diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/minimal-lexical/src/bigint.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-upstream.tar.xz firefox-esr-upstream.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/minimal-lexical/src/bigint.rs')
-rw-r--r-- | third_party/rust/minimal-lexical/src/bigint.rs | 788 |
1 files changed, 788 insertions, 0 deletions
diff --git a/third_party/rust/minimal-lexical/src/bigint.rs b/third_party/rust/minimal-lexical/src/bigint.rs new file mode 100644 index 0000000000..d1d5027a19 --- /dev/null +++ b/third_party/rust/minimal-lexical/src/bigint.rs @@ -0,0 +1,788 @@ +//! A simple big-integer type for slow path algorithms. +//! +//! This includes minimal stackvector for use in big-integer arithmetic. + +#![doc(hidden)] + +#[cfg(feature = "alloc")] +use crate::heapvec::HeapVec; +use crate::num::Float; +#[cfg(not(feature = "alloc"))] +use crate::stackvec::StackVec; +#[cfg(not(feature = "compact"))] +use crate::table::{LARGE_POW5, LARGE_POW5_STEP}; +use core::{cmp, ops, ptr}; + +/// Number of bits in a Bigint. +/// +/// This needs to be at least the number of bits required to store +/// a Bigint, which is `log2(radix**digits)`. +/// ≅ 3600 for base-10, rounded-up. +pub const BIGINT_BITS: usize = 4000; + +/// The number of limbs for the bigint. +pub const BIGINT_LIMBS: usize = BIGINT_BITS / LIMB_BITS; + +#[cfg(feature = "alloc")] +pub type VecType = HeapVec; + +#[cfg(not(feature = "alloc"))] +pub type VecType = StackVec; + +/// Storage for a big integer type. +/// +/// This is used for algorithms when we have a finite number of digits. +/// Specifically, it stores all the significant digits scaled to the +/// proper exponent, as an integral type, and then directly compares +/// these digits. +/// +/// This requires us to store the number of significant bits, plus the +/// number of exponent bits (required) since we scale everything +/// to the same exponent. +#[derive(Clone, PartialEq, Eq)] +pub struct Bigint { + /// Significant digits for the float, stored in a big integer in LE order. + /// + /// This is pretty much the same number of digits for any radix, since the + /// significant digits balances out the zeros from the exponent: + /// 1. Decimal is 1091 digits, 767 mantissa digits + 324 exponent zeros. + /// 2. Base 6 is 1097 digits, or 680 mantissa digits + 417 exponent zeros. + /// 3. Base 36 is 1086 digits, or 877 mantissa digits + 209 exponent zeros. + /// + /// However, the number of bytes required is larger for large radixes: + /// for decimal, we need `log2(10**1091) ≅ 3600`, while for base 36 + /// we need `log2(36**1086) ≅ 5600`. Since we use uninitialized data, + /// we avoid a major performance hit from the large buffer size. + pub data: VecType, +} + +#[allow(clippy::new_without_default)] +impl Bigint { + /// Construct a bigint representing 0. + #[inline(always)] + pub fn new() -> Self { + Self { + data: VecType::new(), + } + } + + /// Construct a bigint from an integer. + #[inline(always)] + pub fn from_u64(value: u64) -> Self { + Self { + data: VecType::from_u64(value), + } + } + + #[inline(always)] + pub fn hi64(&self) -> (u64, bool) { + self.data.hi64() + } + + /// Multiply and assign as if by exponentiation by a power. + #[inline] + pub fn pow(&mut self, base: u32, exp: u32) -> Option<()> { + debug_assert!(base == 2 || base == 5 || base == 10); + if base % 5 == 0 { + pow(&mut self.data, exp)?; + } + if base % 2 == 0 { + shl(&mut self.data, exp as usize)?; + } + Some(()) + } + + /// Calculate the bit-length of the big-integer. + #[inline] + pub fn bit_length(&self) -> u32 { + bit_length(&self.data) + } +} + +impl ops::MulAssign<&Bigint> for Bigint { + fn mul_assign(&mut self, rhs: &Bigint) { + self.data *= &rhs.data; + } +} + +/// REVERSE VIEW + +/// Reverse, immutable view of a sequence. +pub struct ReverseView<'a, T: 'a> { + inner: &'a [T], +} + +impl<'a, T> ops::Index<usize> for ReverseView<'a, T> { + type Output = T; + + #[inline] + fn index(&self, index: usize) -> &T { + let len = self.inner.len(); + &(*self.inner)[len - index - 1] + } +} + +/// Create a reverse view of the vector for indexing. +#[inline] +pub fn rview(x: &[Limb]) -> ReverseView<Limb> { + ReverseView { + inner: x, + } +} + +// COMPARE +// ------- + +/// Compare `x` to `y`, in little-endian order. +#[inline] +pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering { + match x.len().cmp(&y.len()) { + cmp::Ordering::Equal => { + let iter = x.iter().rev().zip(y.iter().rev()); + for (&xi, yi) in iter { + match xi.cmp(yi) { + cmp::Ordering::Equal => (), + ord => return ord, + } + } + // Equal case. + cmp::Ordering::Equal + }, + ord => ord, + } +} + +// NORMALIZE +// --------- + +/// Normalize the integer, so any leading zero values are removed. +#[inline] +pub fn normalize(x: &mut VecType) { + // We don't care if this wraps: the index is bounds-checked. + while let Some(&value) = x.get(x.len().wrapping_sub(1)) { + if value == 0 { + unsafe { x.set_len(x.len() - 1) }; + } else { + break; + } + } +} + +/// Get if the big integer is normalized. +#[inline] +#[allow(clippy::match_like_matches_macro)] +pub fn is_normalized(x: &[Limb]) -> bool { + // We don't care if this wraps: the index is bounds-checked. + match x.get(x.len().wrapping_sub(1)) { + Some(&0) => false, + _ => true, + } +} + +// FROM +// ---- + +/// Create StackVec from u64 value. +#[inline(always)] +#[allow(clippy::branches_sharing_code)] +pub fn from_u64(x: u64) -> VecType { + let mut vec = VecType::new(); + debug_assert!(vec.capacity() >= 2); + if LIMB_BITS == 32 { + vec.try_push(x as Limb).unwrap(); + vec.try_push((x >> 32) as Limb).unwrap(); + } else { + vec.try_push(x as Limb).unwrap(); + } + vec.normalize(); + vec +} + +// HI +// -- + +/// Check if any of the remaining bits are non-zero. +/// +/// # Safety +/// +/// Safe as long as `rindex <= x.len()`. +#[inline] +pub fn nonzero(x: &[Limb], rindex: usize) -> bool { + debug_assert!(rindex <= x.len()); + + let len = x.len(); + let slc = &x[..len - rindex]; + slc.iter().rev().any(|&x| x != 0) +} + +// These return the high X bits and if the bits were truncated. + +/// Shift 32-bit integer to high 64-bits. +#[inline] +pub fn u32_to_hi64_1(r0: u32) -> (u64, bool) { + u64_to_hi64_1(r0 as u64) +} + +/// Shift 2 32-bit integers to high 64-bits. +#[inline] +pub fn u32_to_hi64_2(r0: u32, r1: u32) -> (u64, bool) { + let r0 = (r0 as u64) << 32; + let r1 = r1 as u64; + u64_to_hi64_1(r0 | r1) +} + +/// Shift 3 32-bit integers to high 64-bits. +#[inline] +pub fn u32_to_hi64_3(r0: u32, r1: u32, r2: u32) -> (u64, bool) { + let r0 = r0 as u64; + let r1 = (r1 as u64) << 32; + let r2 = r2 as u64; + u64_to_hi64_2(r0, r1 | r2) +} + +/// Shift 64-bit integer to high 64-bits. +#[inline] +pub fn u64_to_hi64_1(r0: u64) -> (u64, bool) { + let ls = r0.leading_zeros(); + (r0 << ls, false) +} + +/// Shift 2 64-bit integers to high 64-bits. +#[inline] +pub fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) { + let ls = r0.leading_zeros(); + let rs = 64 - ls; + let v = match ls { + 0 => r0, + _ => (r0 << ls) | (r1 >> rs), + }; + let n = r1 << ls != 0; + (v, n) +} + +/// Extract the hi bits from the buffer. +macro_rules! hi { + // # Safety + // + // Safe as long as the `stackvec.len() >= 1`. + (@1 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ + $fn($rview[0] as $t) + }}; + + // # Safety + // + // Safe as long as the `stackvec.len() >= 2`. + (@2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ + let r0 = $rview[0] as $t; + let r1 = $rview[1] as $t; + $fn(r0, r1) + }}; + + // # Safety + // + // Safe as long as the `stackvec.len() >= 2`. + (@nonzero2 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ + let (v, n) = hi!(@2 $self, $rview, $t, $fn); + (v, n || nonzero($self, 2 )) + }}; + + // # Safety + // + // Safe as long as the `stackvec.len() >= 3`. + (@3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ + let r0 = $rview[0] as $t; + let r1 = $rview[1] as $t; + let r2 = $rview[2] as $t; + $fn(r0, r1, r2) + }}; + + // # Safety + // + // Safe as long as the `stackvec.len() >= 3`. + (@nonzero3 $self:ident, $rview:ident, $t:ident, $fn:ident) => {{ + let (v, n) = hi!(@3 $self, $rview, $t, $fn); + (v, n || nonzero($self, 3)) + }}; +} + +/// Get the high 64 bits from the vector. +#[inline(always)] +pub fn hi64(x: &[Limb]) -> (u64, bool) { + let rslc = rview(x); + // SAFETY: the buffer must be at least length bytes long. + match x.len() { + 0 => (0, false), + 1 if LIMB_BITS == 32 => hi!(@1 x, rslc, u32, u32_to_hi64_1), + 1 => hi!(@1 x, rslc, u64, u64_to_hi64_1), + 2 if LIMB_BITS == 32 => hi!(@2 x, rslc, u32, u32_to_hi64_2), + 2 => hi!(@2 x, rslc, u64, u64_to_hi64_2), + _ if LIMB_BITS == 32 => hi!(@nonzero3 x, rslc, u32, u32_to_hi64_3), + _ => hi!(@nonzero2 x, rslc, u64, u64_to_hi64_2), + } +} + +// POWERS +// ------ + +/// MulAssign by a power of 5. +/// +/// Theoretically... +/// +/// Use an exponentiation by squaring method, since it reduces the time +/// complexity of the multiplication to ~`O(log(n))` for the squaring, +/// and `O(n*m)` for the result. Since `m` is typically a lower-order +/// factor, this significantly reduces the number of multiplications +/// we need to do. Iteratively multiplying by small powers follows +/// the nth triangular number series, which scales as `O(p^2)`, but +/// where `p` is `n+m`. In short, it scales very poorly. +/// +/// Practically.... +/// +/// Exponentiation by Squaring: +/// running 2 tests +/// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78) +/// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007) +/// +/// Exponentiation by Iterative Small Powers: +/// running 2 tests +/// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31) +/// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47) +/// +/// Exponentiation by Iterative Large Powers (of 2): +/// running 2 tests +/// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31) +/// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47) +/// +/// The following benchmarks were run on `1 * 5^300`, using native `pow`, +/// a version with only small powers, and one with pre-computed powers +/// of `5^(3 * max_exp)`, rather than `5^(5 * max_exp)`. +/// +/// However, using large powers is crucial for good performance for higher +/// powers. +/// pow/default time: [426.20 ns 427.96 ns 429.89 ns] +/// pow/small time: [2.9270 us 2.9411 us 2.9565 us] +/// pow/large:3 time: [838.51 ns 842.21 ns 846.27 ns] +/// +/// Even using worst-case scenarios, exponentiation by squaring is +/// significantly slower for our workloads. Just multiply by small powers, +/// in simple cases, and use precalculated large powers in other cases. +/// +/// Furthermore, using sufficiently big large powers is also crucial for +/// performance. This is a tradeoff of binary size and performance, and +/// using a single value at ~`5^(5 * max_exp)` seems optimal. +pub fn pow(x: &mut VecType, mut exp: u32) -> Option<()> { + // Minimize the number of iterations for large exponents: just + // do a few steps with a large powers. + #[cfg(not(feature = "compact"))] + { + while exp >= LARGE_POW5_STEP { + large_mul(x, &LARGE_POW5)?; + exp -= LARGE_POW5_STEP; + } + } + + // Now use our pre-computed small powers iteratively. + // This is calculated as `⌊log(2^BITS - 1, 5)⌋`. + let small_step = if LIMB_BITS == 32 { + 13 + } else { + 27 + }; + let max_native = (5 as Limb).pow(small_step); + while exp >= small_step { + small_mul(x, max_native)?; + exp -= small_step; + } + if exp != 0 { + // SAFETY: safe, since `exp < small_step`. + let small_power = unsafe { f64::int_pow_fast_path(exp as usize, 5) }; + small_mul(x, small_power as Limb)?; + } + Some(()) +} + +// SCALAR +// ------ + +/// Add two small integers and return the resulting value and if overflow happens. +#[inline(always)] +pub fn scalar_add(x: Limb, y: Limb) -> (Limb, bool) { + x.overflowing_add(y) +} + +/// Multiply two small integers (with carry) (and return the overflow contribution). +/// +/// Returns the (low, high) components. +#[inline(always)] +pub fn scalar_mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) { + // Cannot overflow, as long as wide is 2x as wide. This is because + // the following is always true: + // `Wide::MAX - (Narrow::MAX * Narrow::MAX) >= Narrow::MAX` + let z: Wide = (x as Wide) * (y as Wide) + (carry as Wide); + (z as Limb, (z >> LIMB_BITS) as Limb) +} + +// SMALL +// ----- + +/// Add small integer to bigint starting from offset. +#[inline] +pub fn small_add_from(x: &mut VecType, y: Limb, start: usize) -> Option<()> { + let mut index = start; + let mut carry = y; + while carry != 0 && index < x.len() { + let result = scalar_add(x[index], carry); + x[index] = result.0; + carry = result.1 as Limb; + index += 1; + } + // If we carried past all the elements, add to the end of the buffer. + if carry != 0 { + x.try_push(carry)?; + } + Some(()) +} + +/// Add small integer to bigint. +#[inline(always)] +pub fn small_add(x: &mut VecType, y: Limb) -> Option<()> { + small_add_from(x, y, 0) +} + +/// Multiply bigint by small integer. +#[inline] +pub fn small_mul(x: &mut VecType, y: Limb) -> Option<()> { + let mut carry = 0; + for xi in x.iter_mut() { + let result = scalar_mul(*xi, y, carry); + *xi = result.0; + carry = result.1; + } + // If we carried past all the elements, add to the end of the buffer. + if carry != 0 { + x.try_push(carry)?; + } + Some(()) +} + +// LARGE +// ----- + +/// Add bigint to bigint starting from offset. +pub fn large_add_from(x: &mut VecType, y: &[Limb], start: usize) -> Option<()> { + // The effective x buffer is from `xstart..x.len()`, so we need to treat + // that as the current range. If the effective y buffer is longer, need + // to resize to that, + the start index. + if y.len() > x.len().saturating_sub(start) { + // Ensure we panic if we can't extend the buffer. + // This avoids any unsafe behavior afterwards. + x.try_resize(y.len() + start, 0)?; + } + + // Iteratively add elements from y to x. + let mut carry = false; + for (index, &yi) in y.iter().enumerate() { + // We panicked in `try_resize` if this wasn't true. + let xi = x.get_mut(start + index).unwrap(); + + // Only one op of the two ops can overflow, since we added at max + // Limb::max_value() + Limb::max_value(). Add the previous carry, + // and store the current carry for the next. + let result = scalar_add(*xi, yi); + *xi = result.0; + let mut tmp = result.1; + if carry { + let result = scalar_add(*xi, 1); + *xi = result.0; + tmp |= result.1; + } + carry = tmp; + } + + // Handle overflow. + if carry { + small_add_from(x, 1, y.len() + start)?; + } + Some(()) +} + +/// Add bigint to bigint. +#[inline(always)] +pub fn large_add(x: &mut VecType, y: &[Limb]) -> Option<()> { + large_add_from(x, y, 0) +} + +/// Grade-school multiplication algorithm. +/// +/// Slow, naive algorithm, using limb-bit bases and just shifting left for +/// each iteration. This could be optimized with numerous other algorithms, +/// but it's extremely simple, and works in O(n*m) time, which is fine +/// by me. Each iteration, of which there are `m` iterations, requires +/// `n` multiplications, and `n` additions, or grade-school multiplication. +/// +/// Don't use Karatsuba multiplication, since out implementation seems to +/// be slower asymptotically, which is likely just due to the small sizes +/// we deal with here. For example, running on the following data: +/// +/// ```text +/// const SMALL_X: &[u32] = &[ +/// 766857581, 3588187092, 1583923090, 2204542082, 1564708913, 2695310100, 3676050286, +/// 1022770393, 468044626, 446028186 +/// ]; +/// const SMALL_Y: &[u32] = &[ +/// 3945492125, 3250752032, 1282554898, 1708742809, 1131807209, 3171663979, 1353276095, +/// 1678845844, 2373924447, 3640713171 +/// ]; +/// const LARGE_X: &[u32] = &[ +/// 3647536243, 2836434412, 2154401029, 1297917894, 137240595, 790694805, 2260404854, +/// 3872698172, 690585094, 99641546, 3510774932, 1672049983, 2313458559, 2017623719, +/// 638180197, 1140936565, 1787190494, 1797420655, 14113450, 2350476485, 3052941684, +/// 1993594787, 2901001571, 4156930025, 1248016552, 848099908, 2660577483, 4030871206, +/// 692169593, 2835966319, 1781364505, 4266390061, 1813581655, 4210899844, 2137005290, +/// 2346701569, 3715571980, 3386325356, 1251725092, 2267270902, 474686922, 2712200426, +/// 197581715, 3087636290, 1379224439, 1258285015, 3230794403, 2759309199, 1494932094, +/// 326310242 +/// ]; +/// const LARGE_Y: &[u32] = &[ +/// 1574249566, 868970575, 76716509, 3198027972, 1541766986, 1095120699, 3891610505, +/// 2322545818, 1677345138, 865101357, 2650232883, 2831881215, 3985005565, 2294283760, +/// 3468161605, 393539559, 3665153349, 1494067812, 106699483, 2596454134, 797235106, +/// 705031740, 1209732933, 2732145769, 4122429072, 141002534, 790195010, 4014829800, +/// 1303930792, 3649568494, 308065964, 1233648836, 2807326116, 79326486, 1262500691, +/// 621809229, 2258109428, 3819258501, 171115668, 1139491184, 2979680603, 1333372297, +/// 1657496603, 2790845317, 4090236532, 4220374789, 601876604, 1828177209, 2372228171, +/// 2247372529 +/// ]; +/// ``` +/// +/// We get the following results: + +/// ```text +/// mul/small:long time: [220.23 ns 221.47 ns 222.81 ns] +/// Found 4 outliers among 100 measurements (4.00%) +/// 2 (2.00%) high mild +/// 2 (2.00%) high severe +/// mul/small:karatsuba time: [233.88 ns 234.63 ns 235.44 ns] +/// Found 11 outliers among 100 measurements (11.00%) +/// 8 (8.00%) high mild +/// 3 (3.00%) high severe +/// mul/large:long time: [1.9365 us 1.9455 us 1.9558 us] +/// Found 12 outliers among 100 measurements (12.00%) +/// 7 (7.00%) high mild +/// 5 (5.00%) high severe +/// mul/large:karatsuba time: [4.4250 us 4.4515 us 4.4812 us] +/// ``` +/// +/// In short, Karatsuba multiplication is never worthwhile for out use-case. +pub fn long_mul(x: &[Limb], y: &[Limb]) -> Option<VecType> { + // Using the immutable value, multiply by all the scalars in y, using + // the algorithm defined above. Use a single buffer to avoid + // frequent reallocations. Handle the first case to avoid a redundant + // addition, since we know y.len() >= 1. + let mut z = VecType::try_from(x)?; + if !y.is_empty() { + let y0 = y[0]; + small_mul(&mut z, y0)?; + + for (index, &yi) in y.iter().enumerate().skip(1) { + if yi != 0 { + let mut zi = VecType::try_from(x)?; + small_mul(&mut zi, yi)?; + large_add_from(&mut z, &zi, index)?; + } + } + } + + z.normalize(); + Some(z) +} + +/// Multiply bigint by bigint using grade-school multiplication algorithm. +#[inline(always)] +pub fn large_mul(x: &mut VecType, y: &[Limb]) -> Option<()> { + // Karatsuba multiplication never makes sense, so just use grade school + // multiplication. + if y.len() == 1 { + // SAFETY: safe since `y.len() == 1`. + small_mul(x, y[0])?; + } else { + *x = long_mul(y, x)?; + } + Some(()) +} + +// SHIFT +// ----- + +/// Shift-left `n` bits inside a buffer. +#[inline] +pub fn shl_bits(x: &mut VecType, n: usize) -> Option<()> { + debug_assert!(n != 0); + + // Internally, for each item, we shift left by n, and add the previous + // right shifted limb-bits. + // For example, we transform (for u8) shifted left 2, to: + // b10100100 b01000010 + // b10 b10010001 b00001000 + debug_assert!(n < LIMB_BITS); + let rshift = LIMB_BITS - n; + let lshift = n; + let mut prev: Limb = 0; + for xi in x.iter_mut() { + let tmp = *xi; + *xi <<= lshift; + *xi |= prev >> rshift; + prev = tmp; + } + + // Always push the carry, even if it creates a non-normal result. + let carry = prev >> rshift; + if carry != 0 { + x.try_push(carry)?; + } + + Some(()) +} + +/// Shift-left `n` limbs inside a buffer. +#[inline] +pub fn shl_limbs(x: &mut VecType, n: usize) -> Option<()> { + debug_assert!(n != 0); + if n + x.len() > x.capacity() { + None + } else if !x.is_empty() { + let len = n + x.len(); + // SAFE: since x is not empty, and `x.len() + n <= x.capacity()`. + unsafe { + // Move the elements. + let src = x.as_ptr(); + let dst = x.as_mut_ptr().add(n); + ptr::copy(src, dst, x.len()); + // Write our 0s. + ptr::write_bytes(x.as_mut_ptr(), 0, n); + x.set_len(len); + } + Some(()) + } else { + Some(()) + } +} + +/// Shift-left buffer by n bits. +#[inline] +pub fn shl(x: &mut VecType, n: usize) -> Option<()> { + let rem = n % LIMB_BITS; + let div = n / LIMB_BITS; + if rem != 0 { + shl_bits(x, rem)?; + } + if div != 0 { + shl_limbs(x, div)?; + } + Some(()) +} + +/// Get number of leading zero bits in the storage. +#[inline] +pub fn leading_zeros(x: &[Limb]) -> u32 { + let length = x.len(); + // wrapping_sub is fine, since it'll just return None. + if let Some(&value) = x.get(length.wrapping_sub(1)) { + value.leading_zeros() + } else { + 0 + } +} + +/// Calculate the bit-length of the big-integer. +#[inline] +pub fn bit_length(x: &[Limb]) -> u32 { + let nlz = leading_zeros(x); + LIMB_BITS as u32 * x.len() as u32 - nlz +} + +// LIMB +// ---- + +// Type for a single limb of the big integer. +// +// A limb is analogous to a digit in base10, except, it stores 32-bit +// or 64-bit numbers instead. We want types where 64-bit multiplication +// is well-supported by the architecture, rather than emulated in 3 +// instructions. The quickest way to check this support is using a +// cross-compiler for numerous architectures, along with the following +// source file and command: +// +// Compile with `gcc main.c -c -S -O3 -masm=intel` +// +// And the source code is: +// ```text +// #include <stdint.h> +// +// struct i128 { +// uint64_t hi; +// uint64_t lo; +// }; +// +// // Type your code here, or load an example. +// struct i128 square(uint64_t x, uint64_t y) { +// __int128 prod = (__int128)x * (__int128)y; +// struct i128 z; +// z.hi = (uint64_t)(prod >> 64); +// z.lo = (uint64_t)prod; +// return z; +// } +// ``` +// +// If the result contains `call __multi3`, then the multiplication +// is emulated by the compiler. Otherwise, it's natively supported. +// +// This should be all-known 64-bit platforms supported by Rust. +// https://forge.rust-lang.org/platform-support.html +// +// # Supported +// +// Platforms where native 128-bit multiplication is explicitly supported: +// - x86_64 (Supported via `MUL`). +// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from). +// - s390x (Supported via `MLGR`). +// +// # Efficient +// +// Platforms where native 64-bit multiplication is supported and +// you can extract hi-lo for 64-bit multiplications. +// - aarch64 (Requires `UMULH` and `MUL` to capture high and low bits). +// - powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits). +// - riscv64 (Requires `MUL` and `MULH` to capture high and low bits). +// +// # Unsupported +// +// Platforms where native 128-bit multiplication is not supported, +// requiring software emulation. +// sparc64 (`UMUL` only supports double-word arguments). +// sparcv9 (Same as sparc64). +// +// These tests are run via `xcross`, my own library for C cross-compiling, +// which supports numerous targets (far in excess of Rust's tier 1 support, +// or rust-embedded/cross's list). xcross may be found here: +// https://github.com/Alexhuszagh/xcross +// +// To compile for the given target, run: +// `xcross gcc main.c -c -S -O3 --target $target` +// +// All 32-bit architectures inherently do not have support. That means +// we can essentially look for 64-bit architectures that are not SPARC. + +#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))] +pub type Limb = u64; +#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))] +pub type Wide = u128; +#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))] +pub const LIMB_BITS: usize = 64; + +#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))] +pub type Limb = u32; +#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))] +pub type Wide = u64; +#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))] +pub const LIMB_BITS: usize = 32; |