diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/futures-executor/src/unpark_mutex.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/futures-executor/src/unpark_mutex.rs')
-rw-r--r-- | third_party/rust/futures-executor/src/unpark_mutex.rs | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/third_party/rust/futures-executor/src/unpark_mutex.rs b/third_party/rust/futures-executor/src/unpark_mutex.rs new file mode 100644 index 0000000000..ac5112cfa2 --- /dev/null +++ b/third_party/rust/futures-executor/src/unpark_mutex.rs @@ -0,0 +1,137 @@ +use std::cell::UnsafeCell; +use std::sync::atomic::AtomicUsize; +use std::sync::atomic::Ordering::SeqCst; + +/// A "lock" around data `D`, which employs a *helping* strategy. +/// +/// Used to ensure that concurrent `unpark` invocations lead to (1) `poll` being +/// invoked on only a single thread at a time (2) `poll` being invoked at least +/// once after each `unpark` (unless the future has completed). +pub(crate) struct UnparkMutex<D> { + // The state of task execution (state machine described below) + status: AtomicUsize, + + // The actual task data, accessible only in the POLLING state + inner: UnsafeCell<Option<D>>, +} + +// `UnparkMutex<D>` functions in many ways like a `Mutex<D>`, except that on +// acquisition failure, the current lock holder performs the desired work -- +// re-polling. +// +// As such, these impls mirror those for `Mutex<D>`. In particular, a reference +// to `UnparkMutex` can be used to gain `&mut` access to the inner data, which +// must therefore be `Send`. +unsafe impl<D: Send> Send for UnparkMutex<D> {} +unsafe impl<D: Send> Sync for UnparkMutex<D> {} + +// There are four possible task states, listed below with their possible +// transitions: + +// The task is blocked, waiting on an event +const WAITING: usize = 0; // --> POLLING + +// The task is actively being polled by a thread; arrival of additional events +// of interest should move it to the REPOLL state +const POLLING: usize = 1; // --> WAITING, REPOLL, or COMPLETE + +// The task is actively being polled, but will need to be re-polled upon +// completion to ensure that all events were observed. +const REPOLL: usize = 2; // --> POLLING + +// The task has finished executing (either successfully or with an error/panic) +const COMPLETE: usize = 3; // No transitions out + +impl<D> UnparkMutex<D> { + pub(crate) fn new() -> Self { + Self { status: AtomicUsize::new(WAITING), inner: UnsafeCell::new(None) } + } + + /// Attempt to "notify" the mutex that a poll should occur. + /// + /// An `Ok` result indicates that the `POLLING` state has been entered, and + /// the caller can proceed to poll the future. An `Err` result indicates + /// that polling is not necessary (because the task is finished or the + /// polling has been delegated). + pub(crate) fn notify(&self) -> Result<D, ()> { + let mut status = self.status.load(SeqCst); + loop { + match status { + // The task is idle, so try to run it immediately. + WAITING => { + match self.status.compare_exchange(WAITING, POLLING, SeqCst, SeqCst) { + Ok(_) => { + let data = unsafe { + // SAFETY: we've ensured mutual exclusion via + // the status protocol; we are the only thread + // that has transitioned to the POLLING state, + // and we won't transition back to QUEUED until + // the lock is "released" by this thread. See + // the protocol diagram above. + (*self.inner.get()).take().unwrap() + }; + return Ok(data); + } + Err(cur) => status = cur, + } + } + + // The task is being polled, so we need to record that it should + // be *repolled* when complete. + POLLING => match self.status.compare_exchange(POLLING, REPOLL, SeqCst, SeqCst) { + Ok(_) => return Err(()), + Err(cur) => status = cur, + }, + + // The task is already scheduled for polling, or is complete, so + // we've got nothing to do. + _ => return Err(()), + } + } + } + + /// Alert the mutex that polling is about to begin, clearing any accumulated + /// re-poll requests. + /// + /// # Safety + /// + /// Callable only from the `POLLING`/`REPOLL` states, i.e. between + /// successful calls to `notify` and `wait`/`complete`. + pub(crate) unsafe fn start_poll(&self) { + self.status.store(POLLING, SeqCst); + } + + /// Alert the mutex that polling completed with `Pending`. + /// + /// # Safety + /// + /// Callable only from the `POLLING`/`REPOLL` states, i.e. between + /// successful calls to `notify` and `wait`/`complete`. + pub(crate) unsafe fn wait(&self, data: D) -> Result<(), D> { + *self.inner.get() = Some(data); + + match self.status.compare_exchange(POLLING, WAITING, SeqCst, SeqCst) { + // no unparks came in while we were running + Ok(_) => Ok(()), + + // guaranteed to be in REPOLL state; just clobber the + // state and run again. + Err(status) => { + assert_eq!(status, REPOLL); + self.status.store(POLLING, SeqCst); + Err((*self.inner.get()).take().unwrap()) + } + } + } + + /// Alert the mutex that the task has completed execution and should not be + /// notified again. + /// + /// # Safety + /// + /// Callable only from the `POLLING`/`REPOLL` states, i.e. between + /// successful calls to `notify` and `wait`/`complete`. + pub(crate) unsafe fn complete(&self) { + self.status.store(COMPLETE, SeqCst); + } +} |