ }
+ }
+}
+
+// The XOR codes with random mask type are generally better than the ones with
+// bursty mask type, for random loss models at low loss rates.
+// The XOR codes with bursty mask types are generally better than the one with
+// random mask type, for bursty loss models and/or high loss rates.
+// TODO(marpan): Enable this test when some of the packet masks are updated.
+// Some isolated cases of the codes don't pass this currently.
+/*
+TEST_F(FecPacketMaskMetricsTest, FecXorRandomVsBursty) {
+ SetLossModels();
+ SetCodeParams();
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ double sum_residual_loss_random_mask_random_loss = 0.0;
+ double sum_residual_loss_bursty_mask_random_loss = 0.0;
+ double sum_residual_loss_random_mask_bursty_loss = 0.0;
+ double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
+ // Compute the sum residual loss across the models, for each mask type.
+ for (int k = 0; k < kNumLossModels; k++) {
+ float loss_rate = loss_model_[k].average_loss_rate;
+ if (loss_model_[k].loss_type == kRandomLossModel &&
+ loss_rate < loss_rate_upper_threshold) {
+ sum_residual_loss_random_mask_random_loss +=
+ kMetricsXorRandom[code_index].average_residual_loss[k];
+ sum_residual_loss_bursty_mask_random_loss +=
+ kMetricsXorBursty[code_index].average_residual_loss[k];
+ } else if (loss_model_[k].loss_type == kBurstyLossModel &&
+ loss_rate > loss_rate_lower_threshold) {
+ sum_residual_loss_random_mask_bursty_loss +=
+ kMetricsXorRandom[code_index].average_residual_loss[k];
+ sum_residual_loss_bursty_mask_bursty_loss +=
+ kMetricsXorBursty[code_index].average_residual_loss[k];
+ }
+ }
+ EXPECT_LE(sum_residual_loss_random_mask_random_loss,
+ sum_residual_loss_bursty_mask_random_loss);
+ EXPECT_LE(sum_residual_loss_bursty_mask_bursty_loss,
+ sum_residual_loss_random_mask_bursty_loss);
+ }
+}
+*/
+
+// Verify that the average recovery rate for each code is equal or above some
+// threshold, for certain loss number conditions.
+TEST_F(FecPacketMaskMetricsTest, FecRecoveryRateUnderLossConditions) {
+ SetLossModels();
+ SetCodeParams();
+ for (int code_index = 0; code_index < max_num_codes_; code_index++) {
+ int num_media_packets = code_params_[code_index].num_media_packets;
+ int num_fec_packets = code_params_[code_index].num_fec_packets;
+ // Perfect recovery (`recovery_rate_per_loss` == 1) is expected for
+ // `loss_number` = 1, for all codes.
+ int loss_number = 1;
+ EXPECT_EQ(
+ kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
+ 1.0);
+ EXPECT_EQ(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
+ 1.0);
+ EXPECT_EQ(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
+ 1.0);
+ // For `loss_number` = `num_fec_packets` / 2, we expect the following:
+ // Perfect recovery for RS, and recovery for XOR above the threshold.
+ loss_number = num_fec_packets / 2 > 0 ? num_fec_packets / 2 : 1;
+ EXPECT_EQ(
+ kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
+ 1.0);
+ EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorRandom[0]);
+ EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorBursty[0]);
+ // For `loss_number` = `num_fec_packets`, we expect the following:
+ // Perfect recovery for RS, and recovery for XOR above the threshold.
+ loss_number = num_fec_packets;
+ EXPECT_EQ(
+ kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
+ 1.0);
+ EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorRandom[1]);
+ EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorBursty[1]);
+ // For `loss_number` = `num_fec_packets` + 1, we expect the following:
+ // Zero recovery for RS, but non-zero recovery for XOR.
+ if (num_fec_packets > 1 && num_media_packets > 2) {
+ loss_number = num_fec_packets + 1;
+ EXPECT_EQ(
+ kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
+ 0.0);
+ EXPECT_GE(
+ kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorRandom[2]);
+ EXPECT_GE(
+ kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
+ kRecoveryRateXorBursty[2]);
+ }
+ }
+}
+
+} // namespace webrtc