summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/units/unit_base.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/rtc_base/units/unit_base.h
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/units/unit_base.h')
-rw-r--r--third_party/libwebrtc/rtc_base/units/unit_base.h312
1 files changed, 312 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/units/unit_base.h b/third_party/libwebrtc/rtc_base/units/unit_base.h
new file mode 100644
index 0000000000..e8f8ec1956
--- /dev/null
+++ b/third_party/libwebrtc/rtc_base/units/unit_base.h
@@ -0,0 +1,312 @@
+/*
+ * Copyright 2018 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#ifndef RTC_BASE_UNITS_UNIT_BASE_H_
+#define RTC_BASE_UNITS_UNIT_BASE_H_
+
+#include <stdint.h>
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+#include <type_traits>
+
+#include "rtc_base/checks.h"
+#include "rtc_base/numerics/divide_round.h"
+#include "rtc_base/numerics/safe_conversions.h"
+
+namespace webrtc {
+namespace rtc_units_impl {
+
+// UnitBase is a base class for implementing custom value types with a specific
+// unit. It provides type safety and commonly useful operations. The underlying
+// storage is always an int64_t, it's up to the unit implementation to choose
+// what scale it represents.
+//
+// It's used like:
+// class MyUnit: public UnitBase<MyUnit> {...};
+//
+// Unit_T is the subclass representing the specific unit.
+template <class Unit_T>
+class UnitBase {
+ public:
+ UnitBase() = delete;
+ static constexpr Unit_T Zero() { return Unit_T(0); }
+ static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
+ static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }
+
+ constexpr bool IsZero() const { return value_ == 0; }
+ constexpr bool IsFinite() const { return !IsInfinite(); }
+ constexpr bool IsInfinite() const {
+ return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
+ }
+ constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
+ constexpr bool IsMinusInfinity() const {
+ return value_ == MinusInfinityVal();
+ }
+
+ constexpr bool operator==(const UnitBase<Unit_T>& other) const {
+ return value_ == other.value_;
+ }
+ constexpr bool operator!=(const UnitBase<Unit_T>& other) const {
+ return value_ != other.value_;
+ }
+ constexpr bool operator<=(const UnitBase<Unit_T>& other) const {
+ return value_ <= other.value_;
+ }
+ constexpr bool operator>=(const UnitBase<Unit_T>& other) const {
+ return value_ >= other.value_;
+ }
+ constexpr bool operator>(const UnitBase<Unit_T>& other) const {
+ return value_ > other.value_;
+ }
+ constexpr bool operator<(const UnitBase<Unit_T>& other) const {
+ return value_ < other.value_;
+ }
+ constexpr Unit_T RoundTo(const Unit_T& resolution) const {
+ RTC_DCHECK(IsFinite());
+ RTC_DCHECK(resolution.IsFinite());
+ RTC_DCHECK_GT(resolution.value_, 0);
+ return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
+ resolution.value_;
+ }
+ constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
+ RTC_DCHECK(IsFinite());
+ RTC_DCHECK(resolution.IsFinite());
+ RTC_DCHECK_GT(resolution.value_, 0);
+ return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
+ resolution.value_;
+ }
+ constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
+ RTC_DCHECK(IsFinite());
+ RTC_DCHECK(resolution.IsFinite());
+ RTC_DCHECK_GT(resolution.value_, 0);
+ return Unit_T(value_ / resolution.value_) * resolution.value_;
+ }
+
+ protected:
+ template <
+ typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+ static constexpr Unit_T FromValue(T value) {
+ if (Unit_T::one_sided)
+ RTC_DCHECK_GE(value, 0);
+ RTC_DCHECK_GT(value, MinusInfinityVal());
+ RTC_DCHECK_LT(value, PlusInfinityVal());
+ return Unit_T(rtc::dchecked_cast<int64_t>(value));
+ }
+ template <typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* =
+ nullptr>
+ static constexpr Unit_T FromValue(T value) {
+ if (value == std::numeric_limits<T>::infinity()) {
+ return PlusInfinity();
+ } else if (value == -std::numeric_limits<T>::infinity()) {
+ return MinusInfinity();
+ } else {
+ RTC_DCHECK(!std::isnan(value));
+ return FromValue(rtc::dchecked_cast<int64_t>(value));
+ }
+ }
+
+ template <
+ typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+ static constexpr Unit_T FromFraction(int64_t denominator, T value) {
+ if (Unit_T::one_sided)
+ RTC_DCHECK_GE(value, 0);
+ RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
+ RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
+ return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
+ }
+ template <typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* =
+ nullptr>
+ static constexpr Unit_T FromFraction(int64_t denominator, T value) {
+ return FromValue(value * denominator);
+ }
+
+ template <typename T = int64_t>
+ constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
+ ToValue() const {
+ RTC_DCHECK(IsFinite());
+ return rtc::dchecked_cast<T>(value_);
+ }
+ template <typename T>
+ constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
+ ToValue() const {
+ return IsPlusInfinity()
+ ? std::numeric_limits<T>::infinity()
+ : IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
+ : value_;
+ }
+ template <typename T>
+ constexpr T ToValueOr(T fallback_value) const {
+ return IsFinite() ? value_ : fallback_value;
+ }
+
+ template <int64_t Denominator, typename T = int64_t>
+ constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
+ ToFraction() const {
+ RTC_DCHECK(IsFinite());
+ return rtc::dchecked_cast<T>(DivideRoundToNearest(value_, Denominator));
+ }
+ template <int64_t Denominator, typename T>
+ constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
+ ToFraction() const {
+ return ToValue<T>() * (1 / static_cast<T>(Denominator));
+ }
+
+ template <int64_t Denominator>
+ constexpr int64_t ToFractionOr(int64_t fallback_value) const {
+ return IsFinite() ? DivideRoundToNearest(value_, Denominator)
+ : fallback_value;
+ }
+
+ template <int64_t Factor, typename T = int64_t>
+ constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
+ ToMultiple() const {
+ RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
+ RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
+ return rtc::dchecked_cast<T>(ToValue() * Factor);
+ }
+ template <int64_t Factor, typename T>
+ constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
+ ToMultiple() const {
+ return ToValue<T>() * Factor;
+ }
+
+ explicit constexpr UnitBase(int64_t value) : value_(value) {}
+
+ private:
+ template <class RelativeUnit_T>
+ friend class RelativeUnit;
+
+ static inline constexpr int64_t PlusInfinityVal() {
+ return std::numeric_limits<int64_t>::max();
+ }
+ static inline constexpr int64_t MinusInfinityVal() {
+ return std::numeric_limits<int64_t>::min();
+ }
+
+ constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
+ constexpr const Unit_T& AsSubClassRef() const {
+ return static_cast<const Unit_T&>(*this);
+ }
+
+ int64_t value_;
+};
+
+// Extends UnitBase to provide operations for relative units, that is, units
+// that have a meaningful relation between values such that a += b is a
+// sensible thing to do. For a,b <- same unit.
+template <class Unit_T>
+class RelativeUnit : public UnitBase<Unit_T> {
+ public:
+ constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
+ return std::max(min_value,
+ std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
+ }
+ constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
+ *this = Clamped(min_value, max_value);
+ }
+ constexpr Unit_T operator+(const Unit_T other) const {
+ if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
+ RTC_DCHECK(!this->IsMinusInfinity());
+ RTC_DCHECK(!other.IsMinusInfinity());
+ return this->PlusInfinity();
+ } else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
+ RTC_DCHECK(!this->IsPlusInfinity());
+ RTC_DCHECK(!other.IsPlusInfinity());
+ return this->MinusInfinity();
+ }
+ return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
+ }
+ constexpr Unit_T operator-(const Unit_T other) const {
+ if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
+ RTC_DCHECK(!this->IsMinusInfinity());
+ RTC_DCHECK(!other.IsPlusInfinity());
+ return this->PlusInfinity();
+ } else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
+ RTC_DCHECK(!this->IsPlusInfinity());
+ RTC_DCHECK(!other.IsMinusInfinity());
+ return this->MinusInfinity();
+ }
+ return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
+ }
+ constexpr Unit_T& operator+=(const Unit_T other) {
+ *this = *this + other;
+ return this->AsSubClassRef();
+ }
+ constexpr Unit_T& operator-=(const Unit_T other) {
+ *this = *this - other;
+ return this->AsSubClassRef();
+ }
+ constexpr double operator/(const Unit_T other) const {
+ return UnitBase<Unit_T>::template ToValue<double>() /
+ other.template ToValue<double>();
+ }
+ template <typename T,
+ typename std::enable_if_t<std::is_floating_point_v<T>>* = nullptr>
+ constexpr Unit_T operator/(T scalar) const {
+ return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() / scalar));
+ }
+ template <typename T,
+ typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
+ constexpr Unit_T operator/(T scalar) const {
+ return UnitBase<Unit_T>::FromValue(this->ToValue() / scalar);
+ }
+ constexpr Unit_T operator*(double scalar) const {
+ return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() * scalar));
+ }
+ constexpr Unit_T operator*(int64_t scalar) const {
+ return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
+ }
+ constexpr Unit_T operator*(int32_t scalar) const {
+ return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
+ }
+ constexpr Unit_T operator*(size_t scalar) const {
+ return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
+ }
+
+ protected:
+ using UnitBase<Unit_T>::UnitBase;
+};
+
+template <class Unit_T>
+inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
+ return other * scalar;
+}
+template <class Unit_T>
+inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
+ return other * scalar;
+}
+template <class Unit_T>
+inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
+ return other * scalar;
+}
+template <class Unit_T>
+inline constexpr Unit_T operator*(size_t scalar, RelativeUnit<Unit_T> other) {
+ return other * scalar;
+}
+
+template <class Unit_T>
+inline constexpr Unit_T operator-(RelativeUnit<Unit_T> other) {
+ if (other.IsPlusInfinity())
+ return UnitBase<Unit_T>::MinusInfinity();
+ if (other.IsMinusInfinity())
+ return UnitBase<Unit_T>::PlusInfinity();
+ return -1 * other;
+}
+
+} // namespace rtc_units_impl
+
+} // namespace webrtc
+
+#endif // RTC_BASE_UNITS_UNIT_BASE_H_