summaryrefslogtreecommitdiffstats
path: root/third_party/rust/euclid/src/box2d.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/euclid/src/box2d.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/euclid/src/box2d.rs')
-rw-r--r--third_party/rust/euclid/src/box2d.rs903
1 files changed, 903 insertions, 0 deletions
diff --git a/third_party/rust/euclid/src/box2d.rs b/third_party/rust/euclid/src/box2d.rs
new file mode 100644
index 0000000000..b59dacf162
--- /dev/null
+++ b/third_party/rust/euclid/src/box2d.rs
@@ -0,0 +1,903 @@
+// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+use super::UnknownUnit;
+use crate::approxord::{max, min};
+use crate::num::*;
+use crate::point::{point2, Point2D};
+use crate::rect::Rect;
+use crate::scale::Scale;
+use crate::side_offsets::SideOffsets2D;
+use crate::size::Size2D;
+use crate::vector::{vec2, Vector2D};
+
+use num_traits::{NumCast, Float};
+#[cfg(feature = "serde")]
+use serde::{Deserialize, Serialize};
+#[cfg(feature = "bytemuck")]
+use bytemuck::{Zeroable, Pod};
+
+use core::borrow::Borrow;
+use core::cmp::PartialOrd;
+use core::fmt;
+use core::hash::{Hash, Hasher};
+use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub, Range};
+
+/// A 2d axis aligned rectangle represented by its minimum and maximum coordinates.
+///
+/// # Representation
+///
+/// This struct is similar to [`Rect`], but stores rectangle as two endpoints
+/// instead of origin point and size. Such representation has several advantages over
+/// [`Rect`] representation:
+/// - Several operations are more efficient with `Box2D`, including [`intersection`],
+/// [`union`], and point-in-rect.
+/// - The representation is less susceptible to overflow. With [`Rect`], computation
+/// of second point can overflow for a large range of values of origin and size.
+/// However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates
+/// are signed and the resulting size is unsigned.
+///
+/// A known disadvantage of `Box2D` is that translating the rectangle requires translating
+/// both points, whereas translating [`Rect`] only requires translating one point.
+///
+/// # Empty box
+///
+/// A box is considered empty (see [`is_empty`]) if any of the following is true:
+/// - it's area is empty,
+/// - it's area is negative (`min.x > max.x` or `min.y > max.y`),
+/// - it contains NaNs.
+///
+/// [`Rect`]: struct.Rect.html
+/// [`intersection`]: #method.intersection
+/// [`is_empty`]: #method.is_empty
+/// [`union`]: #method.union
+/// [`size`]: #method.size
+#[repr(C)]
+#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
+#[cfg_attr(
+ feature = "serde",
+ serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
+)]
+pub struct Box2D<T, U> {
+ pub min: Point2D<T, U>,
+ pub max: Point2D<T, U>,
+}
+
+impl<T: Hash, U> Hash for Box2D<T, U> {
+ fn hash<H: Hasher>(&self, h: &mut H) {
+ self.min.hash(h);
+ self.max.hash(h);
+ }
+}
+
+impl<T: Copy, U> Copy for Box2D<T, U> {}
+
+impl<T: Clone, U> Clone for Box2D<T, U> {
+ fn clone(&self) -> Self {
+ Self::new(self.min.clone(), self.max.clone())
+ }
+}
+
+impl<T: PartialEq, U> PartialEq for Box2D<T, U> {
+ fn eq(&self, other: &Self) -> bool {
+ self.min.eq(&other.min) && self.max.eq(&other.max)
+ }
+}
+
+impl<T: Eq, U> Eq for Box2D<T, U> {}
+
+impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_tuple("Box2D")
+ .field(&self.min)
+ .field(&self.max)
+ .finish()
+ }
+}
+
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: Zeroable, U> Zeroable for Box2D<T, U> {}
+
+#[cfg(feature = "bytemuck")]
+unsafe impl<T: Pod, U: 'static> Pod for Box2D<T, U> {}
+
+impl<T, U> Box2D<T, U> {
+ /// Constructor.
+ #[inline]
+ pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self {
+ Box2D { min, max }
+ }
+
+ /// Constructor.
+ #[inline]
+ pub fn from_origin_and_size(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self
+ where
+ T: Copy + Add<T, Output = T>
+ {
+ Box2D {
+ min: origin,
+ max: point2(origin.x + size.width, origin.y + size.height),
+ }
+ }
+
+ /// Creates a Box2D of the given size, at offset zero.
+ #[inline]
+ pub fn from_size(size: Size2D<T, U>) -> Self where T: Zero {
+ Box2D {
+ min: Point2D::zero(),
+ max: point2(size.width, size.height),
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: PartialOrd,
+{
+ /// Returns true if the box has a negative area.
+ ///
+ /// The common interpretation for a negative box is to consider it empty. It can be obtained
+ /// by calculating the intersection of two boxes that do not intersect.
+ #[inline]
+ pub fn is_negative(&self) -> bool {
+ self.max.x < self.min.x || self.max.y < self.min.y
+ }
+
+ /// Returns true if the size is zero, negative or NaN.
+ #[inline]
+ pub fn is_empty(&self) -> bool {
+ !(self.max.x > self.min.x && self.max.y > self.min.y)
+ }
+
+ /// Returns `true` if the two boxes intersect.
+ #[inline]
+ pub fn intersects(&self, other: &Self) -> bool {
+ self.min.x < other.max.x
+ && self.max.x > other.min.x
+ && self.min.y < other.max.y
+ && self.max.y > other.min.y
+ }
+
+ /// Returns `true` if this box contains the point. Points are considered
+ /// in the box if they are on the front, left or top faces, but outside if they
+ /// are on the back, right or bottom faces.
+ #[inline]
+ pub fn contains(&self, p: Point2D<T, U>) -> bool {
+ self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y
+ }
+
+ /// Returns `true` if this box contains the interior of the other box. Always
+ /// returns `true` if other is empty, and always returns `false` if other is
+ /// nonempty but this box is empty.
+ #[inline]
+ pub fn contains_box(&self, other: &Self) -> bool {
+ other.is_empty()
+ || (self.min.x <= other.min.x
+ && other.max.x <= self.max.x
+ && self.min.y <= other.min.y
+ && other.max.y <= self.max.y)
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + PartialOrd,
+{
+ #[inline]
+ pub fn to_non_empty(&self) -> Option<Self> {
+ if self.is_empty() {
+ return None;
+ }
+
+ Some(*self)
+ }
+
+ /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect.
+ #[inline]
+ pub fn intersection(&self, other: &Self) -> Option<Self> {
+ let b = self.intersection_unchecked(other);
+
+ if b.is_empty() {
+ return None;
+ }
+
+ Some(b)
+ }
+
+ /// Computes the intersection of two boxes without check whether they do intersect.
+ ///
+ /// The result is a negative box if the boxes do not intersect.
+ /// This can be useful for computing the intersection of more than two boxes, as
+ /// it is possible to chain multiple intersection_unchecked calls and check for
+ /// empty/negative result at the end.
+ #[inline]
+ pub fn intersection_unchecked(&self, other: &Self) -> Self {
+ Box2D {
+ min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)),
+ max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)),
+ }
+ }
+
+ /// Computes the union of two boxes.
+ ///
+ /// If either of the boxes is empty, the other one is returned.
+ #[inline]
+ pub fn union(&self, other: &Self) -> Self {
+ if other.is_empty() {
+ return *self;
+ }
+ if self.is_empty() {
+ return *other;
+ }
+
+ Box2D {
+ min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)),
+ max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)),
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + Add<T, Output = T>,
+{
+ /// Returns the same box, translated by a vector.
+ #[inline]
+ pub fn translate(&self, by: Vector2D<T, U>) -> Self {
+ Box2D {
+ min: self.min + by,
+ max: self.max + by,
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + Sub<T, Output = T>,
+{
+ #[inline]
+ pub fn size(&self) -> Size2D<T, U> {
+ (self.max - self.min).to_size()
+ }
+
+ /// Change the size of the box by adjusting the max endpoint
+ /// without modifying the min endpoint.
+ #[inline]
+ pub fn set_size(&mut self, size: Size2D<T, U>) {
+ let diff = (self.size() - size).to_vector();
+ self.max -= diff;
+ }
+
+ #[inline]
+ pub fn width(&self) -> T {
+ self.max.x - self.min.x
+ }
+
+ #[inline]
+ pub fn height(&self) -> T {
+ self.max.y - self.min.y
+ }
+
+ #[inline]
+ pub fn to_rect(&self) -> Rect<T, U> {
+ Rect {
+ origin: self.min,
+ size: self.size(),
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
+{
+ /// Inflates the box by the specified sizes on each side respectively.
+ #[inline]
+ #[must_use]
+ pub fn inflate(&self, width: T, height: T) -> Self {
+ Box2D {
+ min: point2(self.min.x - width, self.min.y - height),
+ max: point2(self.max.x + width, self.max.y + height),
+ }
+ }
+
+ /// Calculate the size and position of an inner box.
+ ///
+ /// Subtracts the side offsets from all sides. The horizontal, vertical
+ /// and applicate offsets must not be larger than the original side length.
+ pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
+ Box2D {
+ min: self.min + vec2(offsets.left, offsets.top),
+ max: self.max - vec2(offsets.right, offsets.bottom),
+ }
+ }
+
+ /// Calculate the b and position of an outer box.
+ ///
+ /// Add the offsets to all sides. The expanded box is returned.
+ pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
+ Box2D {
+ min: self.min - vec2(offsets.left, offsets.top),
+ max: self.max + vec2(offsets.right, offsets.bottom),
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + Zero + PartialOrd,
+{
+ /// Returns the smallest box containing all of the provided points.
+ pub fn from_points<I>(points: I) -> Self
+ where
+ I: IntoIterator,
+ I::Item: Borrow<Point2D<T, U>>,
+ {
+ let mut points = points.into_iter();
+
+ let (mut min_x, mut min_y) = match points.next() {
+ Some(first) => first.borrow().to_tuple(),
+ None => return Box2D::zero(),
+ };
+
+ let (mut max_x, mut max_y) = (min_x, min_y);
+ for point in points {
+ let p = point.borrow();
+ if p.x < min_x {
+ min_x = p.x
+ }
+ if p.x > max_x {
+ max_x = p.x
+ }
+ if p.y < min_y {
+ min_y = p.y
+ }
+ if p.y > max_y {
+ max_y = p.y
+ }
+ }
+
+ Box2D {
+ min: point2(min_x, min_y),
+ max: point2(max_x, max_y),
+ }
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
+{
+ /// Linearly interpolate between this box and another box.
+ #[inline]
+ pub fn lerp(&self, other: Self, t: T) -> Self {
+ Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + One + Add<Output = T> + Div<Output = T>,
+{
+ pub fn center(&self) -> Point2D<T, U> {
+ let two = T::one() + T::one();
+ (self.min + self.max.to_vector()) / two
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
+{
+ #[inline]
+ pub fn area(&self) -> T {
+ let size = self.size();
+ size.width * size.height
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Zero,
+{
+ /// Constructor, setting all sides to zero.
+ pub fn zero() -> Self {
+ Box2D::new(Point2D::zero(), Point2D::zero())
+ }
+}
+
+impl<T: Copy + Mul, U> Mul<T> for Box2D<T, U> {
+ type Output = Box2D<T::Output, U>;
+
+ #[inline]
+ fn mul(self, scale: T) -> Self::Output {
+ Box2D::new(self.min * scale, self.max * scale)
+ }
+}
+
+impl<T: Copy + MulAssign, U> MulAssign<T> for Box2D<T, U> {
+ #[inline]
+ fn mul_assign(&mut self, scale: T) {
+ *self *= Scale::new(scale);
+ }
+}
+
+impl<T: Copy + Div, U> Div<T> for Box2D<T, U> {
+ type Output = Box2D<T::Output, U>;
+
+ #[inline]
+ fn div(self, scale: T) -> Self::Output {
+ Box2D::new(self.min / scale, self.max / scale)
+ }
+}
+
+impl<T: Copy + DivAssign, U> DivAssign<T> for Box2D<T, U> {
+ #[inline]
+ fn div_assign(&mut self, scale: T) {
+ *self /= Scale::new(scale);
+ }
+}
+
+impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1> {
+ type Output = Box2D<T::Output, U2>;
+
+ #[inline]
+ fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
+ Box2D::new(self.min * scale, self.max * scale)
+ }
+}
+
+impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Box2D<T, U> {
+ #[inline]
+ fn mul_assign(&mut self, scale: Scale<T, U, U>) {
+ self.min *= scale;
+ self.max *= scale;
+ }
+}
+
+impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2> {
+ type Output = Box2D<T::Output, U1>;
+
+ #[inline]
+ fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
+ Box2D::new(self.min / scale, self.max / scale)
+ }
+}
+
+impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Box2D<T, U> {
+ #[inline]
+ fn div_assign(&mut self, scale: Scale<T, U, U>) {
+ self.min /= scale;
+ self.max /= scale;
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Copy,
+{
+ #[inline]
+ pub fn x_range(&self) -> Range<T> {
+ self.min.x..self.max.x
+ }
+
+ #[inline]
+ pub fn y_range(&self) -> Range<T> {
+ self.min.y..self.max.y
+ }
+
+ /// Drop the units, preserving only the numeric value.
+ #[inline]
+ pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> {
+ Box2D::new(self.min.to_untyped(), self.max.to_untyped())
+ }
+
+ /// Tag a unitless value with units.
+ #[inline]
+ pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U> {
+ Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max))
+ }
+
+ /// Cast the unit
+ #[inline]
+ pub fn cast_unit<V>(&self) -> Box2D<T, V> {
+ Box2D::new(self.min.cast_unit(), self.max.cast_unit())
+ }
+
+ #[inline]
+ pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
+ where
+ T: Mul<S, Output = T>,
+ {
+ Box2D {
+ min: point2(self.min.x * x, self.min.y * y),
+ max: point2(self.max.x * x, self.max.y * y),
+ }
+ }
+}
+
+impl<T: NumCast + Copy, U> Box2D<T, U> {
+ /// Cast from one numeric representation to another, preserving the units.
+ ///
+ /// When casting from floating point to integer coordinates, the decimals are truncated
+ /// as one would expect from a simple cast, but this behavior does not always make sense
+ /// geometrically. Consider using round(), round_in or round_out() before casting.
+ #[inline]
+ pub fn cast<NewT: NumCast>(&self) -> Box2D<NewT, U> {
+ Box2D::new(self.min.cast(), self.max.cast())
+ }
+
+ /// Fallible cast from one numeric representation to another, preserving the units.
+ ///
+ /// When casting from floating point to integer coordinates, the decimals are truncated
+ /// as one would expect from a simple cast, but this behavior does not always make sense
+ /// geometrically. Consider using round(), round_in or round_out() before casting.
+ pub fn try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>> {
+ match (self.min.try_cast(), self.max.try_cast()) {
+ (Some(a), Some(b)) => Some(Box2D::new(a, b)),
+ _ => None,
+ }
+ }
+
+ // Convenience functions for common casts
+
+ /// Cast into an `f32` box.
+ #[inline]
+ pub fn to_f32(&self) -> Box2D<f32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `f64` box.
+ #[inline]
+ pub fn to_f64(&self) -> Box2D<f64, U> {
+ self.cast()
+ }
+
+ /// Cast into an `usize` box, truncating decimals if any.
+ ///
+ /// When casting from floating point boxes, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_usize(&self) -> Box2D<usize, U> {
+ self.cast()
+ }
+
+ /// Cast into an `u32` box, truncating decimals if any.
+ ///
+ /// When casting from floating point boxes, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_u32(&self) -> Box2D<u32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `i32` box, truncating decimals if any.
+ ///
+ /// When casting from floating point boxes, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_i32(&self) -> Box2D<i32, U> {
+ self.cast()
+ }
+
+ /// Cast into an `i64` box, truncating decimals if any.
+ ///
+ /// When casting from floating point boxes, it is worth considering whether
+ /// to `round()`, `round_in()` or `round_out()` before the cast in order to
+ /// obtain the desired conversion behavior.
+ #[inline]
+ pub fn to_i64(&self) -> Box2D<i64, U> {
+ self.cast()
+ }
+}
+
+impl<T: Float, U> Box2D<T, U> {
+ /// Returns true if all members are finite.
+ #[inline]
+ pub fn is_finite(self) -> bool {
+ self.min.is_finite() && self.max.is_finite()
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Round,
+{
+ /// Return a box with edges rounded to integer coordinates, such that
+ /// the returned box has the same set of pixel centers as the original
+ /// one.
+ /// Values equal to 0.5 round up.
+ /// Suitable for most places where integral device coordinates
+ /// are needed, but note that any translation should be applied first to
+ /// avoid pixel rounding errors.
+ /// Note that this is *not* rounding to nearest integer if the values are negative.
+ /// They are always rounding as floor(n + 0.5).
+ #[must_use]
+ pub fn round(&self) -> Self {
+ Box2D::new(self.min.round(), self.max.round())
+ }
+}
+
+impl<T, U> Box2D<T, U>
+where
+ T: Floor + Ceil,
+{
+ /// Return a box with faces/edges rounded to integer coordinates, such that
+ /// the original box contains the resulting box.
+ #[must_use]
+ pub fn round_in(&self) -> Self {
+ let min = self.min.ceil();
+ let max = self.max.floor();
+ Box2D { min, max }
+ }
+
+ /// Return a box with faces/edges rounded to integer coordinates, such that
+ /// the original box is contained in the resulting box.
+ #[must_use]
+ pub fn round_out(&self) -> Self {
+ let min = self.min.floor();
+ let max = self.max.ceil();
+ Box2D { min, max }
+ }
+}
+
+impl<T, U> From<Size2D<T, U>> for Box2D<T, U>
+where
+ T: Copy + Zero + PartialOrd,
+{
+ fn from(b: Size2D<T, U>) -> Self {
+ Self::from_size(b)
+ }
+}
+
+impl<T: Default, U> Default for Box2D<T, U> {
+ fn default() -> Self {
+ Box2D {
+ min: Default::default(),
+ max: Default::default(),
+ }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::default::Box2D;
+ use crate::side_offsets::SideOffsets2D;
+ use crate::{point2, size2, vec2, Point2D};
+ //use super::*;
+
+ #[test]
+ fn test_size() {
+ let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
+ assert_eq!(b.size().width, 20.0);
+ assert_eq!(b.size().height, 20.0);
+ }
+
+ #[test]
+ fn test_width_height() {
+ let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
+ assert!(b.width() == 20.0);
+ assert!(b.height() == 20.0);
+ }
+
+ #[test]
+ fn test_center() {
+ let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
+ assert_eq!(b.center(), Point2D::zero());
+ }
+
+ #[test]
+ fn test_area() {
+ let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
+ assert_eq!(b.area(), 400.0);
+ }
+
+ #[test]
+ fn test_from_points() {
+ let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]);
+ assert_eq!(b.min, point2(50.0, 25.0));
+ assert_eq!(b.max, point2(100.0, 160.0));
+ }
+
+ #[test]
+ fn test_round_in() {
+ let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in();
+ assert_eq!(b.min.x, -25.0);
+ assert_eq!(b.min.y, -40.0);
+ assert_eq!(b.max.x, 60.0);
+ assert_eq!(b.max.y, 36.0);
+ }
+
+ #[test]
+ fn test_round_out() {
+ let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out();
+ assert_eq!(b.min.x, -26.0);
+ assert_eq!(b.min.y, -41.0);
+ assert_eq!(b.max.x, 61.0);
+ assert_eq!(b.max.y, 37.0);
+ }
+
+ #[test]
+ fn test_round() {
+ let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round();
+ assert_eq!(b.min.x, -25.0);
+ assert_eq!(b.min.y, -40.0);
+ assert_eq!(b.max.x, 60.0);
+ assert_eq!(b.max.y, 37.0);
+ }
+
+ #[test]
+ fn test_from_size() {
+ let b = Box2D::from_size(size2(30.0, 40.0));
+ assert!(b.min == Point2D::zero());
+ assert!(b.size().width == 30.0);
+ assert!(b.size().height == 40.0);
+ }
+
+ #[test]
+ fn test_inner_box() {
+ let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
+ let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
+ assert_eq!(b.max.x, 80.0);
+ assert_eq!(b.max.y, 155.0);
+ assert_eq!(b.min.x, 60.0);
+ assert_eq!(b.min.y, 35.0);
+ }
+
+ #[test]
+ fn test_outer_box() {
+ let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
+ let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
+ assert_eq!(b.max.x, 120.0);
+ assert_eq!(b.max.y, 165.0);
+ assert_eq!(b.min.x, 40.0);
+ assert_eq!(b.min.y, 15.0);
+ }
+
+ #[test]
+ fn test_translate() {
+ let size = size2(15.0, 15.0);
+ let mut center = (size / 2.0).to_vector().to_point();
+ let b = Box2D::from_size(size);
+ assert_eq!(b.center(), center);
+ let translation = vec2(10.0, 2.5);
+ let b = b.translate(translation);
+ center += translation;
+ assert_eq!(b.center(), center);
+ assert_eq!(b.max.x, 25.0);
+ assert_eq!(b.max.y, 17.5);
+ assert_eq!(b.min.x, 10.0);
+ assert_eq!(b.min.y, 2.5);
+ }
+
+ #[test]
+ fn test_union() {
+ let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]);
+ let b = b1.union(&b2);
+ assert_eq!(b.max.x, 20.0);
+ assert_eq!(b.max.y, 20.0);
+ assert_eq!(b.min.x, -20.0);
+ assert_eq!(b.min.y, -20.0);
+ }
+
+ #[test]
+ fn test_intersects() {
+ let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
+ assert!(b1.intersects(&b2));
+ }
+
+ #[test]
+ fn test_intersection_unchecked() {
+ let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
+ let b = b1.intersection_unchecked(&b2);
+ assert_eq!(b.max.x, 10.0);
+ assert_eq!(b.max.y, 20.0);
+ assert_eq!(b.min.x, -10.0);
+ assert_eq!(b.min.y, -20.0);
+ }
+
+ #[test]
+ fn test_intersection() {
+ let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
+ assert!(b1.intersection(&b2).is_some());
+
+ let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]);
+ assert!(b1.intersection(&b2).is_none());
+ }
+
+ #[test]
+ fn test_scale() {
+ let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]);
+ let b = b.scale(0.5, 0.5);
+ assert_eq!(b.max.x, 5.0);
+ assert_eq!(b.max.y, 5.0);
+ assert_eq!(b.min.x, -5.0);
+ assert_eq!(b.min.y, -5.0);
+ }
+
+ #[test]
+ fn test_lerp() {
+ let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]);
+ let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]);
+ let b = b1.lerp(b2, 0.5);
+ assert_eq!(b.center(), Point2D::zero());
+ assert_eq!(b.size().width, 10.0);
+ assert_eq!(b.size().height, 10.0);
+ }
+
+ #[test]
+ fn test_contains() {
+ let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
+ assert!(b.contains(point2(-15.3, 10.5)));
+ }
+
+ #[test]
+ fn test_contains_box() {
+ let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
+ let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]);
+ assert!(b1.contains_box(&b2));
+ }
+
+ #[test]
+ fn test_inflate() {
+ let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
+ let b = b.inflate(10.0, 5.0);
+ assert_eq!(b.size().width, 60.0);
+ assert_eq!(b.size().height, 50.0);
+ assert_eq!(b.center(), Point2D::zero());
+ }
+
+ #[test]
+ fn test_is_empty() {
+ for i in 0..2 {
+ let mut coords_neg = [-20.0, -20.0];
+ let mut coords_pos = [20.0, 20.0];
+ coords_neg[i] = 0.0;
+ coords_pos[i] = 0.0;
+ let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]);
+ assert!(b.is_empty());
+ }
+ }
+
+ #[test]
+ fn test_nan_empty() {
+ use std::f32::NAN;
+ assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty());
+ assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty());
+ assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty());
+ assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty());
+ }
+
+ #[test]
+ fn test_from_origin_and_size() {
+ let b = Box2D::from_origin_and_size(point2(1.0, 2.0), size2(3.0, 4.0));
+ assert_eq!(b.min, point2(1.0, 2.0));
+ assert_eq!(b.size(), size2(3.0, 4.0));
+ }
+
+ #[test]
+ fn test_set_size() {
+ let mut b = Box2D {
+ min: point2(1.0, 2.0),
+ max: point2(3.0, 4.0),
+ };
+ b.set_size(size2(5.0, 6.0));
+
+ assert_eq!(b.min, point2(1.0, 2.0));
+ assert_eq!(b.size(), size2(5.0, 6.0));
+ }
+}