diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/crossbeam-queue/src/seg_queue.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/crossbeam-queue/src/seg_queue.rs')
-rw-r--r-- | third_party/rust/crossbeam-queue/src/seg_queue.rs | 547 |
1 files changed, 547 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-queue/src/seg_queue.rs b/third_party/rust/crossbeam-queue/src/seg_queue.rs new file mode 100644 index 0000000000..2761dc07cd --- /dev/null +++ b/third_party/rust/crossbeam-queue/src/seg_queue.rs @@ -0,0 +1,547 @@ +use alloc::boxed::Box; +use core::cell::UnsafeCell; +use core::fmt; +use core::marker::PhantomData; +use core::mem::MaybeUninit; +use core::ptr; +use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering}; + +use crossbeam_utils::{Backoff, CachePadded}; + +// Bits indicating the state of a slot: +// * If a value has been written into the slot, `WRITE` is set. +// * If a value has been read from the slot, `READ` is set. +// * If the block is being destroyed, `DESTROY` is set. +const WRITE: usize = 1; +const READ: usize = 2; +const DESTROY: usize = 4; + +// Each block covers one "lap" of indices. +const LAP: usize = 32; +// The maximum number of values a block can hold. +const BLOCK_CAP: usize = LAP - 1; +// How many lower bits are reserved for metadata. +const SHIFT: usize = 1; +// Indicates that the block is not the last one. +const HAS_NEXT: usize = 1; + +/// A slot in a block. +struct Slot<T> { + /// The value. + value: UnsafeCell<MaybeUninit<T>>, + + /// The state of the slot. + state: AtomicUsize, +} + +impl<T> Slot<T> { + const UNINIT: Self = Self { + value: UnsafeCell::new(MaybeUninit::uninit()), + state: AtomicUsize::new(0), + }; + + /// Waits until a value is written into the slot. + fn wait_write(&self) { + let backoff = Backoff::new(); + while self.state.load(Ordering::Acquire) & WRITE == 0 { + backoff.snooze(); + } + } +} + +/// A block in a linked list. +/// +/// Each block in the list can hold up to `BLOCK_CAP` values. +struct Block<T> { + /// The next block in the linked list. + next: AtomicPtr<Block<T>>, + + /// Slots for values. + slots: [Slot<T>; BLOCK_CAP], +} + +impl<T> Block<T> { + /// Creates an empty block that starts at `start_index`. + fn new() -> Block<T> { + Self { + next: AtomicPtr::new(ptr::null_mut()), + slots: [Slot::UNINIT; BLOCK_CAP], + } + } + + /// Waits until the next pointer is set. + fn wait_next(&self) -> *mut Block<T> { + let backoff = Backoff::new(); + loop { + let next = self.next.load(Ordering::Acquire); + if !next.is_null() { + return next; + } + backoff.snooze(); + } + } + + /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block. + unsafe fn destroy(this: *mut Block<T>, start: usize) { + // It is not necessary to set the `DESTROY` bit in the last slot because that slot has + // begun destruction of the block. + for i in start..BLOCK_CAP - 1 { + let slot = (*this).slots.get_unchecked(i); + + // Mark the `DESTROY` bit if a thread is still using the slot. + if slot.state.load(Ordering::Acquire) & READ == 0 + && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0 + { + // If a thread is still using the slot, it will continue destruction of the block. + return; + } + } + + // No thread is using the block, now it is safe to destroy it. + drop(Box::from_raw(this)); + } +} + +/// A position in a queue. +struct Position<T> { + /// The index in the queue. + index: AtomicUsize, + + /// The block in the linked list. + block: AtomicPtr<Block<T>>, +} + +/// An unbounded multi-producer multi-consumer queue. +/// +/// This queue is implemented as a linked list of segments, where each segment is a small buffer +/// that can hold a handful of elements. There is no limit to how many elements can be in the queue +/// at a time. However, since segments need to be dynamically allocated as elements get pushed, +/// this queue is somewhat slower than [`ArrayQueue`]. +/// +/// [`ArrayQueue`]: super::ArrayQueue +/// +/// # Examples +/// +/// ``` +/// use crossbeam_queue::SegQueue; +/// +/// let q = SegQueue::new(); +/// +/// q.push('a'); +/// q.push('b'); +/// +/// assert_eq!(q.pop(), Some('a')); +/// assert_eq!(q.pop(), Some('b')); +/// assert!(q.pop().is_none()); +/// ``` +pub struct SegQueue<T> { + /// The head of the queue. + head: CachePadded<Position<T>>, + + /// The tail of the queue. + tail: CachePadded<Position<T>>, + + /// Indicates that dropping a `SegQueue<T>` may drop values of type `T`. + _marker: PhantomData<T>, +} + +unsafe impl<T: Send> Send for SegQueue<T> {} +unsafe impl<T: Send> Sync for SegQueue<T> {} + +impl<T> SegQueue<T> { + /// Creates a new unbounded queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::<i32>::new(); + /// ``` + pub const fn new() -> SegQueue<T> { + SegQueue { + head: CachePadded::new(Position { + block: AtomicPtr::new(ptr::null_mut()), + index: AtomicUsize::new(0), + }), + tail: CachePadded::new(Position { + block: AtomicPtr::new(ptr::null_mut()), + index: AtomicUsize::new(0), + }), + _marker: PhantomData, + } + } + + /// Pushes an element into the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// q.push(10); + /// q.push(20); + /// ``` + pub fn push(&self, value: T) { + let backoff = Backoff::new(); + let mut tail = self.tail.index.load(Ordering::Acquire); + let mut block = self.tail.block.load(Ordering::Acquire); + let mut next_block = None; + + loop { + // Calculate the offset of the index into the block. + let offset = (tail >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + tail = self.tail.index.load(Ordering::Acquire); + block = self.tail.block.load(Ordering::Acquire); + continue; + } + + // If we're going to have to install the next block, allocate it in advance in order to + // make the wait for other threads as short as possible. + if offset + 1 == BLOCK_CAP && next_block.is_none() { + next_block = Some(Box::new(Block::<T>::new())); + } + + // If this is the first push operation, we need to allocate the first block. + if block.is_null() { + let new = Box::into_raw(Box::new(Block::<T>::new())); + + if self + .tail + .block + .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed) + .is_ok() + { + self.head.block.store(new, Ordering::Release); + block = new; + } else { + next_block = unsafe { Some(Box::from_raw(new)) }; + tail = self.tail.index.load(Ordering::Acquire); + block = self.tail.block.load(Ordering::Acquire); + continue; + } + } + + let new_tail = tail + (1 << SHIFT); + + // Try advancing the tail forward. + match self.tail.index.compare_exchange_weak( + tail, + new_tail, + Ordering::SeqCst, + Ordering::Acquire, + ) { + Ok(_) => unsafe { + // If we've reached the end of the block, install the next one. + if offset + 1 == BLOCK_CAP { + let next_block = Box::into_raw(next_block.unwrap()); + let next_index = new_tail.wrapping_add(1 << SHIFT); + + self.tail.block.store(next_block, Ordering::Release); + self.tail.index.store(next_index, Ordering::Release); + (*block).next.store(next_block, Ordering::Release); + } + + // Write the value into the slot. + let slot = (*block).slots.get_unchecked(offset); + slot.value.get().write(MaybeUninit::new(value)); + slot.state.fetch_or(WRITE, Ordering::Release); + + return; + }, + Err(t) => { + tail = t; + block = self.tail.block.load(Ordering::Acquire); + backoff.spin(); + } + } + } + } + + /// Pops an element from the queue. + /// + /// If the queue is empty, `None` is returned. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// q.push(10); + /// assert_eq!(q.pop(), Some(10)); + /// assert!(q.pop().is_none()); + /// ``` + pub fn pop(&self) -> Option<T> { + let backoff = Backoff::new(); + let mut head = self.head.index.load(Ordering::Acquire); + let mut block = self.head.block.load(Ordering::Acquire); + + loop { + // Calculate the offset of the index into the block. + let offset = (head >> SHIFT) % LAP; + + // If we reached the end of the block, wait until the next one is installed. + if offset == BLOCK_CAP { + backoff.snooze(); + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + continue; + } + + let mut new_head = head + (1 << SHIFT); + + if new_head & HAS_NEXT == 0 { + atomic::fence(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::Relaxed); + + // If the tail equals the head, that means the queue is empty. + if head >> SHIFT == tail >> SHIFT { + return None; + } + + // If head and tail are not in the same block, set `HAS_NEXT` in head. + if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP { + new_head |= HAS_NEXT; + } + } + + // The block can be null here only if the first push operation is in progress. In that + // case, just wait until it gets initialized. + if block.is_null() { + backoff.snooze(); + head = self.head.index.load(Ordering::Acquire); + block = self.head.block.load(Ordering::Acquire); + continue; + } + + // Try moving the head index forward. + match self.head.index.compare_exchange_weak( + head, + new_head, + Ordering::SeqCst, + Ordering::Acquire, + ) { + Ok(_) => unsafe { + // If we've reached the end of the block, move to the next one. + if offset + 1 == BLOCK_CAP { + let next = (*block).wait_next(); + let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT); + if !(*next).next.load(Ordering::Relaxed).is_null() { + next_index |= HAS_NEXT; + } + + self.head.block.store(next, Ordering::Release); + self.head.index.store(next_index, Ordering::Release); + } + + // Read the value. + let slot = (*block).slots.get_unchecked(offset); + slot.wait_write(); + let value = slot.value.get().read().assume_init(); + + // Destroy the block if we've reached the end, or if another thread wanted to + // destroy but couldn't because we were busy reading from the slot. + if offset + 1 == BLOCK_CAP { + Block::destroy(block, 0); + } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 { + Block::destroy(block, offset + 1); + } + + return Some(value); + }, + Err(h) => { + head = h; + block = self.head.block.load(Ordering::Acquire); + backoff.spin(); + } + } + } + } + + /// Returns `true` if the queue is empty. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// + /// assert!(q.is_empty()); + /// q.push(1); + /// assert!(!q.is_empty()); + /// ``` + pub fn is_empty(&self) -> bool { + let head = self.head.index.load(Ordering::SeqCst); + let tail = self.tail.index.load(Ordering::SeqCst); + head >> SHIFT == tail >> SHIFT + } + + /// Returns the number of elements in the queue. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_queue::SegQueue; + /// + /// let q = SegQueue::new(); + /// assert_eq!(q.len(), 0); + /// + /// q.push(10); + /// assert_eq!(q.len(), 1); + /// + /// q.push(20); + /// assert_eq!(q.len(), 2); + /// ``` + pub fn len(&self) -> usize { + loop { + // Load the tail index, then load the head index. + let mut tail = self.tail.index.load(Ordering::SeqCst); + let mut head = self.head.index.load(Ordering::SeqCst); + + // If the tail index didn't change, we've got consistent indices to work with. + if self.tail.index.load(Ordering::SeqCst) == tail { + // Erase the lower bits. + tail &= !((1 << SHIFT) - 1); + head &= !((1 << SHIFT) - 1); + + // Fix up indices if they fall onto block ends. + if (tail >> SHIFT) & (LAP - 1) == LAP - 1 { + tail = tail.wrapping_add(1 << SHIFT); + } + if (head >> SHIFT) & (LAP - 1) == LAP - 1 { + head = head.wrapping_add(1 << SHIFT); + } + + // Rotate indices so that head falls into the first block. + let lap = (head >> SHIFT) / LAP; + tail = tail.wrapping_sub((lap * LAP) << SHIFT); + head = head.wrapping_sub((lap * LAP) << SHIFT); + + // Remove the lower bits. + tail >>= SHIFT; + head >>= SHIFT; + + // Return the difference minus the number of blocks between tail and head. + return tail - head - tail / LAP; + } + } + } +} + +impl<T> Drop for SegQueue<T> { + fn drop(&mut self) { + let mut head = *self.head.index.get_mut(); + let mut tail = *self.tail.index.get_mut(); + let mut block = *self.head.block.get_mut(); + + // Erase the lower bits. + head &= !((1 << SHIFT) - 1); + tail &= !((1 << SHIFT) - 1); + + unsafe { + // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks. + while head != tail { + let offset = (head >> SHIFT) % LAP; + + if offset < BLOCK_CAP { + // Drop the value in the slot. + let slot = (*block).slots.get_unchecked(offset); + let p = &mut *slot.value.get(); + p.as_mut_ptr().drop_in_place(); + } else { + // Deallocate the block and move to the next one. + let next = *(*block).next.get_mut(); + drop(Box::from_raw(block)); + block = next; + } + + head = head.wrapping_add(1 << SHIFT); + } + + // Deallocate the last remaining block. + if !block.is_null() { + drop(Box::from_raw(block)); + } + } + } +} + +impl<T> fmt::Debug for SegQueue<T> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.pad("SegQueue { .. }") + } +} + +impl<T> Default for SegQueue<T> { + fn default() -> SegQueue<T> { + SegQueue::new() + } +} + +impl<T> IntoIterator for SegQueue<T> { + type Item = T; + + type IntoIter = IntoIter<T>; + + fn into_iter(self) -> Self::IntoIter { + IntoIter { value: self } + } +} + +#[derive(Debug)] +pub struct IntoIter<T> { + value: SegQueue<T>, +} + +impl<T> Iterator for IntoIter<T> { + type Item = T; + + fn next(&mut self) -> Option<Self::Item> { + let value = &mut self.value; + let head = *value.head.index.get_mut(); + let tail = *value.tail.index.get_mut(); + if head >> SHIFT == tail >> SHIFT { + None + } else { + let block = *value.head.block.get_mut(); + let offset = (head >> SHIFT) % LAP; + + // SAFETY: We have mutable access to this, so we can read without + // worrying about concurrency. Furthermore, we know this is + // initialized because it is the value pointed at by `value.head` + // and this is a non-empty queue. + let item = unsafe { + let slot = (*block).slots.get_unchecked(offset); + let p = &mut *slot.value.get(); + p.as_mut_ptr().read() + }; + if offset + 1 == BLOCK_CAP { + // Deallocate the block and move to the next one. + // SAFETY: The block is initialized because we've been reading + // from it this entire time. We can drop it b/c everything has + // been read out of it, so nothing is pointing to it anymore. + unsafe { + let next = *(*block).next.get_mut(); + drop(Box::from_raw(block)); + *value.head.block.get_mut() = next; + } + // The last value in a block is empty, so skip it + *value.head.index.get_mut() = head.wrapping_add(2 << SHIFT); + // Double-check that we're pointing to the first item in a block. + debug_assert_eq!((*value.head.index.get_mut() >> SHIFT) % LAP, 0); + } else { + *value.head.index.get_mut() = head.wrapping_add(1 << SHIFT); + } + Some(item) + } + } +} |