summaryrefslogtreecommitdiffstats
path: root/third_party/rust/half/src/bfloat/convert.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/half/src/bfloat/convert.rs
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/half/src/bfloat/convert.rs')
-rw-r--r--third_party/rust/half/src/bfloat/convert.rs135
1 files changed, 135 insertions, 0 deletions
diff --git a/third_party/rust/half/src/bfloat/convert.rs b/third_party/rust/half/src/bfloat/convert.rs
new file mode 100644
index 0000000000..4aa0aec751
--- /dev/null
+++ b/third_party/rust/half/src/bfloat/convert.rs
@@ -0,0 +1,135 @@
+pub(crate) fn f32_to_bf16(value: f32) -> u16 {
+ // Convert to raw bytes
+ let x = value.to_bits();
+
+ // check for NaN
+ if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 {
+ // Keep high part of current mantissa but also set most significiant mantissa bit
+ return ((x >> 16) | 0x0040u32) as u16;
+ }
+
+ // round and shift
+ let round_bit = 0x0000_8000u32;
+ if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 {
+ (x >> 16) as u16 + 1
+ } else {
+ (x >> 16) as u16
+ }
+}
+
+pub(crate) fn f64_to_bf16(value: f64) -> u16 {
+ // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
+ // be lost on half-precision.
+ let val = value.to_bits();
+ let x = (val >> 32) as u32;
+
+ // Extract IEEE754 components
+ let sign = x & 0x8000_0000u32;
+ let exp = x & 0x7FF0_0000u32;
+ let man = x & 0x000F_FFFFu32;
+
+ // Check for all exponent bits being set, which is Infinity or NaN
+ if exp == 0x7FF0_0000u32 {
+ // Set mantissa MSB for NaN (and also keep shifted mantissa bits).
+ // We also have to check the last 32 bits.
+ let nan_bit = if man == 0 && (val as u32 == 0) {
+ 0
+ } else {
+ 0x0040u32
+ };
+ return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16;
+ }
+
+ // The number is normalized, start assembling half precision version
+ let half_sign = sign >> 16;
+ // Unbias the exponent, then bias for bfloat16 precision
+ let unbiased_exp = ((exp >> 20) as i64) - 1023;
+ let half_exp = unbiased_exp + 127;
+
+ // Check for exponent overflow, return +infinity
+ if half_exp >= 0xFF {
+ return (half_sign | 0x7F80u32) as u16;
+ }
+
+ // Check for underflow
+ if half_exp <= 0 {
+ // Check mantissa for what we can do
+ if 7 - half_exp > 21 {
+ // No rounding possibility, so this is a full underflow, return signed zero
+ return half_sign as u16;
+ }
+ // Don't forget about hidden leading mantissa bit when assembling mantissa
+ let man = man | 0x0010_0000u32;
+ let mut half_man = man >> (14 - half_exp);
+ // Check for rounding
+ let round_bit = 1 << (13 - half_exp);
+ if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
+ half_man += 1;
+ }
+ // No exponent for subnormals
+ return (half_sign | half_man) as u16;
+ }
+
+ // Rebias the exponent
+ let half_exp = (half_exp as u32) << 7;
+ let half_man = man >> 13;
+ // Check for rounding
+ let round_bit = 0x0000_1000u32;
+ if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
+ // Round it
+ ((half_sign | half_exp | half_man) + 1) as u16
+ } else {
+ (half_sign | half_exp | half_man) as u16
+ }
+}
+
+pub(crate) fn bf16_to_f32(i: u16) -> f32 {
+ // If NaN, keep current mantissa but also set most significiant mantissa bit
+ if i & 0x7FFFu16 > 0x7F80u16 {
+ f32::from_bits((i as u32 | 0x0040u32) << 16)
+ } else {
+ f32::from_bits((i as u32) << 16)
+ }
+}
+
+pub(crate) fn bf16_to_f64(i: u16) -> f64 {
+ // Check for signed zero
+ if i & 0x7FFFu16 == 0 {
+ return f64::from_bits((i as u64) << 48);
+ }
+
+ let half_sign = (i & 0x8000u16) as u64;
+ let half_exp = (i & 0x7F80u16) as u64;
+ let half_man = (i & 0x007Fu16) as u64;
+
+ // Check for an infinity or NaN when all exponent bits set
+ if half_exp == 0x7F80u64 {
+ // Check for signed infinity if mantissa is zero
+ if half_man == 0 {
+ return f64::from_bits((half_sign << 48) | 0x7FF0_0000_0000_0000u64);
+ } else {
+ // NaN, keep current mantissa but also set most significiant mantissa bit
+ return f64::from_bits((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45));
+ }
+ }
+
+ // Calculate double-precision components with adjusted exponent
+ let sign = half_sign << 48;
+ // Unbias exponent
+ let unbiased_exp = ((half_exp as i64) >> 7) - 127;
+
+ // Check for subnormals, which will be normalized by adjusting exponent
+ if half_exp == 0 {
+ // Calculate how much to adjust the exponent by
+ let e = (half_man as u16).leading_zeros() - 9;
+
+ // Rebias and adjust exponent
+ let exp = ((1023 - 127 - e) as u64) << 52;
+ let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64;
+ return f64::from_bits(sign | exp | man);
+ }
+ // Rebias exponent for a normalized normal
+ let exp = ((unbiased_exp + 1023) as u64) << 52;
+ let man = (half_man & 0x007Fu64) << 45;
+ f64::from_bits(sign | exp | man)
+}