diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/euclid/src/size.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/euclid/src/size.rs')
-rw-r--r-- | third_party/rust/euclid/src/size.rs | 1854 |
1 files changed, 1854 insertions, 0 deletions
diff --git a/third_party/rust/euclid/src/size.rs b/third_party/rust/euclid/src/size.rs new file mode 100644 index 0000000000..f634c1cfb6 --- /dev/null +++ b/third_party/rust/euclid/src/size.rs @@ -0,0 +1,1854 @@ +// Copyright 2013 The Servo Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +use super::UnknownUnit; +use crate::approxord::{max, min}; +use crate::length::Length; +use crate::num::*; +use crate::scale::Scale; +use crate::vector::{vec2, BoolVector2D, Vector2D}; +use crate::vector::{vec3, BoolVector3D, Vector3D}; +#[cfg(feature = "mint")] +use mint; + +use core::cmp::{Eq, PartialEq}; +use core::fmt; +use core::hash::Hash; +use core::iter::Sum; +use core::marker::PhantomData; +use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; +use num_traits::{NumCast, Signed, Float}; +#[cfg(feature = "serde")] +use serde; +#[cfg(feature = "bytemuck")] +use bytemuck::{Zeroable, Pod}; + +/// A 2d size tagged with a unit. +#[repr(C)] +pub struct Size2D<T, U> { + /// The extent of the element in the `U` units along the `x` axis (usually horizontal). + pub width: T, + /// The extent of the element in the `U` units along the `y` axis (usually vertical). + pub height: T, + #[doc(hidden)] + pub _unit: PhantomData<U>, +} + +impl<T: Copy, U> Copy for Size2D<T, U> {} + +impl<T: Clone, U> Clone for Size2D<T, U> { + fn clone(&self) -> Self { + Size2D { + width: self.width.clone(), + height: self.height.clone(), + _unit: PhantomData, + } + } +} + +#[cfg(feature = "serde")] +impl<'de, T, U> serde::Deserialize<'de> for Size2D<T, U> +where + T: serde::Deserialize<'de>, +{ + /// Deserializes 2d size from tuple of width and height. + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::Deserializer<'de>, + { + let (width, height) = serde::Deserialize::deserialize(deserializer)?; + Ok(Size2D { + width, + height, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "serde")] +impl<T, U> serde::Serialize for Size2D<T, U> +where + T: serde::Serialize, +{ + /// Serializes 2d size to tuple of width and height. + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::Serializer, + { + (&self.width, &self.height).serialize(serializer) + } +} + +#[cfg(feature = "arbitrary")] +impl<'a, T, U> arbitrary::Arbitrary<'a> for Size2D<T, U> +where + T: arbitrary::Arbitrary<'a>, +{ + fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> + { + let (width, height) = arbitrary::Arbitrary::arbitrary(u)?; + Ok(Size2D { + width, + height, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "bytemuck")] +unsafe impl<T: Zeroable, U> Zeroable for Size2D<T, U> {} + +#[cfg(feature = "bytemuck")] +unsafe impl<T: Pod, U: 'static> Pod for Size2D<T, U> {} + +impl<T, U> Eq for Size2D<T, U> where T: Eq {} + +impl<T, U> PartialEq for Size2D<T, U> +where + T: PartialEq, +{ + fn eq(&self, other: &Self) -> bool { + self.width == other.width && self.height == other.height + } +} + +impl<T, U> Hash for Size2D<T, U> +where + T: Hash, +{ + fn hash<H: core::hash::Hasher>(&self, h: &mut H) { + self.width.hash(h); + self.height.hash(h); + } +} + +impl<T: fmt::Debug, U> fmt::Debug for Size2D<T, U> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&self.width, f)?; + write!(f, "x")?; + fmt::Debug::fmt(&self.height, f) + } +} + +impl<T: Default, U> Default for Size2D<T, U> { + fn default() -> Self { + Size2D::new(Default::default(), Default::default()) + } +} + +impl<T, U> Size2D<T, U> { + /// The same as [`Zero::zero()`] but available without importing trait. + /// + /// [`Zero::zero()`]: ./num/trait.Zero.html#tymethod.zero + #[inline] + pub fn zero() -> Self + where + T: Zero, + { + Size2D::new(Zero::zero(), Zero::zero()) + } + + /// Constructor taking scalar values. + #[inline] + pub const fn new(width: T, height: T) -> Self { + Size2D { + width, + height, + _unit: PhantomData, + } + } + /// Constructor taking scalar strongly typed lengths. + #[inline] + pub fn from_lengths(width: Length<T, U>, height: Length<T, U>) -> Self { + Size2D::new(width.0, height.0) + } + + /// Constructor setting all components to the same value. + #[inline] + pub fn splat(v: T) -> Self + where + T: Clone, + { + Size2D { + width: v.clone(), + height: v, + _unit: PhantomData, + } + } + + /// Tag a unitless value with units. + #[inline] + pub fn from_untyped(p: Size2D<T, UnknownUnit>) -> Self { + Size2D::new(p.width, p.height) + } +} + +impl<T: Copy, U> Size2D<T, U> { + /// Return this size as an array of two elements (width, then height). + #[inline] + pub fn to_array(self) -> [T; 2] { + [self.width, self.height] + } + + /// Return this size as a tuple of two elements (width, then height). + #[inline] + pub fn to_tuple(self) -> (T, T) { + (self.width, self.height) + } + + /// Return this size as a vector with width and height. + #[inline] + pub fn to_vector(self) -> Vector2D<T, U> { + vec2(self.width, self.height) + } + + /// Drop the units, preserving only the numeric value. + #[inline] + pub fn to_untyped(self) -> Size2D<T, UnknownUnit> { + self.cast_unit() + } + + /// Cast the unit + #[inline] + pub fn cast_unit<V>(self) -> Size2D<T, V> { + Size2D::new(self.width, self.height) + } + + /// Rounds each component to the nearest integer value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size2; + /// enum Mm {} + /// + /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).round(), size2::<_, Mm>(0.0, -1.0)) + /// ``` + #[inline] + #[must_use] + pub fn round(self) -> Self + where + T: Round, + { + Size2D::new(self.width.round(), self.height.round()) + } + + /// Rounds each component to the smallest integer equal or greater than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size2; + /// enum Mm {} + /// + /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).ceil(), size2::<_, Mm>(0.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn ceil(self) -> Self + where + T: Ceil, + { + Size2D::new(self.width.ceil(), self.height.ceil()) + } + + /// Rounds each component to the biggest integer equal or lower than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size2; + /// enum Mm {} + /// + /// assert_eq!(size2::<_, Mm>(-0.1, -0.8).floor(), size2::<_, Mm>(-1.0, -1.0)) + /// ``` + #[inline] + #[must_use] + pub fn floor(self) -> Self + where + T: Floor, + { + Size2D::new(self.width.floor(), self.height.floor()) + } + + /// Returns result of multiplication of both components + pub fn area(self) -> T::Output + where + T: Mul, + { + self.width * self.height + } + + /// Linearly interpolate each component between this size and another size. + /// + /// # Example + /// + /// ```rust + /// use euclid::size2; + /// use euclid::default::Size2D; + /// + /// let from: Size2D<_> = size2(0.0, 10.0); + /// let to: Size2D<_> = size2(8.0, -4.0); + /// + /// assert_eq!(from.lerp(to, -1.0), size2(-8.0, 24.0)); + /// assert_eq!(from.lerp(to, 0.0), size2( 0.0, 10.0)); + /// assert_eq!(from.lerp(to, 0.5), size2( 4.0, 3.0)); + /// assert_eq!(from.lerp(to, 1.0), size2( 8.0, -4.0)); + /// assert_eq!(from.lerp(to, 2.0), size2(16.0, -18.0)); + /// ``` + #[inline] + pub fn lerp(self, other: Self, t: T) -> Self + where + T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>, + { + let one_t = T::one() - t; + self * one_t + other * t + } +} + +impl<T: NumCast + Copy, U> Size2D<T, U> { + /// Cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + #[inline] + pub fn cast<NewT: NumCast>(self) -> Size2D<NewT, U> { + self.try_cast().unwrap() + } + + /// Fallible cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + pub fn try_cast<NewT: NumCast>(self) -> Option<Size2D<NewT, U>> { + match (NumCast::from(self.width), NumCast::from(self.height)) { + (Some(w), Some(h)) => Some(Size2D::new(w, h)), + _ => None, + } + } + + // Convenience functions for common casts + + /// Cast into an `f32` size. + #[inline] + pub fn to_f32(self) -> Size2D<f32, U> { + self.cast() + } + + /// Cast into an `f64` size. + #[inline] + pub fn to_f64(self) -> Size2D<f64, U> { + self.cast() + } + + /// Cast into an `uint` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_usize(self) -> Size2D<usize, U> { + self.cast() + } + + /// Cast into an `u32` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_u32(self) -> Size2D<u32, U> { + self.cast() + } + + /// Cast into an `u64` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_u64(self) -> Size2D<u64, U> { + self.cast() + } + + /// Cast into an `i32` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i32(self) -> Size2D<i32, U> { + self.cast() + } + + /// Cast into an `i64` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i64(self) -> Size2D<i64, U> { + self.cast() + } +} + +impl<T: Float, U> Size2D<T, U> { + /// Returns true if all members are finite. + #[inline] + pub fn is_finite(self) -> bool { + self.width.is_finite() && self.height.is_finite() + } +} + +impl<T: Signed, U> Size2D<T, U> { + /// Computes the absolute value of each component. + /// + /// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`. + /// + /// For signed integers, `::MIN` will be returned for component if the component is `::MIN`. + pub fn abs(self) -> Self { + size2(self.width.abs(), self.height.abs()) + } + + /// Returns `true` if both components is positive and `false` any component is zero or negative. + pub fn is_positive(self) -> bool { + self.width.is_positive() && self.height.is_positive() + } +} + +impl<T: PartialOrd, U> Size2D<T, U> { + /// Returns the size each component of which are minimum of this size and another. + #[inline] + pub fn min(self, other: Self) -> Self { + size2(min(self.width, other.width), min(self.height, other.height)) + } + + /// Returns the size each component of which are maximum of this size and another. + #[inline] + pub fn max(self, other: Self) -> Self { + size2(max(self.width, other.width), max(self.height, other.height)) + } + + /// Returns the size each component of which clamped by corresponding + /// components of `start` and `end`. + /// + /// Shortcut for `self.max(start).min(end)`. + #[inline] + pub fn clamp(self, start: Self, end: Self) -> Self + where + T: Copy, + { + self.max(start).min(end) + } + + // Returns true if this size is larger or equal to the other size in all dimensions. + #[inline] + pub fn contains(self, other: Self) -> bool { + self.width >= other.width && self.height >= other.height + } + + /// Returns vector with results of "greater then" operation on each component. + pub fn greater_than(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.width > other.width, + y: self.height > other.height, + } + } + + /// Returns vector with results of "lower then" operation on each component. + pub fn lower_than(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.width < other.width, + y: self.height < other.height, + } + } + + /// Returns `true` if any component of size is zero, negative, or NaN. + pub fn is_empty(self) -> bool + where + T: Zero, + { + let zero = T::zero(); + // The condition is experessed this way so that we return true in + // the presence of NaN. + !(self.width > zero && self.height > zero) + } +} + +impl<T: PartialEq, U> Size2D<T, U> { + /// Returns vector with results of "equal" operation on each component. + pub fn equal(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.width == other.width, + y: self.height == other.height, + } + } + + /// Returns vector with results of "not equal" operation on each component. + pub fn not_equal(self, other: Self) -> BoolVector2D { + BoolVector2D { + x: self.width != other.width, + y: self.height != other.height, + } + } +} + +impl<T: Round, U> Round for Size2D<T, U> { + /// See [`Size2D::round()`](#method.round). + #[inline] + fn round(self) -> Self { + self.round() + } +} + +impl<T: Ceil, U> Ceil for Size2D<T, U> { + /// See [`Size2D::ceil()`](#method.ceil). + #[inline] + fn ceil(self) -> Self { + self.ceil() + } +} + +impl<T: Floor, U> Floor for Size2D<T, U> { + /// See [`Size2D::floor()`](#method.floor). + #[inline] + fn floor(self) -> Self { + self.floor() + } +} + +impl<T: Zero, U> Zero for Size2D<T, U> { + #[inline] + fn zero() -> Self { + Size2D::new(Zero::zero(), Zero::zero()) + } +} + +impl<T: Neg, U> Neg for Size2D<T, U> { + type Output = Size2D<T::Output, U>; + + #[inline] + fn neg(self) -> Self::Output { + Size2D::new(-self.width, -self.height) + } +} + +impl<T: Add, U> Add for Size2D<T, U> { + type Output = Size2D<T::Output, U>; + + #[inline] + fn add(self, other: Self) -> Self::Output { + Size2D::new(self.width + other.width, self.height + other.height) + } +} + +impl<T: Copy + Add<T, Output = T>, U> Add<&Self> for Size2D<T, U> { + type Output = Self; + fn add(self, other: &Self) -> Self { + Size2D::new(self.width + other.width, self.height + other.height) + } +} + +impl<T: Add<Output = T> + Zero, U> Sum for Size2D<T, U> { + fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Size2D<T, U> { + fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<T: AddAssign, U> AddAssign for Size2D<T, U> { + #[inline] + fn add_assign(&mut self, other: Self) { + self.width += other.width; + self.height += other.height; + } +} + +impl<T: Sub, U> Sub for Size2D<T, U> { + type Output = Size2D<T::Output, U>; + + #[inline] + fn sub(self, other: Self) -> Self::Output { + Size2D::new(self.width - other.width, self.height - other.height) + } +} + +impl<T: SubAssign, U> SubAssign for Size2D<T, U> { + #[inline] + fn sub_assign(&mut self, other: Self) { + self.width -= other.width; + self.height -= other.height; + } +} + +impl<T: Copy + Mul, U> Mul<T> for Size2D<T, U> { + type Output = Size2D<T::Output, U>; + + #[inline] + fn mul(self, scale: T) -> Self::Output { + Size2D::new(self.width * scale, self.height * scale) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<T> for Size2D<T, U> { + #[inline] + fn mul_assign(&mut self, other: T) { + self.width *= other; + self.height *= other; + } +} + +impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Size2D<T, U1> { + type Output = Size2D<T::Output, U2>; + + #[inline] + fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { + Size2D::new(self.width * scale.0, self.height * scale.0) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Size2D<T, U> { + #[inline] + fn mul_assign(&mut self, other: Scale<T, U, U>) { + *self *= other.0; + } +} + +impl<T: Copy + Div, U> Div<T> for Size2D<T, U> { + type Output = Size2D<T::Output, U>; + + #[inline] + fn div(self, scale: T) -> Self::Output { + Size2D::new(self.width / scale, self.height / scale) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<T> for Size2D<T, U> { + #[inline] + fn div_assign(&mut self, other: T) { + self.width /= other; + self.height /= other; + } +} + +impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Size2D<T, U2> { + type Output = Size2D<T::Output, U1>; + + #[inline] + fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { + Size2D::new(self.width / scale.0, self.height / scale.0) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Size2D<T, U> { + #[inline] + fn div_assign(&mut self, other: Scale<T, U, U>) { + *self /= other.0; + } +} + +/// Shorthand for `Size2D::new(w, h)`. +#[inline] +pub const fn size2<T, U>(w: T, h: T) -> Size2D<T, U> { + Size2D::new(w, h) +} + +#[cfg(feature = "mint")] +impl<T, U> From<mint::Vector2<T>> for Size2D<T, U> { + #[inline] + fn from(v: mint::Vector2<T>) -> Self { + Size2D { + width: v.x, + height: v.y, + _unit: PhantomData, + } + } +} +#[cfg(feature = "mint")] +impl<T, U> Into<mint::Vector2<T>> for Size2D<T, U> { + #[inline] + fn into(self) -> mint::Vector2<T> { + mint::Vector2 { + x: self.width, + y: self.height, + } + } +} + +impl<T, U> From<Vector2D<T, U>> for Size2D<T, U> { + #[inline] + fn from(v: Vector2D<T, U>) -> Self { + size2(v.x, v.y) + } +} + +impl<T, U> Into<[T; 2]> for Size2D<T, U> { + #[inline] + fn into(self) -> [T; 2] { + [self.width, self.height] + } +} + +impl<T, U> From<[T; 2]> for Size2D<T, U> { + #[inline] + fn from([w, h]: [T; 2]) -> Self { + size2(w, h) + } +} + +impl<T, U> Into<(T, T)> for Size2D<T, U> { + #[inline] + fn into(self) -> (T, T) { + (self.width, self.height) + } +} + +impl<T, U> From<(T, T)> for Size2D<T, U> { + #[inline] + fn from(tuple: (T, T)) -> Self { + size2(tuple.0, tuple.1) + } +} + +#[cfg(test)] +mod size2d { + use crate::default::Size2D; + #[cfg(feature = "mint")] + use mint; + + #[test] + pub fn test_area() { + let p = Size2D::new(1.5, 2.0); + assert_eq!(p.area(), 3.0); + } + + #[cfg(feature = "mint")] + #[test] + pub fn test_mint() { + let s1 = Size2D::new(1.0, 2.0); + let sm: mint::Vector2<_> = s1.into(); + let s2 = Size2D::from(sm); + + assert_eq!(s1, s2); + } + + mod ops { + use crate::default::Size2D; + use crate::scale::Scale; + + pub enum Mm {} + pub enum Cm {} + + pub type Size2DMm<T> = crate::Size2D<T, Mm>; + pub type Size2DCm<T> = crate::Size2D<T, Cm>; + + #[test] + pub fn test_neg() { + assert_eq!(-Size2D::new(1.0, 2.0), Size2D::new(-1.0, -2.0)); + assert_eq!(-Size2D::new(0.0, 0.0), Size2D::new(-0.0, -0.0)); + assert_eq!(-Size2D::new(-1.0, -2.0), Size2D::new(1.0, 2.0)); + } + + #[test] + pub fn test_add() { + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(3.0, 4.0); + assert_eq!(s1 + s2, Size2D::new(4.0, 6.0)); + assert_eq!(s1 + &s2, Size2D::new(4.0, 6.0)); + + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(0.0, 0.0); + assert_eq!(s1 + s2, Size2D::new(1.0, 2.0)); + assert_eq!(s1 + &s2, Size2D::new(1.0, 2.0)); + + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(-3.0, -4.0); + assert_eq!(s1 + s2, Size2D::new(-2.0, -2.0)); + assert_eq!(s1 + &s2, Size2D::new(-2.0, -2.0)); + + let s1 = Size2D::new(0.0, 0.0); + let s2 = Size2D::new(0.0, 0.0); + assert_eq!(s1 + s2, Size2D::new(0.0, 0.0)); + assert_eq!(s1 + &s2, Size2D::new(0.0, 0.0)); + } + + #[test] + pub fn test_add_assign() { + let mut s = Size2D::new(1.0, 2.0); + s += Size2D::new(3.0, 4.0); + assert_eq!(s, Size2D::new(4.0, 6.0)); + + let mut s = Size2D::new(1.0, 2.0); + s += Size2D::new(0.0, 0.0); + assert_eq!(s, Size2D::new(1.0, 2.0)); + + let mut s = Size2D::new(1.0, 2.0); + s += Size2D::new(-3.0, -4.0); + assert_eq!(s, Size2D::new(-2.0, -2.0)); + + let mut s = Size2D::new(0.0, 0.0); + s += Size2D::new(0.0, 0.0); + assert_eq!(s, Size2D::new(0.0, 0.0)); + } + + #[test] + pub fn test_sum() { + let sizes = [ + Size2D::new(0.0, 1.0), + Size2D::new(1.0, 2.0), + Size2D::new(2.0, 3.0) + ]; + let sum = Size2D::new(3.0, 6.0); + assert_eq!(sizes.iter().sum::<Size2D<_>>(), sum); + } + + #[test] + pub fn test_sub() { + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(3.0, 4.0); + assert_eq!(s1 - s2, Size2D::new(-2.0, -2.0)); + + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(0.0, 0.0); + assert_eq!(s1 - s2, Size2D::new(1.0, 2.0)); + + let s1 = Size2D::new(1.0, 2.0); + let s2 = Size2D::new(-3.0, -4.0); + assert_eq!(s1 - s2, Size2D::new(4.0, 6.0)); + + let s1 = Size2D::new(0.0, 0.0); + let s2 = Size2D::new(0.0, 0.0); + assert_eq!(s1 - s2, Size2D::new(0.0, 0.0)); + } + + #[test] + pub fn test_sub_assign() { + let mut s = Size2D::new(1.0, 2.0); + s -= Size2D::new(3.0, 4.0); + assert_eq!(s, Size2D::new(-2.0, -2.0)); + + let mut s = Size2D::new(1.0, 2.0); + s -= Size2D::new(0.0, 0.0); + assert_eq!(s, Size2D::new(1.0, 2.0)); + + let mut s = Size2D::new(1.0, 2.0); + s -= Size2D::new(-3.0, -4.0); + assert_eq!(s, Size2D::new(4.0, 6.0)); + + let mut s = Size2D::new(0.0, 0.0); + s -= Size2D::new(0.0, 0.0); + assert_eq!(s, Size2D::new(0.0, 0.0)); + } + + #[test] + pub fn test_mul_scalar() { + let s1: Size2D<f32> = Size2D::new(3.0, 5.0); + + let result = s1 * 5.0; + + assert_eq!(result, Size2D::new(15.0, 25.0)); + } + + #[test] + pub fn test_mul_assign_scalar() { + let mut s1 = Size2D::new(3.0, 5.0); + + s1 *= 5.0; + + assert_eq!(s1, Size2D::new(15.0, 25.0)); + } + + #[test] + pub fn test_mul_scale() { + let s1 = Size2DMm::new(1.0, 2.0); + let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1); + + let result = s1 * cm_per_mm; + + assert_eq!(result, Size2DCm::new(0.1, 0.2)); + } + + #[test] + pub fn test_mul_assign_scale() { + let mut s1 = Size2DMm::new(1.0, 2.0); + let scale: Scale<f32, Mm, Mm> = Scale::new(0.1); + + s1 *= scale; + + assert_eq!(s1, Size2DMm::new(0.1, 0.2)); + } + + #[test] + pub fn test_div_scalar() { + let s1: Size2D<f32> = Size2D::new(15.0, 25.0); + + let result = s1 / 5.0; + + assert_eq!(result, Size2D::new(3.0, 5.0)); + } + + #[test] + pub fn test_div_assign_scalar() { + let mut s1: Size2D<f32> = Size2D::new(15.0, 25.0); + + s1 /= 5.0; + + assert_eq!(s1, Size2D::new(3.0, 5.0)); + } + + #[test] + pub fn test_div_scale() { + let s1 = Size2DCm::new(0.1, 0.2); + let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1); + + let result = s1 / cm_per_mm; + + assert_eq!(result, Size2DMm::new(1.0, 2.0)); + } + + #[test] + pub fn test_div_assign_scale() { + let mut s1 = Size2DMm::new(0.1, 0.2); + let scale: Scale<f32, Mm, Mm> = Scale::new(0.1); + + s1 /= scale; + + assert_eq!(s1, Size2DMm::new(1.0, 2.0)); + } + + #[test] + pub fn test_nan_empty() { + use std::f32::NAN; + assert!(Size2D::new(NAN, 2.0).is_empty()); + assert!(Size2D::new(0.0, NAN).is_empty()); + assert!(Size2D::new(NAN, -2.0).is_empty()); + } + } +} + +/// A 3d size tagged with a unit. +#[repr(C)] +pub struct Size3D<T, U> { + /// The extent of the element in the `U` units along the `x` axis. + pub width: T, + /// The extent of the element in the `U` units along the `y` axis. + pub height: T, + /// The extent of the element in the `U` units along the `z` axis. + pub depth: T, + #[doc(hidden)] + pub _unit: PhantomData<U>, +} + +impl<T: Copy, U> Copy for Size3D<T, U> {} + +impl<T: Clone, U> Clone for Size3D<T, U> { + fn clone(&self) -> Self { + Size3D { + width: self.width.clone(), + height: self.height.clone(), + depth: self.depth.clone(), + _unit: PhantomData, + } + } +} + +#[cfg(feature = "serde")] +impl<'de, T, U> serde::Deserialize<'de> for Size3D<T, U> +where + T: serde::Deserialize<'de>, +{ + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::Deserializer<'de>, + { + let (width, height, depth) = serde::Deserialize::deserialize(deserializer)?; + Ok(Size3D { + width, + height, + depth, + _unit: PhantomData, + }) + } +} + +#[cfg(feature = "serde")] +impl<T, U> serde::Serialize for Size3D<T, U> +where + T: serde::Serialize, +{ + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::Serializer, + { + (&self.width, &self.height, &self.depth).serialize(serializer) + } +} + +#[cfg(feature = "bytemuck")] +unsafe impl<T: Zeroable, U> Zeroable for Size3D<T, U> {} + +#[cfg(feature = "bytemuck")] +unsafe impl<T: Pod, U: 'static> Pod for Size3D<T, U> {} + +impl<T, U> Eq for Size3D<T, U> where T: Eq {} + +impl<T, U> PartialEq for Size3D<T, U> +where + T: PartialEq, +{ + fn eq(&self, other: &Self) -> bool { + self.width == other.width && self.height == other.height && self.depth == other.depth + } +} + +impl<T, U> Hash for Size3D<T, U> +where + T: Hash, +{ + fn hash<H: core::hash::Hasher>(&self, h: &mut H) { + self.width.hash(h); + self.height.hash(h); + self.depth.hash(h); + } +} + +impl<T: fmt::Debug, U> fmt::Debug for Size3D<T, U> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + fmt::Debug::fmt(&self.width, f)?; + write!(f, "x")?; + fmt::Debug::fmt(&self.height, f)?; + write!(f, "x")?; + fmt::Debug::fmt(&self.depth, f) + } +} + +impl<T: Default, U> Default for Size3D<T, U> { + fn default() -> Self { + Size3D::new(Default::default(), Default::default(), Default::default()) + } +} + +impl<T, U> Size3D<T, U> { + /// The same as [`Zero::zero()`] but available without importing trait. + /// + /// [`Zero::zero()`]: ./num/trait.Zero.html#tymethod.zero + pub fn zero() -> Self + where + T: Zero, + { + Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) + } + + /// Constructor taking scalar values. + #[inline] + pub const fn new(width: T, height: T, depth: T) -> Self { + Size3D { + width, + height, + depth, + _unit: PhantomData, + } + } + /// Constructor taking scalar strongly typed lengths. + #[inline] + pub fn from_lengths(width: Length<T, U>, height: Length<T, U>, depth: Length<T, U>) -> Self { + Size3D::new(width.0, height.0, depth.0) + } + + /// Constructor setting all components to the same value. + #[inline] + pub fn splat(v: T) -> Self + where + T: Clone, + { + Size3D { + width: v.clone(), + height: v.clone(), + depth: v, + _unit: PhantomData, + } + } + + /// Tag a unitless value with units. + #[inline] + pub fn from_untyped(p: Size3D<T, UnknownUnit>) -> Self { + Size3D::new(p.width, p.height, p.depth) + } +} + +impl<T: Copy, U> Size3D<T, U> { + /// Return this size as an array of three elements (width, then height, then depth). + #[inline] + pub fn to_array(self) -> [T; 3] { + [self.width, self.height, self.depth] + } + + /// Return this size as an array of three elements (width, then height, then depth). + #[inline] + pub fn to_tuple(self) -> (T, T, T) { + (self.width, self.height, self.depth) + } + + /// Return this size as a vector with width, height and depth. + #[inline] + pub fn to_vector(self) -> Vector3D<T, U> { + vec3(self.width, self.height, self.depth) + } + + /// Drop the units, preserving only the numeric value. + #[inline] + pub fn to_untyped(self) -> Size3D<T, UnknownUnit> { + self.cast_unit() + } + + /// Cast the unit + #[inline] + pub fn cast_unit<V>(self) -> Size3D<T, V> { + Size3D::new(self.width, self.height, self.depth) + } + + /// Rounds each component to the nearest integer value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size3; + /// enum Mm {} + /// + /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).round(), size3::<_, Mm>(0.0, -1.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn round(self) -> Self + where + T: Round, + { + Size3D::new(self.width.round(), self.height.round(), self.depth.round()) + } + + /// Rounds each component to the smallest integer equal or greater than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size3; + /// enum Mm {} + /// + /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), size3::<_, Mm>(0.0, 0.0, 1.0)) + /// ``` + #[inline] + #[must_use] + pub fn ceil(self) -> Self + where + T: Ceil, + { + Size3D::new(self.width.ceil(), self.height.ceil(), self.depth.ceil()) + } + + /// Rounds each component to the biggest integer equal or lower than the original value. + /// + /// This behavior is preserved for negative values (unlike the basic cast). + /// + /// ```rust + /// # use euclid::size3; + /// enum Mm {} + /// + /// assert_eq!(size3::<_, Mm>(-0.1, -0.8, 0.4).floor(), size3::<_, Mm>(-1.0, -1.0, 0.0)) + /// ``` + #[inline] + #[must_use] + pub fn floor(self) -> Self + where + T: Floor, + { + Size3D::new(self.width.floor(), self.height.floor(), self.depth.floor()) + } + + /// Returns result of multiplication of all components + pub fn volume(self) -> T + where + T: Mul<Output = T>, + { + self.width * self.height * self.depth + } + + /// Linearly interpolate between this size and another size. + /// + /// # Example + /// + /// ```rust + /// use euclid::size3; + /// use euclid::default::Size3D; + /// + /// let from: Size3D<_> = size3(0.0, 10.0, -1.0); + /// let to: Size3D<_> = size3(8.0, -4.0, 0.0); + /// + /// assert_eq!(from.lerp(to, -1.0), size3(-8.0, 24.0, -2.0)); + /// assert_eq!(from.lerp(to, 0.0), size3( 0.0, 10.0, -1.0)); + /// assert_eq!(from.lerp(to, 0.5), size3( 4.0, 3.0, -0.5)); + /// assert_eq!(from.lerp(to, 1.0), size3( 8.0, -4.0, 0.0)); + /// assert_eq!(from.lerp(to, 2.0), size3(16.0, -18.0, 1.0)); + /// ``` + #[inline] + pub fn lerp(self, other: Self, t: T) -> Self + where + T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>, + { + let one_t = T::one() - t; + self * one_t + other * t + } +} + +impl<T: NumCast + Copy, U> Size3D<T, U> { + /// Cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + #[inline] + pub fn cast<NewT: NumCast>(self) -> Size3D<NewT, U> { + self.try_cast().unwrap() + } + + /// Fallible cast from one numeric representation to another, preserving the units. + /// + /// When casting from floating point to integer coordinates, the decimals are truncated + /// as one would expect from a simple cast, but this behavior does not always make sense + /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. + pub fn try_cast<NewT: NumCast>(self) -> Option<Size3D<NewT, U>> { + match ( + NumCast::from(self.width), + NumCast::from(self.height), + NumCast::from(self.depth), + ) { + (Some(w), Some(h), Some(d)) => Some(Size3D::new(w, h, d)), + _ => None, + } + } + + // Convenience functions for common casts + + /// Cast into an `f32` size. + #[inline] + pub fn to_f32(self) -> Size3D<f32, U> { + self.cast() + } + + /// Cast into an `f64` size. + #[inline] + pub fn to_f64(self) -> Size3D<f64, U> { + self.cast() + } + + /// Cast into an `uint` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_usize(self) -> Size3D<usize, U> { + self.cast() + } + + /// Cast into an `u32` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_u32(self) -> Size3D<u32, U> { + self.cast() + } + + /// Cast into an `i32` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i32(self) -> Size3D<i32, U> { + self.cast() + } + + /// Cast into an `i64` size, truncating decimals if any. + /// + /// When casting from floating point sizes, it is worth considering whether + /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain + /// the desired conversion behavior. + #[inline] + pub fn to_i64(self) -> Size3D<i64, U> { + self.cast() + } +} + +impl<T: Float, U> Size3D<T, U> { + /// Returns true if all members are finite. + #[inline] + pub fn is_finite(self) -> bool { + self.width.is_finite() && self.height.is_finite() && self.depth.is_finite() + } +} + +impl<T: Signed, U> Size3D<T, U> { + /// Computes the absolute value of each component. + /// + /// For `f32` and `f64`, `NaN` will be returned for component if the component is `NaN`. + /// + /// For signed integers, `::MIN` will be returned for component if the component is `::MIN`. + pub fn abs(self) -> Self { + size3(self.width.abs(), self.height.abs(), self.depth.abs()) + } + + /// Returns `true` if all components is positive and `false` any component is zero or negative. + pub fn is_positive(self) -> bool { + self.width.is_positive() && self.height.is_positive() && self.depth.is_positive() + } +} + +impl<T: PartialOrd, U> Size3D<T, U> { + /// Returns the size each component of which are minimum of this size and another. + #[inline] + pub fn min(self, other: Self) -> Self { + size3( + min(self.width, other.width), + min(self.height, other.height), + min(self.depth, other.depth), + ) + } + + /// Returns the size each component of which are maximum of this size and another. + #[inline] + pub fn max(self, other: Self) -> Self { + size3( + max(self.width, other.width), + max(self.height, other.height), + max(self.depth, other.depth), + ) + } + + /// Returns the size each component of which clamped by corresponding + /// components of `start` and `end`. + /// + /// Shortcut for `self.max(start).min(end)`. + #[inline] + pub fn clamp(self, start: Self, end: Self) -> Self + where + T: Copy, + { + self.max(start).min(end) + } + + // Returns true if this size is larger or equal to the other size in all dimensions. + #[inline] + pub fn contains(self, other: Self) -> bool { + self.width >= other.width && self.height >= other.height && self.depth >= other.depth + } + + + /// Returns vector with results of "greater than" operation on each component. + pub fn greater_than(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.width > other.width, + y: self.height > other.height, + z: self.depth > other.depth, + } + } + + /// Returns vector with results of "lower than" operation on each component. + pub fn lower_than(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.width < other.width, + y: self.height < other.height, + z: self.depth < other.depth, + } + } + + /// Returns `true` if any component of size is zero, negative or NaN. + pub fn is_empty(self) -> bool + where + T: Zero, + { + let zero = T::zero(); + !(self.width > zero && self.height > zero && self.depth <= zero) + } +} + +impl<T: PartialEq, U> Size3D<T, U> { + /// Returns vector with results of "equal" operation on each component. + pub fn equal(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.width == other.width, + y: self.height == other.height, + z: self.depth == other.depth, + } + } + + /// Returns vector with results of "not equal" operation on each component. + pub fn not_equal(self, other: Self) -> BoolVector3D { + BoolVector3D { + x: self.width != other.width, + y: self.height != other.height, + z: self.depth != other.depth, + } + } +} + +impl<T: Round, U> Round for Size3D<T, U> { + /// See [`Size3D::round()`](#method.round). + #[inline] + fn round(self) -> Self { + self.round() + } +} + +impl<T: Ceil, U> Ceil for Size3D<T, U> { + /// See [`Size3D::ceil()`](#method.ceil). + #[inline] + fn ceil(self) -> Self { + self.ceil() + } +} + +impl<T: Floor, U> Floor for Size3D<T, U> { + /// See [`Size3D::floor()`](#method.floor). + #[inline] + fn floor(self) -> Self { + self.floor() + } +} + +impl<T: Zero, U> Zero for Size3D<T, U> { + #[inline] + fn zero() -> Self { + Size3D::new(Zero::zero(), Zero::zero(), Zero::zero()) + } +} + +impl<T: Neg, U> Neg for Size3D<T, U> { + type Output = Size3D<T::Output, U>; + + #[inline] + fn neg(self) -> Self::Output { + Size3D::new(-self.width, -self.height, -self.depth) + } +} + +impl<T: Add, U> Add for Size3D<T, U> { + type Output = Size3D<T::Output, U>; + + #[inline] + fn add(self, other: Self) -> Self::Output { + Size3D::new( + self.width + other.width, + self.height + other.height, + self.depth + other.depth, + ) + } +} + +impl<T: Copy + Add<T, Output = T>, U> Add<&Self> for Size3D<T, U> { + type Output = Self; + fn add(self, other: &Self) -> Self { + Size3D::new( + self.width + other.width, + self.height + other.height, + self.depth + other.depth, + ) + } +} + +impl<T: Add<Output = T> + Zero, U> Sum for Size3D<T, U> { + fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Size3D<T, U> { + fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { + iter.fold(Self::zero(), Add::add) + } +} + +impl<T: AddAssign, U> AddAssign for Size3D<T, U> { + #[inline] + fn add_assign(&mut self, other: Self) { + self.width += other.width; + self.height += other.height; + self.depth += other.depth; + } +} + +impl<T: Sub, U> Sub for Size3D<T, U> { + type Output = Size3D<T::Output, U>; + + #[inline] + fn sub(self, other: Self) -> Self::Output { + Size3D::new( + self.width - other.width, + self.height - other.height, + self.depth - other.depth, + ) + } +} + +impl<T: SubAssign, U> SubAssign for Size3D<T, U> { + #[inline] + fn sub_assign(&mut self, other: Self) { + self.width -= other.width; + self.height -= other.height; + self.depth -= other.depth; + } +} + +impl<T: Copy + Mul, U> Mul<T> for Size3D<T, U> { + type Output = Size3D<T::Output, U>; + + #[inline] + fn mul(self, scale: T) -> Self::Output { + Size3D::new( + self.width * scale, + self.height * scale, + self.depth * scale, + ) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<T> for Size3D<T, U> { + #[inline] + fn mul_assign(&mut self, other: T) { + self.width *= other; + self.height *= other; + self.depth *= other; + } +} + +impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Size3D<T, U1> { + type Output = Size3D<T::Output, U2>; + + #[inline] + fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { + Size3D::new( + self.width * scale.0, + self.height * scale.0, + self.depth * scale.0, + ) + } +} + +impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Size3D<T, U> { + #[inline] + fn mul_assign(&mut self, other: Scale<T, U, U>) { + *self *= other.0; + } +} + +impl<T: Copy + Div, U> Div<T> for Size3D<T, U> { + type Output = Size3D<T::Output, U>; + + #[inline] + fn div(self, scale: T) -> Self::Output { + Size3D::new( + self.width / scale, + self.height / scale, + self.depth / scale, + ) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<T> for Size3D<T, U> { + #[inline] + fn div_assign(&mut self, other: T) { + self.width /= other; + self.height /= other; + self.depth /= other; + } +} + +impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Size3D<T, U2> { + type Output = Size3D<T::Output, U1>; + + #[inline] + fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { + Size3D::new( + self.width / scale.0, + self.height / scale.0, + self.depth / scale.0, + ) + } +} + +impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Size3D<T, U> { + #[inline] + fn div_assign(&mut self, other: Scale<T, U, U>) { + *self /= other.0; + } +} + +#[cfg(feature = "mint")] +impl<T, U> From<mint::Vector3<T>> for Size3D<T, U> { + #[inline] + fn from(v: mint::Vector3<T>) -> Self { + size3(v.x, v.y, v.z) + } +} +#[cfg(feature = "mint")] +impl<T, U> Into<mint::Vector3<T>> for Size3D<T, U> { + #[inline] + fn into(self) -> mint::Vector3<T> { + mint::Vector3 { + x: self.width, + y: self.height, + z: self.depth, + } + } +} + +impl<T, U> From<Vector3D<T, U>> for Size3D<T, U> { + #[inline] + fn from(v: Vector3D<T, U>) -> Self { + size3(v.x, v.y, v.z) + } +} + +impl<T, U> Into<[T; 3]> for Size3D<T, U> { + #[inline] + fn into(self) -> [T; 3] { + [self.width, self.height, self.depth] + } +} + +impl<T, U> From<[T; 3]> for Size3D<T, U> { + #[inline] + fn from([w, h, d]: [T; 3]) -> Self { + size3(w, h, d) + } +} + +impl<T, U> Into<(T, T, T)> for Size3D<T, U> { + #[inline] + fn into(self) -> (T, T, T) { + (self.width, self.height, self.depth) + } +} + +impl<T, U> From<(T, T, T)> for Size3D<T, U> { + #[inline] + fn from(tuple: (T, T, T)) -> Self { + size3(tuple.0, tuple.1, tuple.2) + } +} + +/// Shorthand for `Size3D::new(w, h, d)`. +#[inline] +pub const fn size3<T, U>(w: T, h: T, d: T) -> Size3D<T, U> { + Size3D::new(w, h, d) +} + +#[cfg(test)] +mod size3d { + mod ops { + use crate::default::Size3D; + use crate::scale::Scale; + + pub enum Mm {} + pub enum Cm {} + + pub type Size3DMm<T> = crate::Size3D<T, Mm>; + pub type Size3DCm<T> = crate::Size3D<T, Cm>; + + #[test] + pub fn test_neg() { + assert_eq!(-Size3D::new(1.0, 2.0, 3.0), Size3D::new(-1.0, -2.0, -3.0)); + assert_eq!(-Size3D::new(0.0, 0.0, 0.0), Size3D::new(-0.0, -0.0, -0.0)); + assert_eq!(-Size3D::new(-1.0, -2.0, -3.0), Size3D::new(1.0, 2.0, 3.0)); + } + + #[test] + pub fn test_add() { + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(4.0, 5.0, 6.0); + assert_eq!(s1 + s2, Size3D::new(5.0, 7.0, 9.0)); + assert_eq!(s1 + &s2, Size3D::new(5.0, 7.0, 9.0)); + + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s1 + s2, Size3D::new(1.0, 2.0, 3.0)); + assert_eq!(s1 + &s2, Size3D::new(1.0, 2.0, 3.0)); + + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(-4.0, -5.0, -6.0); + assert_eq!(s1 + s2, Size3D::new(-3.0, -3.0, -3.0)); + assert_eq!(s1 + &s2, Size3D::new(-3.0, -3.0, -3.0)); + + let s1 = Size3D::new(0.0, 0.0, 0.0); + let s2 = Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s1 + s2, Size3D::new(0.0, 0.0, 0.0)); + assert_eq!(s1 + &s2, Size3D::new(0.0, 0.0, 0.0)); + } + + #[test] + pub fn test_sum() { + let sizes = [ + Size3D::new(0.0, 1.0, 2.0), + Size3D::new(1.0, 2.0, 3.0), + Size3D::new(2.0, 3.0, 4.0) + ]; + let sum = Size3D::new(3.0, 6.0, 9.0); + assert_eq!(sizes.iter().sum::<Size3D<_>>(), sum); + } + + #[test] + pub fn test_add_assign() { + let mut s = Size3D::new(1.0, 2.0, 3.0); + s += Size3D::new(4.0, 5.0, 6.0); + assert_eq!(s, Size3D::new(5.0, 7.0, 9.0)); + + let mut s = Size3D::new(1.0, 2.0, 3.0); + s += Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s, Size3D::new(1.0, 2.0, 3.0)); + + let mut s = Size3D::new(1.0, 2.0, 3.0); + s += Size3D::new(-4.0, -5.0, -6.0); + assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0)); + + let mut s = Size3D::new(0.0, 0.0, 0.0); + s += Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s, Size3D::new(0.0, 0.0, 0.0)); + } + + #[test] + pub fn test_sub() { + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(4.0, 5.0, 6.0); + assert_eq!(s1 - s2, Size3D::new(-3.0, -3.0, -3.0)); + + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s1 - s2, Size3D::new(1.0, 2.0, 3.0)); + + let s1 = Size3D::new(1.0, 2.0, 3.0); + let s2 = Size3D::new(-4.0, -5.0, -6.0); + assert_eq!(s1 - s2, Size3D::new(5.0, 7.0, 9.0)); + + let s1 = Size3D::new(0.0, 0.0, 0.0); + let s2 = Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s1 - s2, Size3D::new(0.0, 0.0, 0.0)); + } + + #[test] + pub fn test_sub_assign() { + let mut s = Size3D::new(1.0, 2.0, 3.0); + s -= Size3D::new(4.0, 5.0, 6.0); + assert_eq!(s, Size3D::new(-3.0, -3.0, -3.0)); + + let mut s = Size3D::new(1.0, 2.0, 3.0); + s -= Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s, Size3D::new(1.0, 2.0, 3.0)); + + let mut s = Size3D::new(1.0, 2.0, 3.0); + s -= Size3D::new(-4.0, -5.0, -6.0); + assert_eq!(s, Size3D::new(5.0, 7.0, 9.0)); + + let mut s = Size3D::new(0.0, 0.0, 0.0); + s -= Size3D::new(0.0, 0.0, 0.0); + assert_eq!(s, Size3D::new(0.0, 0.0, 0.0)); + } + + #[test] + pub fn test_mul_scalar() { + let s1: Size3D<f32> = Size3D::new(3.0, 5.0, 7.0); + + let result = s1 * 5.0; + + assert_eq!(result, Size3D::new(15.0, 25.0, 35.0)); + } + + #[test] + pub fn test_mul_assign_scalar() { + let mut s1: Size3D<f32> = Size3D::new(3.0, 5.0, 7.0); + + s1 *= 5.0; + + assert_eq!(s1, Size3D::new(15.0, 25.0, 35.0)); + } + + #[test] + pub fn test_mul_scale() { + let s1 = Size3DMm::new(1.0, 2.0, 3.0); + let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1); + + let result = s1 * cm_per_mm; + + assert_eq!(result, Size3DCm::new(0.1, 0.2, 0.3)); + } + + #[test] + pub fn test_mul_assign_scale() { + let mut s1 = Size3DMm::new(1.0, 2.0, 3.0); + let scale: Scale<f32, Mm, Mm> = Scale::new(0.1); + + s1 *= scale; + + assert_eq!(s1, Size3DMm::new(0.1, 0.2, 0.3)); + } + + #[test] + pub fn test_div_scalar() { + let s1: Size3D<f32> = Size3D::new(15.0, 25.0, 35.0); + + let result = s1 / 5.0; + + assert_eq!(result, Size3D::new(3.0, 5.0, 7.0)); + } + + #[test] + pub fn test_div_assign_scalar() { + let mut s1: Size3D<f32> = Size3D::new(15.0, 25.0, 35.0); + + s1 /= 5.0; + + assert_eq!(s1, Size3D::new(3.0, 5.0, 7.0)); + } + + #[test] + pub fn test_div_scale() { + let s1 = Size3DCm::new(0.1, 0.2, 0.3); + let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1); + + let result = s1 / cm_per_mm; + + assert_eq!(result, Size3DMm::new(1.0, 2.0, 3.0)); + } + + #[test] + pub fn test_div_assign_scale() { + let mut s1 = Size3DMm::new(0.1, 0.2, 0.3); + let scale: Scale<f32, Mm, Mm> = Scale::new(0.1); + + s1 /= scale; + + assert_eq!(s1, Size3DMm::new(1.0, 2.0, 3.0)); + } + + #[test] + pub fn test_nan_empty() { + use std::f32::NAN; + assert!(Size3D::new(NAN, 2.0, 3.0).is_empty()); + assert!(Size3D::new(0.0, NAN, 0.0).is_empty()); + assert!(Size3D::new(1.0, 2.0, NAN).is_empty()); + } + } +} |