diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/aa-stroke/src | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/aa-stroke/src')
-rw-r--r-- | third_party/rust/aa-stroke/src/bezierflattener.rs | 828 | ||||
-rw-r--r-- | third_party/rust/aa-stroke/src/c_bindings.rs | 101 | ||||
-rw-r--r-- | third_party/rust/aa-stroke/src/lib.rs | 910 | ||||
-rw-r--r-- | third_party/rust/aa-stroke/src/tri_rasterize.rs | 190 |
4 files changed, 2029 insertions, 0 deletions
diff --git a/third_party/rust/aa-stroke/src/bezierflattener.rs b/third_party/rust/aa-stroke/src/bezierflattener.rs new file mode 100644 index 0000000000..fd1ab21839 --- /dev/null +++ b/third_party/rust/aa-stroke/src/bezierflattener.rs @@ -0,0 +1,828 @@ +// Licensed to the .NET Foundation under one or more agreements. +// The .NET Foundation licenses this file to you under the MIT license. +// See the LICENSE file in the project root for more information. +#![allow(non_snake_case)] + +use std::ops::{Sub, Mul, Add, AddAssign, SubAssign, MulAssign, Div}; + +macro_rules! IFC { + ($e: expr) => { + assert_eq!($e, S_OK); + } +} + +pub type HRESULT = i32; + +pub const S_OK: i32 = 0; +#[derive(Clone, Copy, Debug, PartialEq)] +pub struct GpPointR { + pub x: f64, + pub y: f64 +} + +impl Sub for GpPointR { + type Output = Self; + + fn sub(self, rhs: Self) -> Self::Output { + GpPointR { x: self.x - rhs.x, y: self.y - rhs.y } + } +} + +impl Add for GpPointR { + type Output = Self; + + fn add(self, rhs: Self) -> Self::Output { + GpPointR { x: self.x + rhs.x, y: self.y + rhs.y } + } +} + +impl AddAssign for GpPointR { + fn add_assign(&mut self, rhs: Self) { + *self = *self + rhs; + } +} + +impl SubAssign for GpPointR { + fn sub_assign(&mut self, rhs: Self) { + *self = *self - rhs; + } +} + +impl MulAssign<f64> for GpPointR { + fn mul_assign(&mut self, rhs: f64) { + *self = *self * rhs; + } +} + + +impl Mul<f64> for GpPointR { + type Output = Self; + + fn mul(self, rhs: f64) -> Self::Output { + GpPointR { x: self.x * rhs, y: self.y * rhs } + } +} + +impl Div<f64> for GpPointR { + type Output = Self; + + fn div(self, rhs: f64) -> Self::Output { + GpPointR { x: self.x / rhs, y: self.y / rhs } + } +} + + +impl Mul for GpPointR { + type Output = f64; + + fn mul(self, rhs: Self) -> Self::Output { + self.x * rhs.x + self.y * rhs.y + } +} + +impl GpPointR { + pub fn ApproxNorm(&self) -> f64 { + self.x.abs().max(self.y.abs()) + } + pub fn Norm(&self) -> f64 { + self.x.hypot(self.y) + } +} + +// Relative to this is relative to the tolerance squared. In other words, a vector +// whose length is less than .01*tolerance will be considered 0 +const SQ_LENGTH_FUZZ: f64 = 1.0e-4; + +// Some of these constants need further thinking + +//const FUZZ: f64 = 1.0e-6; // Relative 0 +// Minimum allowed tolerance - should probably be adjusted to the size of the +// geometry we are rendering, but for now --- + +/* +const FUZZ_DOUBLE: f64 = 1.0e-12; // Double-precision relative 0 +const MIN_TOLERANCE: f64 = 1.0e-6; +const DEFAULT_FLATTENING_TOLERANCE: f64 = 0.25;*/ +const TWICE_MIN_BEZIER_STEP_SIZE: f64 = 1.0e-3; // The step size in the Bezier flattener should + // never go below half this amount. +//+----------------------------------------------------------------------------- +// + +// +// $TAG ENGR + +// $Module: win_mil_graphics_geometry +// $Keywords: +// +// $Description: +// Definition of CBezierFlattener. +// +// $ENDTAG +// +//------------------------------------------------------------------------------ + +//+----------------------------------------------------------------------------- +// +// Class: +// CFlatteningSink +// +// Synopsis: +// Callback interface for the results of curve flattening +// +// Notes: +// Methods are implemented rather than pure, for callers who do not use all +// of them. +// +//------------------------------------------------------------------------------ +// +// Definition of CFlatteningSink +// +//------------------------------------------------------------------------------ +/* +struct CFlatteningSink +{ +public: + CFlatteningSink() {} + + virtual ~CFlatteningSink() {} + + virtual HRESULT Begin( + __in_ecount(1) const GpPointR &) + // First point (transformed) + { + // Do nothing stub, should not be called + RIP("Base class Begin called"); + return E_NOTIMPL; + } + + virtual HRESULT AcceptPoint( + __in_ecount(1) const GpPointR &pt, + // The point + IN GpReal t, + // Parameter we're at + __out_ecount(1) bool &fAborted) + // Set to true to signal aborting + { + UNREFERENCED_PARAMETER(pt); + UNREFERENCED_PARAMETER(t); + UNREFERENCED_PARAMETER(fAborted); + + // Do nothing stub, should not be called + RIP("Base class AcceptPoint called"); + return E_NOTIMPL; + } + + virtual HRESULT AcceptPointAndTangent( + __in_ecount(1) const GpPointR &, + //The point + __in_ecount(1) const GpPointR &, + //The tangent there + IN bool fLast) // Is this the last point on the curve? + { + // Do nothing stub, should not be called + RIP("Base class AcceptPointAndTangent called"); + return E_NOTIMPL; + } +}; + + + +*/ +#[derive(Clone, Debug)] + +pub struct CBezier +{ + /* +public: + CBezier() + { + } + + CBezier( + __in_ecount(4) const GpPointR *pPt) + // The defining Bezier points + { + Assert(pPt); + memcpy(&m_ptB, pPt, 4 * sizeof(GpPointR)); + } + + CBezier( + __in_ecount(1) const CBezier &other) + // Another Bezier to copy + { + Copy(other); + } + + void Copy( + __in_ecount(1) const CBezier &other) + // Another Bezier to copy + { + memcpy(&m_ptB, other.m_ptB, 4 * sizeof(GpPointR)); + } + + void Initialize( + __in_ecount(1) const GpPointR &ptFirst, + // The first Bezier point + __in_ecount(3) const GpPointR *pPt) + // The remaining 3 Bezier points + { + m_ptB[0] = ptFirst; + memcpy(m_ptB + 1, pPt, 3 * sizeof(GpPointR)); + } + + __outro_ecount(1) const GpPointR &GetControlPoint(__range(0, 3) UINT i) const + { + Assert(i < 4); + return m_ptB[i]; + } + + __outro_ecount(1) const GpPointR &GetFirstPoint() const + { + return m_ptB[0]; + } + + __outro_ecount(1) const GpPointR &GetLastPoint() const + { + return m_ptB[3]; + } + + void GetPoint( + _In_ double t, + // Parameter value + __out_ecount(1) GpPointR &pt) const; + // Point there + + void GetPointAndDerivatives( + __in double t, + // Parameter value + __out_ecount(3) GpPointR *pValues) const; + // Point, first derivative and second derivative there + + void TrimToStartAt( + IN double t); // Parameter value + + void TrimToEndAt( + IN double t); // Parameter value + + bool TrimBetween( + __in double rStart, + // Parameter value for the new start, must be between 0 and 1 + __in double rEnd); + // Parameter value for the new end, must be between 0 and 1 + + bool operator ==(__in_ecount(1) const CBezier &other) const + { + return (m_ptB[0] == other.m_ptB[0]) && + (m_ptB[1] == other.m_ptB[1]) && + (m_ptB[2] == other.m_ptB[2]) && + (m_ptB[3] == other.m_ptB[3]); + } + + void AssertEqualOrNaN(__in_ecount(1) const CBezier &other) const + { + m_ptB[0].AssertEqualOrNaN(other.m_ptB[0]); + m_ptB[1].AssertEqualOrNaN(other.m_ptB[1]); + m_ptB[2].AssertEqualOrNaN(other.m_ptB[2]); + m_ptB[3].AssertEqualOrNaN(other.m_ptB[3]); + } + +protected: + */ + // Data + m_ptB: [GpPointR; 4], + // The defining Bezier points +} + +impl CBezier { + pub fn new(curve: [GpPointR; 4]) -> Self { + Self { m_ptB: curve } + } + + pub fn is_degenerate(&self) -> bool { + self.m_ptB[0] == self.m_ptB[1] && + self.m_ptB[0] == self.m_ptB[2] && + self.m_ptB[0] == self.m_ptB[3] + } +} + +pub trait CFlatteningSink { + fn AcceptPointAndTangent(&mut self, + pt: &GpPointR, + // The point + vec: &GpPointR, + // The tangent there + fLast: bool + // Is this the last point on the curve? + ) -> HRESULT; + + fn AcceptPoint(&mut self, + pt: &GpPointR, + // The point + t: f64, + // Parameter we're at + fAborted: &mut bool, + lastPoint: bool + ) -> HRESULT; +} + +//+----------------------------------------------------------------------------- +// +// Class: +// CBezierFlattener +// +// Synopsis: +// Generates a polygonal apprximation to a given Bezier curve +// +//------------------------------------------------------------------------------ +pub struct CBezierFlattener<'a> +{ + bezier: CBezier, + // Flattening defining data + m_pSink: &'a mut dyn CFlatteningSink, // The recipient of the flattening data + m_rTolerance: f64, // Prescribed tolerance + m_fWithTangents: bool, // Generate tangent vectors if true + m_rQuarterTolerance: f64,// Prescribed tolerance/4 (for doubling the step) + m_rFuzz: f64, // Computational zero + + // Flattening working data + m_ptE: [GpPointR; 4], // The moving basis of the curve definition + m_cSteps: i32, // The number of steps left to the end of the curve + m_rParameter: f64, // Parameter value + m_rStepSize: f64, // Steps size in parameter domain +} +impl<'a> CBezierFlattener<'a> { + /*fn new( + __in_ecount_opt(1) CFlatteningSink *pSink, + // The reciptient of the flattened data + IN GpReal rTolerance) + // Flattening tolerance + { + Initialize(pSink, rTolerance); + }*/ +/* + void SetTarget(__in_ecount_opt(1) CFlatteningSink *pSink) + { + m_pSink = pSink; + } + + void Initialize( + __in_ecount_opt(1) CFlatteningSink *pSink, + // The reciptient of the flattened data + IN GpReal rTolerance); + // Flattening tolerance + + void SetPoint( + __in UINT i, + // index of the point (must be between 0 and 3) + __in_ecount(1) const GpPointR &pt) + // point value + { + Assert(i < 4); + m_ptB[i] = pt; + } + + HRESULT GetFirstTangent( + __out_ecount(1) GpPointR &vecTangent) const; + // Tangent vector there + + GpPointR GetLastTangent() const; + + HRESULT Flatten( + IN bool fWithTangents); // Return tangents with the points if true + +private: + // Disallow copy constructor + CBezierFlattener(__in_ecount(1) const CBezierFlattener &) + { + RIP("CBezierFlattener copy constructor reached."); + } + +protected: +*/ +/* fn Step( + __out_ecount(1) bool &fAbort); // Set to true if flattening should be aborted + + fn HalveTheStep(); + + fn TryDoubleTheStep();*/ + +} + + + + +// Licensed to the .NET Foundation under one or more agreements. +// The .NET Foundation licenses this file to you under the MIT license. +// See the LICENSE file in the project root for more information. + + +//+----------------------------------------------------------------------------- +// + +// +// $TAG ENGR + +// $Module: win_mil_graphics_geometry +// $Keywords: +// +// $Description: +// Implementation of CBezierFlattener. +// +// $ENDTAG +// +//------------------------------------------------------------------------------ + +impl<'a> CBezierFlattener<'a> { +///////////////////////////////////////////////////////////////////////////////// +// +// Implementation of CBezierFlattener + +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::Initialize +// +// Synopsis: +// Initialize the sink and tolerance +// +//------------------------------------------------------------------------------ +pub fn new(bezier: &CBezier, + pSink: &'a mut dyn CFlatteningSink, + // The reciptient of the flattened data + rTolerance: f64) // Flattening tolerance + -> Self +{ + let mut result = CBezierFlattener { + bezier: bezier.clone(), + // Flattening defining data + m_pSink: pSink, // The recipient of the flattening data + m_rTolerance: 0., // Prescribed tolerance + m_fWithTangents: false, // Generate tangent vectors if true + m_rQuarterTolerance: 0.,// Prescribed tolerance/4 (for doubling the step) + m_rFuzz: 0., // Computational zero + + // Flattening working data + m_ptE: [GpPointR { x: 0., y: 0.}; 4], // The moving basis of the curve definition + m_cSteps: 0, // The number of steps left to the end of the curve + m_rParameter: 0., // Parameter value + m_rStepSize: 0., // Steps size in parameter domain + }; + + // If rTolerance == NaN or less than 0, we'll treat it as 0. + result.m_rTolerance = if rTolerance >= 0.0 { rTolerance } else { 0.0 }; + result.m_rFuzz = rTolerance * rTolerance * SQ_LENGTH_FUZZ; + + // The error is tested on max(|e2|, |e2|), which represent 6 times the actual error, so: + result.m_rTolerance *= 6.; + result.m_rQuarterTolerance = result.m_rTolerance * 0.25; + result +} + +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::Flatten +// +// Synopsis: +// Flatten this curve +// +// Notes: + +// The algorithm is described in detail in the 1995 patent # 5367617 "System and +// method of hybrid forward differencing to render Bezier splines" to be found +// on the Microsoft legal dept. web site (LCAWEB). Additional references are: +// Lien, Shantz and Vaughan Pratt, "Adaptive Forward Differencing for +// Rendering Curves and Surfaces", Computer Graphics, July 1987 +// Chang and Shantz, "Rendering Trimmed NURBS with Adaptive Forward +// Differencing", Computer Graphics, August 1988 +// Foley and Van Dam, "Fundamentals of Interactive Computer Graphics" +// +// The basic idea is to replace the Bernstein basis (underlying Bezier curves) +// with the Hybrid Forward Differencing (HFD) basis which is more efficient at +// for flattening. Each one of the 3 actions - Step, Halve and Double (step +// size) this basis affords very efficient formulas for computing coefficients +// for the new interval. +// +// The coefficients of the HFD basis are defined in terms of the Bezier +// coefficients as follows: +// +// e0 = p0, e1 = p3 - p0, e2 = 6(p1 - 2p2 + p3), e3 = 6(p0 - 2p1 + p2), +// +// but formulas may be easier to understand by going through the power basis +// representation: f(t) = a*t + b*t + c * t^2 + d * t^3. +// +// The conversion is then: +// e0 = a +// e1 = f(1) - f(0) = b + c + d +// e2 = f"(1) = 2c + 6d +// e3 = f"(0) = 2c +// +// This is inverted to: +// a = e0 +// c = e3 / 2 +// d = (e2 - 2c) / 6 = (e2 - e3) / 6 +// b = e1 - c - d = e1 - e2 / 6 - e3 / 3 +// +// a, b, c, d for the new (halved, doubled or forwarded) interval are derived +// and then converted to e0, e1, e2, e3 using these relationships. +// +// An exact integer version is implemented in Bezier.h and Bezier.cpp. +// +//------------------------------------------------------------------------------ + + +pub fn Flatten(&mut self, + fWithTangents: bool) // Return tangents with the points if true + -> HRESULT +{ + + let hr = S_OK; + let mut fAbort = false; + + /*if (!self.m_pSink) + { + return E_UNEXPECTED; + }*/ + + self.m_fWithTangents = fWithTangents; + + self.m_cSteps = 1; + + self.m_rParameter = 0.; + self.m_rStepSize = 1.; + + // Compute the HFD basis + self.m_ptE[0] = self.bezier.m_ptB[0]; + self.m_ptE[1] = self.bezier.m_ptB[3] - self.bezier.m_ptB[0]; + self.m_ptE[2] = (self.bezier.m_ptB[1] - self.bezier.m_ptB[2] * 2. + self.bezier.m_ptB[3]) * 6.; // The second derivative at curve end + self.m_ptE[3] = (self.bezier.m_ptB[0] - self.bezier.m_ptB[1] * 2. + self.bezier.m_ptB[2]) * 6.; // The second derivative at curve start + + // Determine the initial step size + self.m_cSteps = 1; + while ((self.m_ptE[2].ApproxNorm() > self.m_rTolerance) || (self.m_ptE[3].ApproxNorm() > self.m_rTolerance)) && + (self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE) + + { + self.HalveTheStep(); + } + + while self.m_cSteps > 1 + { + IFC!(self.Step(&mut fAbort)); + if fAbort { + return hr; + } + + // E[3] was already tested as E[2] in the previous step + if self.m_ptE[2].ApproxNorm() > self.m_rTolerance && + self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE + { + // Halving the step once is provably sufficient (see Notes above), so --- + self.HalveTheStep(); + } + else + { + // --- but the step can possibly be more than doubled, hence the while loop + while self.TryDoubleTheStep() { + continue; + } + } + } + + // Last point + if self.m_fWithTangents + { + IFC!(self.m_pSink.AcceptPointAndTangent(&self.bezier.m_ptB[3], &self.GetLastTangent(), true /* last point */)); + } + else + { + IFC!(self.m_pSink.AcceptPoint(&self.bezier.m_ptB[3], 1., &mut fAbort, true)); + } + + return hr; +} +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::Step +// +// Synopsis: +// Step forward on the polygonal approximation of the curve +// +// Notes: +// Taking a step means replacing a,b,c,d by coefficients of g(t) = f(t+1). +// Express those in terms of a,b,c,d and convert to e0, e1, e2, e3 to get: +// +// New e0 = e0 + e1 +// New e1 = e1 + e2 +// New e2 = 2e2 - e3 +// New e3 = e2 +// +// The patent application (see above) explains why. +// +// Getting a tangent vector is a minor enhancement along the same lines: +// f'(0) = b = 6e1 - e2 - 2e3. +// +//------------------------------------------------------------------------------ + +fn Step(&mut self, + fAbort: &mut bool) -> HRESULT // Set to true if flattening should be aborted, untouched otherwise +{ + let hr = S_OK; + + // Compute the basis for the same curve on the next interval + let mut pt; + + self.m_ptE[0] += self.m_ptE[1]; + pt = self.m_ptE[2]; + self.m_ptE[1] += pt; + self.m_ptE[2] += pt; self.m_ptE[2] -= self.m_ptE[3]; + self.m_ptE[3] = pt; + + // Increment the parameter + self.m_rParameter += self.m_rStepSize; + + // Generate the start point of the new interval + if self.m_fWithTangents + { + // Compute the tangent there + pt = self.m_ptE[1] * 6. - self.m_ptE[2] - self.m_ptE[3] * 2.; // = twice the derivative at E[0] + IFC!(self.m_pSink.AcceptPointAndTangent(&self.m_ptE[0], &pt, false /* not the last point */)); + } + else + { + IFC!(self.m_pSink.AcceptPoint(&self.m_ptE[0], self.m_rParameter, fAbort, false)); + } + + self.m_cSteps-=1; + return hr; +} +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::HalveTheStep +// +// Synopsis: +// Halve the size of the step +// +// Notes: +// Halving the step means replacing a,b,c,d by coefficients of g(t) = +// f(t/2). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3 +// to get: +// +// New e0 = e0 +// New e1 = (e1 - e2) / 2 +// New e2 = (e2 + e3) / 8 +// New e3 = e3 / 4 +// +// The patent application (see above) explains why. +// +//------------------------------------------------------------------------------ +fn HalveTheStep(&mut self) +{ + self.m_ptE[2] += self.m_ptE[3]; self.m_ptE[2] *= 0.125; + self.m_ptE[1] -= self.m_ptE[2]; self.m_ptE[1] *= 0.5; + self.m_ptE[3] *= 0.25; + + self.m_cSteps *= 2; // Double the number of steps left + self.m_rStepSize *= 0.5; +} +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::TryDoubleTheStep +// +// Synopsis: +// Double the step size if possible within tolerance. +// +// Notes: +// Coubling the step means replacing a,b,c,d by coefficients of g(t) = +// f(2t). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3 +// to get: +// +// New e0 = e0 +// New e1 = 2e1 + e2 +// New e2 = 8e2 - 4e3 +// New e3 = 4e3 +// +// The patent application (see above) explains why. Note also that these +// formulas are the inverse of those for halving the step. +// +//------------------------------------------------------------------------------ +fn +TryDoubleTheStep(&mut self) -> bool +{ + let mut fDoubled = 0 == (self.m_cSteps & 1); + if fDoubled + { + let ptTemp = self.m_ptE[2] * 2. - self.m_ptE[3]; + + fDoubled = (self.m_ptE[3].ApproxNorm() <= self.m_rQuarterTolerance) && + (ptTemp.ApproxNorm() <= self.m_rQuarterTolerance); + + if fDoubled + { + self.m_ptE[1] *= 2.; self.m_ptE[1] += self.m_ptE[2]; + self.m_ptE[3] *= 4.; + self.m_ptE[2] = ptTemp * 4.; + + self.m_cSteps /= 2; // Halve the number of steps left + self.m_rStepSize *= 2.; + } + } + + return fDoubled; +} +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::GetFirstTangent +// +// Synopsis: +// Get the tangent at curve start +// +// Return: +// WGXERR_ZEROVECTOR if the tangent vector has practically 0 length +// +// Notes: +// This method can return an error if all the points are bunched together. +// The idea is that the caller will detect that, abandon this curve, and +// never call GetLasttangent, which can therefore be presumed to succeed. +// The failure here is benign. +// +//------------------------------------------------------------------------------ +#[allow(dead_code)] +fn GetFirstTangent(&self) -> Option<GpPointR> // Tangent vector there + +{ + + let mut vecTangent = self.bezier.m_ptB[1] - self.bezier.m_ptB[0]; + if vecTangent * vecTangent > self.m_rFuzz + { + return Some(vecTangent); // - we're done + } + // Zero first derivative, go for the second + vecTangent = self.bezier.m_ptB[2] - self.bezier.m_ptB[0]; + if vecTangent * vecTangent > self.m_rFuzz + { + return Some(vecTangent); // - we're done + } + // Zero second derivative, go for the third + vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0]; + + if vecTangent * vecTangent <= self.m_rFuzz + { + return None; + } + + return Some(vecTangent); // no RRETURN, error is expected +} +//+----------------------------------------------------------------------------- +// +// Member: +// CBezierFlattener::GetLastTangent +// +// Synopsis: +// Get the tangent at curve end +// +// Return: +// The tangent +// +// Notes: +// This method has no error return while GetFirstTangent returns +// WGXERR_ZEROVECTOR if the tangent is zero. The idea is that we should +// only fail if all the control points coincide, that should have been +// detected at GetFirstTangent, and then we should have not be called. +// +//------------------------------------------------------------------------------ +fn GetLastTangent(&self) -> GpPointR +{ + let mut vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[2]; + + // If the curve is degenerate, we should have detected it at curve-start, skipped this curve + // altogether and not be here. But the test in GetFirstTangent is for the point-differences + // 1-0, 2-0 and 3-0, while here it is for points 3-2, 3-1 and 3-0, which is not quite the same. + // Still, In a disk of radius r no 2 points are more than 2r apart. The tests are done with + // squared distance, and m_rFuzz is the minimal accepted squared distance. GetFirstTangent() + // succeeded, so there is a pair of points whose squared distance is greater than m_rfuzz. + // So the squared radius of a disk about point 3 that contains the remaining points must be + // at least m_rFuzz/4. Allowing some margin for arithmetic error: + + let rLastTangentFuzz = self.m_rFuzz/8.; + + if vecTangent * vecTangent <= rLastTangentFuzz + { + // Zero first derivative, go for the second + vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[1]; + if vecTangent * vecTangent <= rLastTangentFuzz + { + // Zero second derivative, go for the third + vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0]; + } + } + + debug_assert! (!(vecTangent * vecTangent < rLastTangentFuzz)); // Ignore NaNs + + return vecTangent; +} +} diff --git a/third_party/rust/aa-stroke/src/c_bindings.rs b/third_party/rust/aa-stroke/src/c_bindings.rs new file mode 100644 index 0000000000..8880e49293 --- /dev/null +++ b/third_party/rust/aa-stroke/src/c_bindings.rs @@ -0,0 +1,101 @@ +use crate::{Stroker, StrokeStyle, Point}; + +type OutputVertex = crate::Vertex; + +#[repr(C)] +pub struct VertexBuffer { + data: *const OutputVertex, + len: usize +} + +#[no_mangle] +pub extern "C" fn aa_stroke_new( + style: &StrokeStyle, + output_ptr: *mut OutputVertex, + output_capacity: usize, +) -> *mut Stroker { + let mut s = Stroker::new(style); + if output_ptr != std::ptr::null_mut() { + let slice = unsafe { std::slice::from_raw_parts_mut(output_ptr, output_capacity) }; + s.set_output_buffer(slice); + } + Box::into_raw(Box::new(s)) +} + +#[no_mangle] +pub extern "C" fn aa_stroke_move_to(s: &mut Stroker, x: f32, y: f32, closed: bool) { + s.move_to(Point::new(x, y), closed); +} + +#[no_mangle] +pub extern "C" fn aa_stroke_line_to(s: &mut Stroker, x: f32, y: f32, end: bool) { + if end { + s.line_to_capped(Point::new(x, y)) + } else { + s.line_to(Point::new(x, y)); + } +} + +#[no_mangle] +pub extern "C" fn aa_stroke_curve_to(s: &mut Stroker, c1x: f32, c1y: f32, c2x: f32, c2y: f32, x: f32, y: f32, end: bool) { + if end { + s.curve_to_capped(Point::new(c1x, c1y), Point::new(c2x, c2y), Point::new(x, y)); + } else { + s.curve_to(Point::new(c1x, c1y), Point::new(c2x, c2y), Point::new(x, y)); + } +} + +/* +#[no_mangle] +pub extern "C" fn aa_stroke_quad_to(s: &mut Stroker, cx: f32, cy: f32, x: f32, y: f32) { + s.quad_to(cx, cy, x, y); +}*/ + +#[no_mangle] +pub extern "C" fn aa_stroke_close(s: &mut Stroker) { + s.close(); +} + +#[no_mangle] +pub extern "C" fn aa_stroke_finish(s: &mut Stroker) -> VertexBuffer { + let stroked_path = s.get_stroked_path(); + if let Some(output_buffer_size) = stroked_path.get_output_buffer_size() { + VertexBuffer { + data: std::ptr::null(), + len: output_buffer_size, + } + } else { + let result = stroked_path.finish(); + let vb = VertexBuffer { data: result.as_ptr(), len: result.len() }; + std::mem::forget(result); + vb + } +} + +#[no_mangle] +pub extern "C" fn aa_stroke_vertex_buffer_release(vb: VertexBuffer) +{ + if vb.data != std::ptr::null() { + unsafe { + drop(Box::from_raw(std::slice::from_raw_parts_mut(vb.data as *mut OutputVertex, vb.len))); + } + } +} + +#[no_mangle] +pub unsafe extern "C" fn aa_stroke_release(s: *mut Stroker) { + drop(Box::from_raw(s)); +} + + +#[test] +fn simple() { + let style = StrokeStyle::default(); + let s = unsafe { &mut *aa_stroke_new(&style, std::ptr::null_mut(), 0) } ; + aa_stroke_move_to(s, 10., 10., false); + aa_stroke_line_to(s, 100., 100., false); + aa_stroke_line_to(s, 100., 10., true); + let vb = aa_stroke_finish(s); + aa_stroke_vertex_buffer_release(vb); + unsafe { aa_stroke_release(s) } ; +} diff --git a/third_party/rust/aa-stroke/src/lib.rs b/third_party/rust/aa-stroke/src/lib.rs new file mode 100644 index 0000000000..a359194c47 --- /dev/null +++ b/third_party/rust/aa-stroke/src/lib.rs @@ -0,0 +1,910 @@ + +use std::default::Default; + +use bezierflattener::CBezierFlattener; + +use crate::{bezierflattener::{CFlatteningSink, GpPointR, HRESULT, S_OK, CBezier}}; + +mod bezierflattener; +pub mod tri_rasterize; +#[cfg(feature = "c_bindings")] +pub mod c_bindings; + +#[derive(Clone, Copy, PartialEq, Debug)] +pub enum Winding { + EvenOdd, + NonZero, +} + +#[derive(Clone, Copy, Debug)] +pub enum PathOp { + MoveTo(Point), + LineTo(Point), + QuadTo(Point, Point), + CubicTo(Point, Point, Point), + Close, +} + + +/// Represents a complete path usable for filling or stroking. +#[derive(Clone, Debug)] +pub struct Path { + pub ops: Vec<PathOp>, + pub winding: Winding, +} + +pub type Point = euclid::default::Point2D<f32>; +pub type Transform = euclid::default::Transform2D<f32>; +pub type Vector = euclid::default::Vector2D<f32>; + + +#[derive(Clone, Copy, PartialEq, Debug)] +#[repr(C)] +pub enum LineCap { + Round, + Square, + Butt, +} + +#[derive(Clone, Copy, PartialEq, Debug)] +#[repr(C)] +pub enum LineJoin { + Round, + Miter, + Bevel, +} + +#[derive(Clone, PartialEq, Debug)] +#[repr(C)] +pub struct StrokeStyle { + pub width: f32, + pub cap: LineCap, + pub join: LineJoin, + pub miter_limit: f32, +} + +impl Default for StrokeStyle { + fn default() -> Self { + StrokeStyle { + width: 1., + cap: LineCap::Butt, + join: LineJoin::Miter, + miter_limit: 10., + } + } +} +#[derive(Debug)] +pub struct Vertex { + x: f32, + y: f32, + coverage: f32 +} + +/// A helper struct used for constructing a `Path`. +pub struct PathBuilder<'z> { + output_buffer: Option<&'z mut [Vertex]>, + output_buffer_offset: usize, + vertices: Vec<Vertex>, + coverage: f32, + aa: bool +} + + + +impl<'z> PathBuilder<'z> { + pub fn new(coverage: f32) -> PathBuilder<'z> { + PathBuilder { + output_buffer: None, + output_buffer_offset: 0, + vertices: Vec::new(), + coverage, + aa: true + } + } + + pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) { + assert!(self.output_buffer.is_none()); + self.output_buffer = Some(output_buffer); + } + + pub fn push_tri_with_coverage(&mut self, x1: f32, y1: f32, c1: f32, x2: f32, y2: f32, c2: f32, x3: f32, y3: f32, c3: f32) { + let v1 = Vertex { x: x1, y: y1, coverage: c1 }; + let v2 = Vertex { x: x2, y: y2, coverage: c2 }; + let v3 = Vertex { x: x3, y: y3, coverage: c3 }; + if let Some(output_buffer) = &mut self.output_buffer { + let offset = self.output_buffer_offset; + if offset + 3 <= output_buffer.len() { + output_buffer[offset] = v1; + output_buffer[offset + 1] = v2; + output_buffer[offset + 2] = v3; + } + self.output_buffer_offset = offset + 3; + } else { + self.vertices.push(v1); + self.vertices.push(v2); + self.vertices.push(v3); + } + } + + pub fn push_tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, self.coverage, x3, y3, self.coverage); + } + + + // x3, y3 is the full coverage vert + pub fn tri_ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri_with_coverage(x1, y1, 0., x2, y2, 0., x3, y3, self.coverage); + } + + pub fn quad(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) { + self.push_tri(x1, y1, x2, y2, x3, y3); + self.push_tri(x3, y3, x4, y4, x1, y1); + } + + pub fn ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) { + self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, 0., x3, y3, 0.); + self.push_tri_with_coverage(x3, y3, 0., x4, y4, self.coverage, x1, y1, self.coverage); + } + + // first edge is outside + pub fn tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri(x1, y1, x2, y2, x3, y3); + } + + pub fn arc_wedge(&mut self, c: Point, radius: f32, a: Vector, b: Vector) { + arc(self, c.x, c.y, radius, a, b); + } + + /// Completes the current path + pub fn finish(self) -> Vec<Vertex> { + self.vertices + } + + pub fn get_output_buffer_size(&self) -> Option<usize> { + if self.output_buffer.is_some() { + Some(self.output_buffer_offset) + } else { + None + } + } +} + + + +fn compute_normal(p0: Point, p1: Point) -> Option<Vector> { + let ux = p1.x - p0.x; + let uy = p1.y - p0.y; + + // this could overflow f32. Skia checks for this and + // uses a double in that situation + let ulen = ux.hypot(uy); + if ulen == 0. { + return None; + } + // the normal is perpendicular to the *unit* vector + Some(Vector::new(-uy / ulen, ux / ulen)) +} + +fn flip(v: Vector) -> Vector { + Vector::new(-v.x, -v.y) +} + +/* Compute a spline approximation of the arc +centered at xc, yc from the angle a to the angle b + +The angle between a and b should not be more than a +quarter circle (pi/2) + +The approximation is similar to an approximation given in: +"Approximation of a cubic bezier curve by circular arcs and vice versa" +by Alekas Riškus. However that approximation becomes unstable when the +angle of the arc approaches 0. + +This approximation is inspired by a discusion with Boris Zbarsky +and essentially just computes: + + h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0); + +without converting to polar coordinates. + +A different way to do this is covered in "Approximation of a cubic bezier +curve by circular arcs and vice versa" by Alekas Riškus. However, the method +presented there doesn't handle arcs with angles close to 0 because it +divides by the perp dot product of the two angle vectors. +*/ + +fn arc_segment_tri(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) { + let r_sin_a = radius * a.y; + let r_cos_a = radius * a.x; + let r_sin_b = radius * b.y; + let r_cos_b = radius * b.x; + + + /* bisect the angle between 'a' and 'b' with 'mid' */ + let mut mid = a + b; + mid /= mid.length(); + + /* bisect the angle between 'a' and 'mid' with 'mid2' this is parallel to a + * line with angle (B - A)/4 */ + let mid2 = a + mid; + + let h = (4. / 3.) * dot(perp(a), mid2) / dot(a, mid2); + + let last_point = GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64 }; + let initial_normal = GpPointR { x: a.x as f64, y: a.y as f64 }; + + + struct Target<'a, 'b> { last_point: GpPointR, last_normal: GpPointR, xc: f32, yc: f32, path: &'a mut PathBuilder<'b> } + impl<'a, 'b> CFlatteningSink for Target<'a, 'b> { + fn AcceptPointAndTangent(&mut self, + pt: &GpPointR, + // The point + vec: &GpPointR, + // The tangent there + _last: bool + // Is this the last point on the curve? + ) -> HRESULT { + if self.path.aa { + let len = vec.Norm(); + let normal = *vec/len; + let normal = GpPointR { x: -normal.y, y: normal.x }; + // FIXME: we probably need more width here because + // the normals are not perpendicular with the edge + let width = 0.5; + + self.path.ramp( + (pt.x - normal.x * width) as f32, + (pt.y - normal.y * width) as f32, + (pt.x + normal.x * width) as f32, + (pt.y + normal.y * width) as f32, + (self.last_point.x + self.last_normal.x * width) as f32, + (self.last_point.y + self.last_normal.y * width) as f32, + (self.last_point.x - self.last_normal.x * width) as f32, + (self.last_point.y - self.last_normal.y * width) as f32, ); + self.path.push_tri( + (self.last_point.x - self.last_normal.x * 0.5) as f32, + (self.last_point.y - self.last_normal.y * 0.5) as f32, + (pt.x - normal.x * 0.5) as f32, + (pt.y - normal.y * 0.5) as f32, + self.xc, self.yc); + self.last_normal = normal; + + } else { + self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc); + } + self.last_point = pt.clone(); + return S_OK; + } + + fn AcceptPoint(&mut self, + pt: &GpPointR, + // The point + _t: f64, + // Parameter we're at + _aborted: &mut bool, + _last_point: bool) -> HRESULT { + self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc); + self.last_point = pt.clone(); + return S_OK; + } + } + let bezier = CBezier::new([GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64, }, + GpPointR { x: (xc + r_cos_a - h * r_sin_a) as f64, y: (yc + r_sin_a + h * r_cos_a) as f64, }, + GpPointR { x: (xc + r_cos_b + h * r_sin_b) as f64, y: (yc + r_sin_b - h * r_cos_b) as f64, }, + GpPointR { x: (xc + r_cos_b) as f64, y: (yc + r_sin_b) as f64, }]); + if bezier.is_degenerate() { + return; + } + let mut t = Target{ last_point, last_normal: initial_normal, xc, yc, path }; + let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25); + f.Flatten(true); + +} + +/* The angle between the vectors must be <= pi */ +fn bisect(a: Vector, b: Vector) -> Vector { + let mut mid; + if dot(a, b) >= 0. { + /* if the angle between a and b is accute, then we can + * just add the vectors and normalize */ + mid = a + b; + } else { + /* otherwise, we can flip a, add it + * and then use the perpendicular of the result */ + mid = flip(a) + b; + mid = perp(mid); + } + + /* normalize */ + /* because we assume that 'a' and 'b' are normalized, we can use + * sqrt instead of hypot because the range of mid is limited */ + let mid_len = mid.x * mid.x + mid.y * mid.y; + let len = mid_len.sqrt(); + return mid / len; +} + +fn arc(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) { + /* find a vector that bisects the angle between a and b */ + let mid_v = bisect(a, b); + + /* construct the arc using two curve segments */ + arc_segment_tri(path, xc, yc, radius, a, mid_v); + arc_segment_tri(path, xc, yc, radius, mid_v, b); +} + +/* +fn join_round(path: &mut PathBuilder, center: Point, a: Vector, b: Vector, radius: f32) { + /* + int ccw = dot (perp (b), a) >= 0; // XXX: is this always true? + yes, otherwise we have an interior angle. + assert (ccw); + */ + arc(path, center.x, center.y, radius, a, b); +}*/ + +fn cap_line(dest: &mut PathBuilder, style: &StrokeStyle, pt: Point, normal: Vector) { + let offset = style.width / 2.; + match style.cap { + LineCap::Butt => { + if dest.aa { + let half_width = offset; + let end = pt; + let v = Vector::new(normal.y, -normal.x); + // end + dest.ramp( + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5), + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + ); + dest.tri_ramp( + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + dest.tri_ramp( + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5)); + } + } + LineCap::Round => { + dest.arc_wedge(pt, offset, normal, flip(normal)); + } + LineCap::Square => { + // parallel vector + let v = Vector::new(normal.y, -normal.x); + let end = pt + v * offset; + if dest.aa { + let half_width = offset; + let offset = offset - 0.5; + dest.ramp( + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + pt.x + normal.x * (half_width + 0.5), + pt.y + normal.y * (half_width + 0.5), + pt.x + normal.x * (half_width - 0.5), + pt.y + normal.y * (half_width - 0.5), + ); + dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset, + end.x + normal.x * offset, end.y + normal.y * offset, + end.x + -normal.x * offset, end.y + -normal.y * offset, + pt.x - normal.x * offset, pt.y - normal.y * offset); + + dest.ramp( + pt.x - normal.x * (half_width - 0.5), + pt.y - normal.y * (half_width - 0.5), + pt.x - normal.x * (half_width + 0.5), + pt.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + + // end + dest.ramp( + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5), + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + ); + dest.tri_ramp( + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + dest.tri_ramp( + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5)); + } else { + dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset, + end.x + normal.x * offset, end.y + normal.y * offset, + end.x + -normal.x * offset, end.y + -normal.y * offset, + pt.x - normal.x * offset, pt.y - normal.y * offset); + } + } + } +} + +fn bevel( + dest: &mut PathBuilder, + style: &StrokeStyle, + pt: Point, + s1_normal: Vector, + s2_normal: Vector, +) { + let offset = style.width / 2.; + if dest.aa { + let width = 1.; + let offset = offset - width / 2.; + //XXX: we should be able to just bisect the two norms to get this + let diff = match (s2_normal - s1_normal).try_normalize() { + Some(diff) => diff, + None => return, + }; + let edge_normal = perp(diff); + + dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + + dest.tri_ramp(pt.x + s1_normal.x * (offset + width), pt.y + s1_normal.y * (offset + width), + pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset); + dest.ramp( + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + ); + dest.tri_ramp(pt.x + s2_normal.x * (offset + width), pt.y + s2_normal.y * (offset + width), + pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset); + } else { + dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } +} + +/* given a normal rotate the vector 90 degrees to the right clockwise + * This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */ +fn swap(a: Vector) -> Vector { + /* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */ + Vector::new(a.y, -a.x) +} + +fn unperp(a: Vector) -> Vector { + swap(a) +} + +/* rotate a vector 90 degrees to the left */ +fn perp(v: Vector) -> Vector { + Vector::new(-v.y, v.x) +} + +fn dot(a: Vector, b: Vector) -> f32 { + a.x * b.x + a.y * b.y +} + +/* Finds the intersection of two lines each defined by a point and a normal. +From "Example 2: Find the intersection of two lines" of +"The Pleasures of "Perp Dot" Products" +F. S. Hill, Jr. */ +fn line_intersection(a: Point, a_perp: Vector, b: Point, b_perp: Vector) -> Option<Point> { + let a_parallel = unperp(a_perp); + let c = b - a; + let denom = dot(b_perp, a_parallel); + if denom == 0.0 { + return None; + } + + let t = dot(b_perp, c) / denom; + + let intersection = Point::new(a.x + t * (a_parallel.x), a.y + t * (a_parallel.y)); + + Some(intersection) +} + +fn is_interior_angle(a: Vector, b: Vector) -> bool { + /* angles of 180 and 0 degress will evaluate to 0, however + * we to treat 180 as an interior angle and 180 as an exterior angle */ + dot(perp(a), b) > 0. || a == b /* 0 degrees is interior */ +} + +fn join_line( + dest: &mut PathBuilder, + style: &StrokeStyle, + pt: Point, + mut s1_normal: Vector, + mut s2_normal: Vector, +) { + if is_interior_angle(s1_normal, s2_normal) { + s2_normal = flip(s2_normal); + s1_normal = flip(s1_normal); + std::mem::swap(&mut s1_normal, &mut s2_normal); + } + + // XXX: joining uses `pt` which can cause seams because it lies halfway on a line and the + // rasterizer may not find exactly the same spot + let mut offset = style.width / 2.; + + match style.join { + LineJoin::Round => { + dest.arc_wedge(pt, offset, s1_normal, s2_normal); + } + LineJoin::Miter => { + if dest.aa { + offset -= 0.5; + } + let in_dot_out = -s1_normal.x * s2_normal.x + -s1_normal.y * s2_normal.y; + if 2. <= style.miter_limit * style.miter_limit * (1. - in_dot_out) { + let start = pt + s1_normal * offset; + let end = pt + s2_normal * offset; + if let Some(intersection) = line_intersection(start, s1_normal, end, s2_normal) { + // We won't have an intersection if the segments are parallel + if dest.aa { + let ramp_start = pt + s1_normal * (offset + 1.); + let ramp_end = pt + s2_normal * (offset + 1.); + let mid = bisect(s1_normal, s2_normal); + let ramp_intersection = intersection + mid; + + let ramp_s1 = line_intersection(ramp_start, s1_normal, ramp_intersection, flip(mid)); + let ramp_s2 = line_intersection(ramp_end, s2_normal, ramp_intersection, flip(mid)); + + if let Some(ramp_s1) = ramp_s1 { + dest.ramp(intersection.x, intersection.y, + ramp_s1.x, ramp_s1.y, + ramp_start.x, ramp_start.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + ); + } + if let Some(ramp_s2) = ramp_s2 { + dest.ramp(pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + ramp_end.x, ramp_end.y, + ramp_s2.x, ramp_s2.y, + intersection.x, intersection.y); + if let Some(ramp_s1) = ramp_s1 { + dest.tri_ramp(ramp_s1.x, ramp_s1.y, ramp_s2.x, ramp_s2.y, intersection.x, intersection.y); + } + } + + // we'll want to intersect the ramps and put a flat cap on the end + dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + intersection.x, intersection.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } else { + dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + intersection.x, intersection.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } + } + } else { + bevel(dest, style, pt, s1_normal, s2_normal); + } + } + LineJoin::Bevel => { + bevel(dest, style, pt, s1_normal, s2_normal); + } + } +} + +pub struct Stroker<'z> { + stroked_path: PathBuilder<'z>, + cur_pt: Option<Point>, + last_normal: Vector, + half_width: f32, + start_point: Option<(Point, Vector)>, + style: StrokeStyle, + closed_subpath: bool +} + +impl<'z> Stroker<'z> { + pub fn new(style: &StrokeStyle) -> Self { + let mut style = style.clone(); + let mut coverage = 1.; + if style.width < 1. { + coverage = style.width; + style.width = 1.; + } + Stroker { + stroked_path: PathBuilder::new(coverage), + cur_pt: None, + last_normal: Vector::zero(), + half_width: style.width / 2., + start_point: None, + style, + closed_subpath: false, + } + } + + pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) { + self.stroked_path.set_output_buffer(output_buffer); + } + + pub fn line_to_capped(&mut self, pt: Point) { + if let Some(cur_pt) = self.cur_pt { + let normal = compute_normal(cur_pt, pt).unwrap_or(self.last_normal); + self.line_to(if self.stroked_path.aa && self.style.cap == LineCap::Butt { pt - flip(normal) * 0.5} else { pt }); + if let (Some(cur_pt), Some((_point, _normal))) = (self.cur_pt, self.start_point) { + // cap end + cap_line(&mut self.stroked_path, &self.style, cur_pt, self.last_normal); + } + } + self.start_point = None; + } + + pub fn move_to(&mut self, pt: Point, closed_subpath: bool) { + self.start_point = None; + self.cur_pt = Some(pt); + self.closed_subpath = closed_subpath; + } + + pub fn line_to(&mut self, pt: Point) { + let cur_pt = self.cur_pt; + let stroked_path = &mut self.stroked_path; + let half_width = self.half_width; + + if cur_pt.is_none() { + self.start_point = None; + } else if let Some(cur_pt) = cur_pt { + if let Some(normal) = compute_normal(cur_pt, pt) { + if self.start_point.is_none() { + if !self.closed_subpath { + // cap beginning + cap_line(stroked_path, &self.style, cur_pt, flip(normal)); + if stroked_path.aa && self.style.cap == LineCap::Butt { + + } + } + self.start_point = Some((cur_pt, normal)); + } else { + join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal); + } + if stroked_path.aa { + stroked_path.ramp( + pt.x + normal.x * (half_width - 0.5), + pt.y + normal.y * (half_width - 0.5), + pt.x + normal.x * (half_width + 0.5), + pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width + 0.5), + cur_pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + ); + stroked_path.quad( + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + pt.x + normal.x * (half_width - 0.5), pt.y + normal.y * (half_width - 0.5), + pt.x + -normal.x * (half_width - 0.5), pt.y + -normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + ); + stroked_path.ramp( + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width + 0.5), + cur_pt.y - normal.y * (half_width + 0.5), + pt.x - normal.x * (half_width + 0.5), + pt.y - normal.y * (half_width + 0.5), + pt.x - normal.x * (half_width - 0.5), + pt.y - normal.y * (half_width - 0.5), + ); + } else { + stroked_path.quad( + cur_pt.x + normal.x * half_width, + cur_pt.y + normal.y * half_width, + pt.x + normal.x * half_width, pt.y + normal.y * half_width, + pt.x + -normal.x * half_width, pt.y + -normal.y * half_width, + cur_pt.x - normal.x * half_width, + cur_pt.y - normal.y * half_width, + ); + } + + self.last_normal = normal; + + } + } + self.cur_pt = Some(pt); + } + + pub fn curve_to(&mut self, cx1: Point, cx2: Point, pt: Point) { + self.curve_to_internal(cx1, cx2, pt, false); + } + + pub fn curve_to_capped(&mut self, cx1: Point, cx2: Point, pt: Point) { + self.curve_to_internal(cx1, cx2, pt, true); + } + + pub fn curve_to_internal(&mut self, cx1: Point, cx2: Point, pt: Point, end: bool) { + struct Target<'a, 'b> { stroker: &'a mut Stroker<'b>, end: bool } + impl<'a, 'b> CFlatteningSink for Target<'a, 'b> { + fn AcceptPointAndTangent(&mut self, _: &GpPointR, _: &GpPointR, _: bool ) -> HRESULT { + panic!() + } + + fn AcceptPoint(&mut self, + pt: &GpPointR, + // The point + _t: f64, + // Parameter we're at + _aborted: &mut bool, + last_point: bool) -> HRESULT { + if last_point && self.end { + self.stroker.line_to_capped(Point::new(pt.x as f32, pt.y as f32)); + } else { + self.stroker.line_to(Point::new(pt.x as f32, pt.y as f32)); + } + return S_OK; + } + } + let cur_pt = self.cur_pt.unwrap_or(cx1); + let bezier = CBezier::new([GpPointR { x: cur_pt.x as f64, y: cur_pt.y as f64, }, + GpPointR { x: cx1.x as f64, y: cx1.y as f64, }, + GpPointR { x: cx2.x as f64, y: cx2.y as f64, }, + GpPointR { x: pt.x as f64, y: pt.y as f64, }]); + let mut t = Target{ stroker: self, end }; + let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25); + f.Flatten(false); + } + + pub fn close(&mut self) { + let stroked_path = &mut self.stroked_path; + let half_width = self.half_width; + if let (Some(cur_pt), Some((end_point, start_normal))) = (self.cur_pt, self.start_point) { + if let Some(normal) = compute_normal(cur_pt, end_point) { + join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal); + if stroked_path.aa { + stroked_path.ramp( + end_point.x + normal.x * (half_width - 0.5), + end_point.y + normal.y * (half_width - 0.5), + end_point.x + normal.x * (half_width + 0.5), + end_point.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width + 0.5), + cur_pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + ); + stroked_path.quad( + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + end_point.x + normal.x * (half_width - 0.5), end_point.y + normal.y * (half_width - 0.5), + end_point.x + -normal.x * (half_width - 0.5), end_point.y + -normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + ); + stroked_path.ramp( + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width + 0.5), + cur_pt.y - normal.y * (half_width + 0.5), + end_point.x - normal.x * (half_width + 0.5), + end_point.y - normal.y * (half_width + 0.5), + end_point.x - normal.x * (half_width - 0.5), + end_point.y - normal.y * (half_width - 0.5), + ); + } else { + stroked_path.quad( + cur_pt.x + normal.x * half_width, + cur_pt.y + normal.y * half_width, + end_point.x + normal.x * half_width, end_point.y + normal.y * half_width, + end_point.x + -normal.x * half_width, end_point.y + -normal.y * half_width, + cur_pt.x - normal.x * half_width, + cur_pt.y - normal.y * half_width, + ); + } + join_line(stroked_path, &self.style, end_point, normal, start_normal); + } else { + join_line(stroked_path, &self.style, end_point, self.last_normal, start_normal); + } + } + self.cur_pt = self.start_point.map(|x| x.0); + self.start_point = None; + } + + pub fn get_stroked_path(&mut self) -> PathBuilder<'z> { + let mut stroked_path = std::mem::replace(&mut self.stroked_path, PathBuilder::new(1.)); + + if let (Some(cur_pt), Some((point, normal))) = (self.cur_pt, self.start_point) { + // cap end + cap_line(&mut stroked_path, &self.style, cur_pt, self.last_normal); + // cap beginning + cap_line(&mut stroked_path, &self.style, point, flip(normal)); + } + + stroked_path + } + + pub fn finish(&mut self) -> Vec<Vertex> { + self.get_stroked_path().finish() + } +} + +#[test] +fn simple() { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Bevel, + width: 20., + ..Default::default()}); + stroker.move_to(Point::new(20., 20.), false); + stroker.line_to(Point::new(100., 100.)); + stroker.line_to_capped(Point::new(110., 20.)); + + stroker.move_to(Point::new(120., 20.), true); + stroker.line_to(Point::new(120., 50.)); + stroker.line_to(Point::new(140., 50.)); + stroker.close(); + + let stroked = stroker.finish(); + assert_eq!(stroked.len(), 330); +} + +#[test] +fn curve() { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Bevel, + width: 20., + ..Default::default()}); + stroker.move_to(Point::new(20., 160.), true); + stroker.curve_to(Point::new(100., 160.), Point::new(100., 180.), Point::new(20., 180.)); + stroker.close(); + let stroked = stroker.finish(); + assert_eq!(stroked.len(), 1089); +} + +#[test] +fn width_one_radius_arc() { + // previously this caused us to try to flatten an arc with radius 0 + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Round, + width: 1., + ..Default::default()}); + stroker.move_to(Point::new(20., 20.), false); + stroker.line_to(Point::new(30., 160.)); + stroker.line_to_capped(Point::new(40., 20.)); + stroker.finish(); +} + +#[test] +fn parallel_line_join() { + // ensure line joins of almost parallel lines don't cause math to fail + for join in [LineJoin::Bevel, LineJoin::Round, LineJoin::Miter] { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Butt, + join, + width: 1.0, + ..Default::default()}); + stroker.move_to(Point::new(19.812500, 71.625000), true); + stroker.line_to(Point::new(19.250000, 72.000000)); + stroker.line_to(Point::new(19.062500, 72.125000)); + stroker.close(); + stroker.finish(); + } +} + diff --git a/third_party/rust/aa-stroke/src/tri_rasterize.rs b/third_party/rust/aa-stroke/src/tri_rasterize.rs new file mode 100644 index 0000000000..7a80ce437b --- /dev/null +++ b/third_party/rust/aa-stroke/src/tri_rasterize.rs @@ -0,0 +1,190 @@ +/* The rasterization code here is based off of piglit/tests/general/triangle-rasterization.cpp: + + /************************************************************************** + * + * Copyright 2012 VMware, Inc. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +*/ + +use std::ops::Index; +use crate::Vertex as OutputVertex; +#[derive(Debug)] +struct Vertex { + x: f32, + y: f32, + coverage: f32 +} +#[derive(Debug)] +struct Triangle { + v: [Vertex; 3], +} + +impl Index<usize> for Triangle { + type Output = Vertex; + + fn index(&self, index: usize) -> &Self::Output { + &self.v[index] + } +} + +// D3D11 mandates 8 bit subpixel precision: +// https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#CoordinateSnapping +const FIXED_SHIFT: i32 = 8; +const FIXED_ONE: f32 = (1 << FIXED_SHIFT) as f32; + +/* Proper rounding of float to integer */ +fn iround(mut v: f32) -> i64 { + if v > 0.0 { + v += 0.5; + } + if v < 0.0 { + v -= 0.5; + } + return v as i64 +} + +/* Based on http://devmaster.net/forums/topic/1145-advanced-rasterization */ +fn rast_triangle(buffer: &mut [u8], width: usize, height: usize, tri: &Triangle) { + let center_offset = -0.5; + + let mut coverage1 = tri[0].coverage; + let mut coverage2 = tri[1].coverage; + let mut coverage3 = tri[2].coverage; + + /* fixed point coordinates */ + let mut x1 = iround(FIXED_ONE * (tri[0].x + center_offset)); + let x2 = iround(FIXED_ONE * (tri[1].x + center_offset)); + let mut x3 = iround(FIXED_ONE * (tri[2].x + center_offset)); + + let mut y1 = iround(FIXED_ONE * (tri[0].y + center_offset)); + let y2 = iround(FIXED_ONE * (tri[1].y + center_offset)); + let mut y3 = iround(FIXED_ONE * (tri[2].y + center_offset)); + + + /* Force correct vertex order */ + let cross = (x2 - x1) * (y3 - y2) - (y2 - y1) * (x3 - x2); + if cross > 0 { + std::mem::swap(&mut x1, &mut x3); + std::mem::swap(&mut y1, &mut y3); + // I don't understand why coverage 2 and 3 are swapped instead of 1 and 3 + std::mem::swap(&mut coverage2, &mut coverage3); + } else { + std::mem::swap(&mut coverage1, &mut coverage3); + } + + /* Deltas */ + let dx12 = x1 - x2; + let dx23 = x2 - x3; + let dx31 = x3 - x1; + + let dy12 = y1 - y2; + let dy23 = y2 - y3; + let dy31 = y3 - y1; + + /* Fixed-point deltas */ + let fdx12 = dx12 << FIXED_SHIFT; + let fdx23 = dx23 << FIXED_SHIFT; + let fdx31 = dx31 << FIXED_SHIFT; + + let fdy12 = dy12 << FIXED_SHIFT; + let fdy23 = dy23 << FIXED_SHIFT; + let fdy31 = dy31 << FIXED_SHIFT; + + /* Bounding rectangle */ + let mut minx = x1.min(x2).min(x3) >> FIXED_SHIFT; + let mut maxx = x1.max(x2).max(x3) >> FIXED_SHIFT; + + let mut miny = y1.min(y2).min(y3) >> FIXED_SHIFT; + let mut maxy = y1.max(y2).max(y3) >> FIXED_SHIFT; + + minx = minx.max(0); + maxx = maxx.min(width as i64 - 1); + + miny = miny.max(0); + maxy = maxy.min(height as i64 - 1); + + /* Half-edge constants */ + let mut c1 = dy12 * x1 - dx12 * y1; + let mut c2 = dy23 * x2 - dx23 * y2; + let mut c3 = dy31 * x3 - dx31 * y3; + + /* Correct for top-left filling convention */ + if dy12 < 0 || (dy12 == 0 && dx12 < 0) { c1 += 1 } + if dy23 < 0 || (dy23 == 0 && dx23 < 0) { c2 += 1 } + if dy31 < 0 || (dy31 == 0 && dx31 < 0) { c3 += 1 } + + let mut cy1 = c1 + dx12 * (miny << FIXED_SHIFT) - dy12 * (minx << FIXED_SHIFT); + let mut cy2 = c2 + dx23 * (miny << FIXED_SHIFT) - dy23 * (minx << FIXED_SHIFT); + let mut cy3 = c3 + dx31 * (miny << FIXED_SHIFT) - dy31 * (minx << FIXED_SHIFT); + //dbg!(minx, maxx, tri, cross); + /* Perform rasterization */ + let mut buffer = &mut buffer[miny as usize * width..]; + for _y in miny..=maxy { + let mut cx1 = cy1; + let mut cx2 = cy2; + let mut cx3 = cy3; + + for x in minx..=maxx { + if cx1 > 0 && cx2 > 0 && cx3 > 0 { + // cross is equal to 2*area of the triangle. + // we can normalize cx by 2*area to get barycentric coords. + let area = cross.abs() as f32; + let bary = (cx1 as f32 / area, cx2 as f32 / area, cx3 as f32 / area); + let coverages = coverage1 * bary.0 + coverage2 * bary.1 + coverage3 * bary.2; + let color = (coverages * 255. + 0.5) as u8; + + buffer[x as usize] = color; + } + + cx1 -= fdy12; + cx2 -= fdy23; + cx3 -= fdy31; + } + + cy1 += fdx12; + cy2 += fdx23; + cy3 += fdx31; + + buffer = &mut buffer[width..]; + } +} + +pub fn rasterize_to_mask(vertices: &[OutputVertex], width: u32, height: u32) -> Box<[u8]> { + let mut mask = vec![0; (width * height) as usize]; + for n in (0..vertices.len()).step_by(3) { + let tri = + [&vertices[n], &vertices[n+1], &vertices[n+2]]; + + let tri = Triangle { v: [ + Vertex { x: tri[0].x, y: tri[0].y, coverage: tri[0].coverage}, + Vertex { x: tri[1].x, y: tri[1].y, coverage: tri[1].coverage}, + Vertex { x: tri[2].x, y: tri[2].y, coverage: tri[2].coverage} + ] + }; + rast_triangle(&mut mask, width as usize, height as usize, &tri); + } + mask.into_boxed_slice() +} |