summaryrefslogtreecommitdiffstats
path: root/third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp')
-rw-r--r--third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp1086
1 files changed, 1086 insertions, 0 deletions
diff --git a/third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp b/third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp
new file mode 100644
index 0000000000..b4e148533d
--- /dev/null
+++ b/third_party/rust/cubeb-sys/libcubeb/test/test_resampler.cpp
@@ -0,0 +1,1086 @@
+/*
+ * Copyright © 2016 Mozilla Foundation
+ *
+ * This program is made available under an ISC-style license. See the
+ * accompanying file LICENSE for details.
+ */
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif // NOMINMAX
+#include "gtest/gtest.h"
+#include "common.h"
+#include "cubeb_resampler_internal.h"
+#include <stdio.h>
+#include <algorithm>
+#include <iostream>
+
+/* Windows cmath USE_MATH_DEFINE thing... */
+const float PI = 3.14159265359f;
+
+/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
+ * only part of the test suite is ran. */
+#ifdef THOROUGH_TESTING
+/* Some standard sample rates we're testing with. */
+const uint32_t sample_rates[] = {
+ 8000,
+ 16000,
+ 32000,
+ 44100,
+ 48000,
+ 88200,
+ 96000,
+ 192000
+};
+/* The maximum number of channels we're resampling. */
+const uint32_t max_channels = 2;
+/* The minimum an maximum number of milliseconds we're resampling for. This is
+ * used to simulate the fact that the audio stream is resampled in chunks,
+ * because audio is delivered using callbacks. */
+const uint32_t min_chunks = 10; /* ms */
+const uint32_t max_chunks = 30; /* ms */
+const uint32_t chunk_increment = 1;
+
+#else
+
+const uint32_t sample_rates[] = {
+ 8000,
+ 44100,
+ 48000,
+};
+const uint32_t max_channels = 2;
+const uint32_t min_chunks = 10; /* ms */
+const uint32_t max_chunks = 30; /* ms */
+const uint32_t chunk_increment = 10;
+#endif
+
+#define DUMP_ARRAYS
+#ifdef DUMP_ARRAYS
+/**
+ * Files produced by dump(...) can be converted to .wave files using:
+ *
+ * sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav
+ *
+ * for floating-point audio, or:
+ *
+ * sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav
+ *
+ * for 16bit integer audio.
+ */
+
+/* Use the correct implementation of fopen, depending on the platform. */
+void fopen_portable(FILE ** f, const char * name, const char * mode)
+{
+#ifdef WIN32
+ fopen_s(f, name, mode);
+#else
+ *f = fopen(name, mode);
+#endif
+}
+
+template<typename T>
+void dump(const char * name, T * frames, size_t count)
+{
+ FILE * file;
+ fopen_portable(&file, name, "wb");
+
+ if (!file) {
+ fprintf(stderr, "error opening %s\n", name);
+ return;
+ }
+
+ if (count != fwrite(frames, sizeof(T), count, file)) {
+ fprintf(stderr, "error writing to %s\n", name);
+ }
+ fclose(file);
+}
+#else
+template<typename T>
+void dump(const char * name, T * frames, size_t count)
+{ }
+#endif
+
+// The more the ratio is far from 1, the more we accept a big error.
+float epsilon_tweak_ratio(float ratio)
+{
+ return ratio >= 1 ? ratio : 1 / ratio;
+}
+
+// Epsilon values for comparing resampled data to expected data.
+// The bigger the resampling ratio is, the more lax we are about errors.
+template<typename T>
+T epsilon(float ratio);
+
+template<>
+float epsilon(float ratio) {
+ return 0.08f * epsilon_tweak_ratio(ratio);
+}
+
+template<>
+int16_t epsilon(float ratio) {
+ return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
+}
+
+void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
+{
+ const size_t length_s = 2;
+ const size_t rate = 44100;
+ const size_t length_frames = rate * length_s;
+ delay_line<float> delay(delay_frames, channels, rate);
+ auto_array<float> input;
+ auto_array<float> output;
+ uint32_t chunk_length = channels * chunk_ms * rate / 1000;
+ uint32_t output_offset = 0;
+ uint32_t channel = 0;
+
+ /** Generate diracs every 100 frames, and check they are delayed. */
+ input.push_silence(length_frames * channels);
+ for (uint32_t i = 0; i < input.length() - 1; i+=100) {
+ input.data()[i + channel] = 0.5;
+ channel = (channel + 1) % channels;
+ }
+ dump("input.raw", input.data(), input.length());
+ while(input.length()) {
+ uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels);
+ float * in = delay.input_buffer(to_pop / channels);
+ input.pop(in, to_pop);
+ delay.written(to_pop / channels);
+ output.push_silence(to_pop);
+ delay.output(output.data() + output_offset, to_pop / channels);
+ output_offset += to_pop;
+ }
+
+ // Check the diracs have been shifted by `delay_frames` frames.
+ for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) {
+ ASSERT_EQ(output.data()[i + channel + delay_frames * channels], 0.5);
+ channel = (channel + 1) % channels;
+ }
+
+ dump("output.raw", output.data(), output.length());
+}
+/**
+ * This takes sine waves with a certain `channels` count, `source_rate`, and
+ * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
+ * Then a sample-wise comparison is performed against a sine wave generated at
+ * the correct rate.
+ */
+template<typename T>
+void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration)
+{
+ size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
+ float resampling_ratio = static_cast<float>(source_rate) / target_rate;
+ cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3);
+ auto_array<T> source(channels * source_rate * 10);
+ auto_array<T> destination(channels * target_rate * 10);
+ auto_array<T> expected(channels * target_rate * 10);
+ uint32_t phase_index = 0;
+ uint32_t offset = 0;
+ const uint32_t buf_len = 2; /* seconds */
+
+ // generate a sine wave in each channel, at the source sample rate
+ source.push_silence(channels * source_rate * buf_len);
+ while(offset != source.length()) {
+ float p = phase_index++ / static_cast<float>(source_rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+
+ dump("input.raw", source.data(), source.length());
+
+ expected.push_silence(channels * target_rate * buf_len);
+ // generate a sine wave in each channel, at the target sample rate.
+ // Insert silent samples at the beginning to account for the resampler latency.
+ offset = resampler.latency() * channels;
+ for (uint32_t i = 0; i < offset; i++) {
+ expected.data()[i] = 0.0f;
+ }
+ phase_index = 0;
+ while (offset != expected.length()) {
+ float p = phase_index++ / static_cast<float>(target_rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+
+ dump("expected.raw", expected.data(), expected.length());
+
+ // resample by chunk
+ uint32_t write_offset = 0;
+ destination.push_silence(channels * target_rate * buf_len);
+ while (write_offset < destination.length())
+ {
+ size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio));
+ uint32_t input_frames = resampler.input_needed_for_output(output_frames);
+ resampler.input(source.data(), input_frames);
+ source.pop(nullptr, input_frames * channels);
+ resampler.output(destination.data() + write_offset,
+ std::min(output_frames, (destination.length() - write_offset) / channels));
+ write_offset += output_frames * channels;
+ }
+
+ dump("output.raw", destination.data(), expected.length());
+
+ // compare, taking the latency into account
+ bool fuzzy_equal = true;
+ for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
+ float diff = fabs(expected.data()[i] - destination.data()[i]);
+ if (diff > epsilon<T>(resampling_ratio)) {
+ fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff);
+ fuzzy_equal = false;
+ }
+ }
+ ASSERT_TRUE(fuzzy_equal);
+}
+
+template<typename T>
+cubeb_sample_format cubeb_format();
+
+template<>
+cubeb_sample_format cubeb_format<float>()
+{
+ return CUBEB_SAMPLE_FLOAT32NE;
+}
+
+template<>
+cubeb_sample_format cubeb_format<short>()
+{
+ return CUBEB_SAMPLE_S16NE;
+}
+
+struct osc_state {
+ osc_state()
+ : input_phase_index(0)
+ , output_phase_index(0)
+ , output_offset(0)
+ , input_channels(0)
+ , output_channels(0)
+ {}
+ uint32_t input_phase_index;
+ uint32_t max_output_phase_index;
+ uint32_t output_phase_index;
+ uint32_t output_offset;
+ uint32_t input_channels;
+ uint32_t output_channels;
+ uint32_t output_rate;
+ uint32_t target_rate;
+ auto_array<float> input;
+ auto_array<float> output;
+};
+
+uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels,
+ uint32_t frames, uint32_t initial_phase)
+{
+ uint32_t offset = 0;
+ for (uint32_t i = 0; i < frames; i++) {
+ float p = initial_phase++ / static_cast<float>(rate);
+ for (uint32_t j = 0; j < channels; j++) {
+ buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
+ }
+ }
+ return initial_phase;
+}
+
+long data_cb_resampler(cubeb_stream * /*stm*/, void * user_ptr,
+ const void * input_buffer, void * output_buffer, long frame_count)
+{
+ osc_state * state = reinterpret_cast<osc_state*>(user_ptr);
+ const float * in = reinterpret_cast<const float*>(input_buffer);
+ float * out = reinterpret_cast<float*>(output_buffer);
+
+ state->input.push(in, frame_count * state->input_channels);
+
+ /* Check how much output frames we need to write */
+ uint32_t remaining = state->max_output_phase_index - state->output_phase_index;
+ uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
+ state->output_phase_index = fill_with_sine(out,
+ state->target_rate,
+ state->output_channels,
+ to_write,
+ state->output_phase_index);
+
+ return to_write;
+}
+
+template<typename T>
+bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi)
+{
+ uint32_t len = std::min(lhs.length(), rhs.length());
+
+ for (uint32_t i = 0; i < len; i++) {
+ if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
+ std::cout << "not fuzzy equal at index: " << i
+ << " lhs: " << lhs.at(i) << " rhs: " << rhs.at(i)
+ << " delta: " << fabs(lhs.at(i) - rhs.at(i))
+ << " epsilon: "<< epsi << std::endl;
+ return false;
+ }
+ }
+ return true;
+}
+
+template<typename T>
+void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
+ uint32_t input_rate, uint32_t output_rate,
+ uint32_t target_rate, float chunk_duration)
+{
+ cubeb_stream_params input_params;
+ cubeb_stream_params output_params;
+ osc_state state;
+
+ input_params.format = output_params.format = cubeb_format<T>();
+ state.input_channels = input_params.channels = input_channels;
+ state.output_channels = output_params.channels = output_channels;
+ input_params.rate = input_rate;
+ state.output_rate = output_params.rate = output_rate;
+ state.target_rate = target_rate;
+ input_params.prefs = output_params.prefs = CUBEB_STREAM_PREF_NONE;
+ long got;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate,
+ data_cb_resampler, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ long latency = cubeb_resampler_latency(resampler);
+
+ const uint32_t duration_s = 2;
+ int32_t duration_frames = duration_s * target_rate;
+ uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2;
+ uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
+ auto_array<float> input_buffer(input_channels * input_array_frame_count);
+ auto_array<float> output_buffer(output_channels * output_array_frame_count);
+ auto_array<float> expected_resampled_input(input_channels * duration_frames);
+ auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s);
+
+ state.max_output_phase_index = duration_s * target_rate;
+
+ expected_resampled_input.push_silence(input_channels * duration_frames);
+ expected_resampled_output.push_silence(output_channels * output_rate * duration_s);
+
+ /* expected output is a 440Hz sine wave at 16kHz */
+ fill_with_sine(expected_resampled_input.data() + latency,
+ target_rate, input_channels, duration_frames - latency, 0);
+ /* expected output is a 440Hz sine wave at 32kHz */
+ fill_with_sine(expected_resampled_output.data() + latency,
+ output_rate, output_channels, output_rate * duration_s - latency, 0);
+
+ while (state.output_phase_index != state.max_output_phase_index) {
+ uint32_t leftover_samples = input_buffer.length() * input_channels;
+ input_buffer.reserve(input_array_frame_count);
+ state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples,
+ input_rate,
+ input_channels,
+ input_array_frame_count - leftover_samples,
+ state.input_phase_index);
+ long input_consumed = input_array_frame_count;
+ input_buffer.set_length(input_array_frame_count);
+
+ got = cubeb_resampler_fill(resampler,
+ input_buffer.data(), &input_consumed,
+ output_buffer.data(), output_array_frame_count);
+
+ /* handle leftover input */
+ if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
+ input_buffer.pop(nullptr, input_consumed * input_channels);
+ } else {
+ input_buffer.clear();
+ }
+
+ state.output.push(output_buffer.data(), got * state.output_channels);
+ }
+
+ dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length());
+ dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length());
+ dump("input.raw", state.input.data(), state.input.length());
+ dump("output.raw", state.output.data(), state.output.length());
+
+ // This is disabled because the latency estimation in the resampler code is
+ // slightly off so we can generate expected vectors.
+ // See https://github.com/kinetiknz/cubeb/issues/93
+ // ASSERT_TRUE(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate)));
+ // ASSERT_TRUE(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate)));
+
+ cubeb_resampler_destroy(resampler);
+}
+
+#define array_size(x) (sizeof(x) / sizeof(x[0]))
+
+TEST(cubeb, resampler_one_way)
+{
+ /* Test one way resamplers */
+ for (uint32_t channels = 1; channels <= max_channels; channels++) {
+ for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) {
+ for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
+ for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
+ fprintf(stderr, "one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n",
+ channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration);
+ test_resampler_one_way<float>(channels, sample_rates[source_rate],
+ sample_rates[dest_rate], chunk_duration);
+ }
+ }
+ }
+ }
+}
+
+TEST(cubeb, DISABLED_resampler_duplex)
+{
+ for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) {
+ for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) {
+ for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) {
+ for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) {
+ for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
+ for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
+ fprintf(stderr, "input channels:%d output_channels:%d input_rate:%d "
+ "output_rate:%d target_rate:%d chunk_ms:%d\n",
+ input_channels, output_channels,
+ sample_rates[source_rate_input],
+ sample_rates[source_rate_output],
+ sample_rates[dest_rate],
+ chunk_duration);
+ test_resampler_duplex<float>(input_channels, output_channels,
+ sample_rates[source_rate_input],
+ sample_rates[source_rate_output],
+ sample_rates[dest_rate],
+ chunk_duration);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+TEST(cubeb, resampler_delay_line)
+{
+ for (uint32_t channel = 1; channel <= 2; channel++) {
+ for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) {
+ for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
+ fprintf(stderr, "channel: %d, delay_frames: %d, chunk_size: %d\n",
+ channel, delay_frames, chunk_size);
+ test_delay_lines(delay_frames, channel, chunk_size);
+ }
+ }
+ }
+}
+
+long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ EXPECT_TRUE(output_buffer);
+ EXPECT_TRUE(!input_buffer);
+ return frame_count;
+}
+
+TEST(cubeb, resampler_output_only_noop)
+{
+ cubeb_stream_params output_params;
+ int target_rate;
+
+ output_params.rate = 44100;
+ output_params.channels = 1;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ target_rate = output_params.rate;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
+ test_output_only_noop_data_cb, nullptr,
+ CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+ const long out_frames = 128;
+ float out_buffer[out_frames];
+ long got;
+
+ got = cubeb_resampler_fill(resampler, nullptr, nullptr,
+ out_buffer, out_frames);
+
+ ASSERT_EQ(got, out_frames);
+
+ cubeb_resampler_destroy(resampler);
+}
+
+long test_drain_data_cb(cubeb_stream * /*stm*/, void * user_ptr,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ EXPECT_TRUE(output_buffer);
+ EXPECT_TRUE(!input_buffer);
+ auto cb_count = static_cast<int *>(user_ptr);
+ (*cb_count)++;
+ return frame_count - 1;
+}
+
+TEST(cubeb, resampler_drain)
+{
+ cubeb_stream_params output_params;
+ int target_rate;
+
+ output_params.rate = 44100;
+ output_params.channels = 1;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ target_rate = 48000;
+ int cb_count = 0;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
+ test_drain_data_cb, &cb_count,
+ CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ const long out_frames = 128;
+ float out_buffer[out_frames];
+ long got;
+
+ do {
+ got = cubeb_resampler_fill(resampler, nullptr, nullptr,
+ out_buffer, out_frames);
+ } while (got == out_frames);
+
+ /* The callback should be called once but not again after returning <
+ * frame_count. */
+ ASSERT_EQ(cb_count, 1);
+
+ cubeb_resampler_destroy(resampler);
+}
+
+// gtest does not support using ASSERT_EQ and friend in a function that returns
+// a value.
+void check_output(const void * input_buffer, void * output_buffer, long frame_count)
+{
+ ASSERT_EQ(input_buffer, nullptr);
+ ASSERT_EQ(frame_count, 256);
+ ASSERT_TRUE(!!output_buffer);
+}
+
+long cb_passthrough_resampler_output(cubeb_stream * /*stm*/, void * /*user_ptr*/,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ check_output(input_buffer, output_buffer, frame_count);
+ return frame_count;
+}
+
+TEST(cubeb, resampler_passthrough_output_only)
+{
+ // Test that the passthrough resampler works when there is only an output stream.
+ cubeb_stream_params output_params;
+
+ const size_t output_channels = 2;
+ output_params.channels = output_channels;
+ output_params.rate = 44100;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ int target_rate = output_params.rate;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params,
+ target_rate, cb_passthrough_resampler_output, nullptr,
+ CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ float output_buffer[output_channels * 256];
+
+ long got;
+ for (uint32_t i = 0; i < 30; i++) {
+ got = cubeb_resampler_fill(resampler, nullptr, nullptr, output_buffer, 256);
+ ASSERT_EQ(got, 256);
+ }
+
+ cubeb_resampler_destroy(resampler);
+}
+
+// gtest does not support using ASSERT_EQ and friend in a function that returns
+// a value.
+void check_input(const void * input_buffer, void * output_buffer, long frame_count)
+{
+ ASSERT_EQ(output_buffer, nullptr);
+ ASSERT_EQ(frame_count, 256);
+ ASSERT_TRUE(!!input_buffer);
+}
+
+long cb_passthrough_resampler_input(cubeb_stream * /*stm*/, void * /*user_ptr*/,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ check_input(input_buffer, output_buffer, frame_count);
+ return frame_count;
+}
+
+TEST(cubeb, resampler_passthrough_input_only)
+{
+ // Test that the passthrough resampler works when there is only an output stream.
+ cubeb_stream_params input_params;
+
+ const size_t input_channels = 2;
+ input_params.channels = input_channels;
+ input_params.rate = 44100;
+ input_params.format = CUBEB_SAMPLE_FLOAT32NE;
+ int target_rate = input_params.rate;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, nullptr,
+ target_rate, cb_passthrough_resampler_input, nullptr,
+ CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ float input_buffer[input_channels * 256];
+
+ long got;
+ for (uint32_t i = 0; i < 30; i++) {
+ long int frames = 256;
+ got = cubeb_resampler_fill(resampler, input_buffer, &frames, nullptr, 0);
+ ASSERT_EQ(got, 256);
+ }
+
+ cubeb_resampler_destroy(resampler);
+}
+
+template<typename T>
+long seq(T* array, int stride, long start, long count)
+{
+ uint32_t output_idx = 0;
+ for(int i = 0; i < count; i++) {
+ for (int j = 0; j < stride; j++) {
+ array[output_idx + j] = static_cast<T>(start + i);
+ }
+ output_idx += stride;
+ }
+ return start + count;
+}
+
+template<typename T>
+void is_seq(T * array, int stride, long count, long expected_start)
+{
+ uint32_t output_index = 0;
+ for (long i = 0; i < count; i++) {
+ for (int j = 0; j < stride; j++) {
+ ASSERT_EQ(array[output_index + j], expected_start + i);
+ }
+ output_index += stride;
+ }
+}
+
+template<typename T>
+void is_not_seq(T * array, int stride, long count, long expected_start)
+{
+ uint32_t output_index = 0;
+ for (long i = 0; i < count; i++) {
+ for (int j = 0; j < stride; j++) {
+ ASSERT_NE(array[output_index + j], expected_start + i);
+ }
+ output_index += stride;
+ }
+}
+
+struct closure {
+ int input_channel_count;
+};
+
+// gtest does not support using ASSERT_EQ and friend in a function that returns
+// a value.
+template<typename T>
+void check_duplex(const T * input_buffer,
+ T * output_buffer, long frame_count,
+ int input_channel_count)
+{
+ ASSERT_EQ(frame_count, 256);
+ // Silence scan-build warning.
+ ASSERT_TRUE(!!output_buffer); assert(output_buffer);
+ ASSERT_TRUE(!!input_buffer); assert(input_buffer);
+
+ int output_index = 0;
+ int input_index = 0;
+ for (int i = 0; i < frame_count; i++) {
+ // output is two channels, input one or two channels.
+ if (input_channel_count == 1) {
+ output_buffer[output_index] = output_buffer[output_index + 1] = input_buffer[i];
+ } else if (input_channel_count == 2) {
+ output_buffer[output_index] = input_buffer[input_index];
+ output_buffer[output_index + 1] = input_buffer[input_index + 1];
+ }
+ output_index += 2;
+ input_index += input_channel_count;
+ }
+}
+
+long cb_passthrough_resampler_duplex(cubeb_stream * /*stm*/, void * user_ptr,
+ const void * input_buffer,
+ void * output_buffer, long frame_count)
+{
+ closure * c = reinterpret_cast<closure*>(user_ptr);
+ check_duplex<float>(static_cast<const float*>(input_buffer),
+ static_cast<float*>(output_buffer),
+ frame_count, c->input_channel_count);
+ return frame_count;
+}
+
+
+TEST(cubeb, resampler_passthrough_duplex_callback_reordering)
+{
+ // Test that when pre-buffering on resampler creation, we can survive an input
+ // callback being delayed.
+
+ cubeb_stream_params input_params;
+ cubeb_stream_params output_params;
+
+ const int input_channels = 1;
+ const int output_channels = 2;
+
+ input_params.channels = input_channels;
+ input_params.rate = 44100;
+ input_params.format = CUBEB_SAMPLE_FLOAT32NE;
+
+ output_params.channels = output_channels;
+ output_params.rate = input_params.rate;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+
+ int target_rate = input_params.rate;
+
+ closure c;
+ c.input_channel_count = input_channels;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params,
+ target_rate, cb_passthrough_resampler_duplex, &c,
+ CUBEB_RESAMPLER_QUALITY_VOIP,
+ CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ const long BUF_BASE_SIZE = 256;
+ float input_buffer_prebuffer[input_channels * BUF_BASE_SIZE * 2];
+ float input_buffer_glitch[input_channels * BUF_BASE_SIZE * 2];
+ float input_buffer_normal[input_channels * BUF_BASE_SIZE];
+ float output_buffer[output_channels * BUF_BASE_SIZE];
+
+ long seq_idx = 0;
+ long output_seq_idx = 0;
+
+ long prebuffer_frames = ARRAY_LENGTH(input_buffer_prebuffer) / input_params.channels;
+ seq_idx = seq(input_buffer_prebuffer, input_channels, seq_idx,
+ prebuffer_frames);
+
+ long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer, &prebuffer_frames,
+ output_buffer, BUF_BASE_SIZE);
+
+ output_seq_idx += BUF_BASE_SIZE;
+
+ // prebuffer_frames will hold the frames used by the resampler.
+ ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
+ ASSERT_EQ(got, BUF_BASE_SIZE);
+
+ for (uint32_t i = 0; i < 300; i++) {
+ long int frames = BUF_BASE_SIZE;
+ // Simulate that sometimes, we don't have the input callback on time
+ if (i != 0 && (i % 100) == 0) {
+ long zero = 0;
+ got = cubeb_resampler_fill(resampler, input_buffer_normal /* unused here */,
+ &zero, output_buffer, BUF_BASE_SIZE);
+ is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
+ output_seq_idx += BUF_BASE_SIZE;
+ } else if (i != 0 && (i % 100) == 1) {
+ // if this is the case, the on the next iteration, we'll have twice the
+ // amount of input frames
+ seq_idx = seq(input_buffer_glitch, input_channels, seq_idx, BUF_BASE_SIZE * 2);
+ frames = 2 * BUF_BASE_SIZE;
+ got = cubeb_resampler_fill(resampler, input_buffer_glitch, &frames, output_buffer, BUF_BASE_SIZE);
+ is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
+ output_seq_idx += BUF_BASE_SIZE;
+ } else {
+ // normal case
+ seq_idx = seq(input_buffer_normal, input_channels, seq_idx, BUF_BASE_SIZE);
+ long normal_input_frame_count = 256;
+ got = cubeb_resampler_fill(resampler, input_buffer_normal, &normal_input_frame_count, output_buffer, BUF_BASE_SIZE);
+ is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
+ output_seq_idx += BUF_BASE_SIZE;
+ }
+ ASSERT_EQ(got, BUF_BASE_SIZE);
+ }
+
+ cubeb_resampler_destroy(resampler);
+}
+
+// Artificially simulate output thread underruns,
+// by building up artificial delay in the input.
+// Check that the frame drop logic kicks in.
+TEST(cubeb, resampler_drift_drop_data)
+{
+ for (uint32_t input_channels = 1; input_channels < 3; input_channels++) {
+ cubeb_stream_params input_params;
+ cubeb_stream_params output_params;
+
+ const int output_channels = 2;
+ const int sample_rate = 44100;
+
+ input_params.channels = input_channels;
+ input_params.rate = sample_rate;
+ input_params.format = CUBEB_SAMPLE_FLOAT32NE;
+
+ output_params.channels = output_channels;
+ output_params.rate = sample_rate;
+ output_params.format = CUBEB_SAMPLE_FLOAT32NE;
+
+ int target_rate = input_params.rate;
+
+ closure c;
+ c.input_channel_count = input_channels;
+
+ cubeb_resampler * resampler =
+ cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params,
+ target_rate, cb_passthrough_resampler_duplex, &c,
+ CUBEB_RESAMPLER_QUALITY_VOIP, CUBEB_RESAMPLER_RECLOCK_NONE);
+
+ const long BUF_BASE_SIZE = 256;
+
+ // The factor by which the deadline is missed. This is intentionally
+ // kind of large to trigger the frame drop quickly. In real life, multiple
+ // smaller under-runs would accumulate.
+ const long UNDERRUN_FACTOR = 10;
+ // Number buffer used for pre-buffering, that some backends do.
+ const long PREBUFFER_FACTOR = 2;
+
+ std::vector<float> input_buffer_prebuffer(input_channels * BUF_BASE_SIZE * PREBUFFER_FACTOR);
+ std::vector<float> input_buffer_glitch(input_channels * BUF_BASE_SIZE * UNDERRUN_FACTOR);
+ std::vector<float> input_buffer_normal(input_channels * BUF_BASE_SIZE);
+ std::vector<float> output_buffer(output_channels * BUF_BASE_SIZE);
+
+ long seq_idx = 0;
+ long output_seq_idx = 0;
+
+ long prebuffer_frames = input_buffer_prebuffer.size() / input_params.channels;
+ seq_idx = seq(input_buffer_prebuffer.data(), input_channels, seq_idx,
+ prebuffer_frames);
+
+ long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer.data(), &prebuffer_frames,
+ output_buffer.data(), BUF_BASE_SIZE);
+
+ output_seq_idx += BUF_BASE_SIZE;
+
+ // prebuffer_frames will hold the frames used by the resampler.
+ ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
+ ASSERT_EQ(got, BUF_BASE_SIZE);
+
+ for (uint32_t i = 0; i < 300; i++) {
+ long int frames = BUF_BASE_SIZE;
+ if (i != 0 && (i % 100) == 1) {
+ // Once in a while, the output thread misses its deadline.
+ // The input thread still produces data, so it ends up accumulating. Simulate this by providing a
+ // much bigger input buffer. Check that the sequence is now unaligned, meaning we've dropped data
+ // to keep everything in sync.
+ seq_idx = seq(input_buffer_glitch.data(), input_channels, seq_idx, BUF_BASE_SIZE * UNDERRUN_FACTOR);
+ frames = BUF_BASE_SIZE * UNDERRUN_FACTOR;
+ got = cubeb_resampler_fill(resampler, input_buffer_glitch.data(), &frames, output_buffer.data(), BUF_BASE_SIZE);
+ is_seq(output_buffer.data(), 2, BUF_BASE_SIZE, output_seq_idx);
+ output_seq_idx += BUF_BASE_SIZE;
+ }
+ else if (i != 0 && (i % 100) == 2) {
+ // On the next iteration, the sequence should be broken
+ seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE);
+ long normal_input_frame_count = 256;
+ got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE);
+ is_not_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx);
+ // Reclock so that we can use is_seq again.
+ output_seq_idx = output_buffer[BUF_BASE_SIZE * output_channels - 1] + 1;
+ }
+ else {
+ // normal case
+ seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE);
+ long normal_input_frame_count = 256;
+ got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE);
+ is_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx);
+ output_seq_idx += BUF_BASE_SIZE;
+ }
+ ASSERT_EQ(got, BUF_BASE_SIZE);
+ }
+
+ cubeb_resampler_destroy(resampler);
+ }
+}
+
+static long
+passthrough_resampler_fill_eq_input(cubeb_stream * stream,
+ void * user_ptr,
+ void const * input_buffer,
+ void * output_buffer,
+ long nframes) {
+ // gtest does not support using ASSERT_EQ and friends in a
+ // function that returns a value.
+ [nframes, input_buffer]() {
+ ASSERT_EQ(nframes, 32);
+ const float* input = static_cast<const float*>(input_buffer);
+ for (int i = 0; i < 64; ++i) {
+ ASSERT_FLOAT_EQ(input[i], 0.01 * i);
+ }
+ }();
+ return nframes;
+}
+
+TEST(cubeb, passthrough_resampler_fill_eq_input) {
+ uint32_t channels = 2;
+ uint32_t sample_rate = 44100;
+ passthrough_resampler<float> resampler =
+ passthrough_resampler<float>(nullptr, passthrough_resampler_fill_eq_input,
+ nullptr, channels, sample_rate);
+
+ long input_frame_count = 32;
+ long output_frame_count = 32;
+ float input[64] = {};
+ float output[64] = {};
+ for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
+ input[i] = 0.01 * i;
+ }
+ long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
+ ASSERT_EQ(got, output_frame_count);
+ // Input frames used must be equal to output frames.
+ ASSERT_EQ(input_frame_count, output_frame_count);
+}
+
+static long
+passthrough_resampler_fill_short_input(cubeb_stream * stream,
+ void * user_ptr,
+ void const * input_buffer,
+ void * output_buffer,
+ long nframes) {
+ // gtest does not support using ASSERT_EQ and friends in a
+ // function that returns a value.
+ [nframes, input_buffer]() {
+ ASSERT_EQ(nframes, 32);
+ const float* input = static_cast<const float*>(input_buffer);
+ // First part contains the input
+ for (int i = 0; i < 32; ++i) {
+ ASSERT_FLOAT_EQ(input[i], 0.01 * i);
+ }
+ // missing part contains silence
+ for (int i = 32; i < 64; ++i) {
+ ASSERT_FLOAT_EQ(input[i], 0.0);
+ }
+ }();
+ return nframes;
+}
+
+TEST(cubeb, passthrough_resampler_fill_short_input) {
+ uint32_t channels = 2;
+ uint32_t sample_rate = 44100;
+ passthrough_resampler<float> resampler =
+ passthrough_resampler<float>(nullptr, passthrough_resampler_fill_short_input,
+ nullptr, channels, sample_rate);
+
+ long input_frame_count = 16;
+ long output_frame_count = 32;
+ float input[64] = {};
+ float output[64] = {};
+ for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
+ input[i] = 0.01 * i;
+ }
+ long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
+ ASSERT_EQ(got, output_frame_count);
+ // Input frames used are less than the output frames due to glitch.
+ ASSERT_EQ(input_frame_count, output_frame_count - 16);
+}
+
+static long
+passthrough_resampler_fill_input_left(cubeb_stream * stream,
+ void * user_ptr,
+ void const * input_buffer,
+ void * output_buffer,
+ long nframes) {
+ // gtest does not support using ASSERT_EQ and friends in a
+ // function that returns a value.
+ int iteration = *static_cast<int*>(user_ptr);
+ if (iteration == 1) {
+ [nframes, input_buffer]() {
+ ASSERT_EQ(nframes, 32);
+ const float* input = static_cast<const float*>(input_buffer);
+ for (int i = 0; i < 64; ++i) {
+ ASSERT_FLOAT_EQ(input[i], 0.01 * i);
+ }
+ }();
+ } else if (iteration == 2) {
+ [nframes, input_buffer]() {
+ ASSERT_EQ(nframes, 32);
+ const float* input = static_cast<const float*>(input_buffer);
+ for (int i = 0; i < 32; ++i) {
+ // First part contains the reamaining input samples from previous
+ // iteration (since they were more).
+ ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 64));
+ // next part contains the new buffer
+ ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
+ }
+ }();
+ } else if (iteration == 3) {
+ [nframes, input_buffer]() {
+ ASSERT_EQ(nframes, 32);
+ const float* input = static_cast<const float*>(input_buffer);
+ for (int i = 0; i < 32; ++i) {
+ // First part (16 frames) contains the reamaining input samples
+ // from previous iteration (since they were more).
+ ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 32));
+ }
+ for (int i = 0; i < 16; ++i) {
+ // next part (8 frames) contains the new input buffer.
+ ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
+ // last part (8 frames) contains silence.
+ ASSERT_FLOAT_EQ(input[i + 32 + 16], 0.0);
+ }
+ }();
+ }
+ return nframes;
+}
+
+TEST(cubeb, passthrough_resampler_fill_input_left) {
+ const uint32_t channels = 2;
+ const uint32_t sample_rate = 44100;
+ int iteration = 0;
+ passthrough_resampler<float> resampler =
+ passthrough_resampler<float>(nullptr, passthrough_resampler_fill_input_left,
+ &iteration, channels, sample_rate);
+
+ long input_frame_count = 48; // 32 + 16
+ const long output_frame_count = 32;
+ float input[96] = {};
+ float output[64] = {};
+ for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
+ input[i] = 0.01 * i;
+ }
+
+ // 1st iteration, add the extra input.
+ iteration = 1;
+ long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
+ ASSERT_EQ(got, output_frame_count);
+ // Input frames used must be equal to output frames.
+ ASSERT_EQ(input_frame_count, output_frame_count);
+
+ // 2st iteration, use the extra input from previous iteration,
+ // 16 frames are remaining in the input buffer.
+ input_frame_count = 32; // we need 16 input frames but we get more;
+ iteration = 2;
+ got = resampler.fill(input, &input_frame_count, output, output_frame_count);
+ ASSERT_EQ(got, output_frame_count);
+ // Input frames used must be equal to output frames.
+ ASSERT_EQ(input_frame_count, output_frame_count);
+
+ // 3rd iteration, use the extra input from previous iteration.
+ // 16 frames are remaining in the input buffer.
+ input_frame_count = 16 - 8; // We need 16 more input frames but we only get 8.
+ iteration = 3;
+ got = resampler.fill(input, &input_frame_count, output, output_frame_count);
+ ASSERT_EQ(got, output_frame_count);
+ // Input frames used are less than the output frames due to glitch.
+ ASSERT_EQ(input_frame_count, output_frame_count - 8);
+}
+
+TEST(cubeb, individual_methods) {
+ const uint32_t channels = 2;
+ const uint32_t sample_rate = 44100;
+ const uint32_t frames = 256;
+
+ delay_line<float> dl(10, channels, sample_rate);
+ uint32_t frames_needed1 = dl.input_needed_for_output(0);
+ ASSERT_EQ(frames_needed1, 0u);
+
+ cubeb_resampler_speex_one_way<float> one_way(channels, sample_rate, sample_rate, CUBEB_RESAMPLER_QUALITY_DEFAULT);
+ float buffer[channels * frames] = {0.0};
+ // Add all frames in the resampler's internal buffer.
+ one_way.input(buffer, frames);
+ // Ask for less than the existing frames, this would create a uint overlflow without the fix.
+ uint32_t frames_needed2 = one_way.input_needed_for_output(0);
+ ASSERT_EQ(frames_needed2, 0u);
+}
+