diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/naga/src/back/msl/writer.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-upstream.tar.xz firefox-esr-upstream.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/naga/src/back/msl/writer.rs')
-rw-r--r-- | third_party/rust/naga/src/back/msl/writer.rs | 4429 |
1 files changed, 4429 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/msl/writer.rs b/third_party/rust/naga/src/back/msl/writer.rs new file mode 100644 index 0000000000..88600a8f11 --- /dev/null +++ b/third_party/rust/naga/src/back/msl/writer.rs @@ -0,0 +1,4429 @@ +use super::{sampler as sm, Error, LocationMode, Options, PipelineOptions, TranslationInfo}; +use crate::{ + arena::Handle, + back, + proc::index, + proc::{self, NameKey, TypeResolution}, + valid, FastHashMap, FastHashSet, +}; +use bit_set::BitSet; +use std::{ + fmt::{Display, Error as FmtError, Formatter, Write}, + iter, +}; + +/// Shorthand result used internally by the backend +type BackendResult = Result<(), Error>; + +const NAMESPACE: &str = "metal"; +// The name of the array member of the Metal struct types we generate to +// represent Naga `Array` types. See the comments in `Writer::write_type_defs` +// for details. +const WRAPPED_ARRAY_FIELD: &str = "inner"; +// This is a hack: we need to pass a pointer to an atomic, +// but generally the backend isn't putting "&" in front of every pointer. +// Some more general handling of pointers is needed to be implemented here. +const ATOMIC_REFERENCE: &str = "&"; + +const RT_NAMESPACE: &str = "metal::raytracing"; +const RAY_QUERY_TYPE: &str = "_RayQuery"; +const RAY_QUERY_FIELD_INTERSECTOR: &str = "intersector"; +const RAY_QUERY_FIELD_INTERSECTION: &str = "intersection"; +const RAY_QUERY_FIELD_READY: &str = "ready"; +const RAY_QUERY_FUN_MAP_INTERSECTION: &str = "_map_intersection_type"; + +/// Write the Metal name for a Naga numeric type: scalar, vector, or matrix. +/// +/// The `sizes` slice determines whether this function writes a +/// scalar, vector, or matrix type: +/// +/// - An empty slice produces a scalar type. +/// - A one-element slice produces a vector type. +/// - A two element slice `[ROWS COLUMNS]` produces a matrix of the given size. +fn put_numeric_type( + out: &mut impl Write, + kind: crate::ScalarKind, + sizes: &[crate::VectorSize], +) -> Result<(), FmtError> { + match (kind, sizes) { + (kind, &[]) => { + write!(out, "{}", kind.to_msl_name()) + } + (kind, &[rows]) => { + write!( + out, + "{}::{}{}", + NAMESPACE, + kind.to_msl_name(), + back::vector_size_str(rows) + ) + } + (kind, &[rows, columns]) => { + write!( + out, + "{}::{}{}x{}", + NAMESPACE, + kind.to_msl_name(), + back::vector_size_str(columns), + back::vector_size_str(rows) + ) + } + (_, _) => Ok(()), // not meaningful + } +} + +/// Prefix for cached clamped level-of-detail values for `ImageLoad` expressions. +const CLAMPED_LOD_LOAD_PREFIX: &str = "clamped_lod_e"; + +struct TypeContext<'a> { + handle: Handle<crate::Type>, + module: &'a crate::Module, + names: &'a FastHashMap<NameKey, String>, + access: crate::StorageAccess, + binding: Option<&'a super::ResolvedBinding>, + first_time: bool, +} + +impl<'a> Display for TypeContext<'a> { + fn fmt(&self, out: &mut Formatter<'_>) -> Result<(), FmtError> { + let ty = &self.module.types[self.handle]; + if ty.needs_alias() && !self.first_time { + let name = &self.names[&NameKey::Type(self.handle)]; + return write!(out, "{name}"); + } + + match ty.inner { + crate::TypeInner::Scalar { kind, .. } => put_numeric_type(out, kind, &[]), + crate::TypeInner::Atomic { kind, .. } => { + write!(out, "{}::atomic_{}", NAMESPACE, kind.to_msl_name()) + } + crate::TypeInner::Vector { size, kind, .. } => put_numeric_type(out, kind, &[size]), + crate::TypeInner::Matrix { columns, rows, .. } => { + put_numeric_type(out, crate::ScalarKind::Float, &[rows, columns]) + } + crate::TypeInner::Pointer { base, space } => { + let sub = Self { + handle: base, + first_time: false, + ..*self + }; + let space_name = match space.to_msl_name() { + Some(name) => name, + None => return Ok(()), + }; + write!(out, "{space_name} {sub}&") + } + crate::TypeInner::ValuePointer { + size, + kind, + width: _, + space, + } => { + match space.to_msl_name() { + Some(name) => write!(out, "{name} ")?, + None => return Ok(()), + }; + match size { + Some(rows) => put_numeric_type(out, kind, &[rows])?, + None => put_numeric_type(out, kind, &[])?, + }; + + write!(out, "&") + } + crate::TypeInner::Array { base, .. } => { + let sub = Self { + handle: base, + first_time: false, + ..*self + }; + // Array lengths go at the end of the type definition, + // so just print the element type here. + write!(out, "{sub}") + } + crate::TypeInner::Struct { .. } => unreachable!(), + crate::TypeInner::Image { + dim, + arrayed, + class, + } => { + let dim_str = match dim { + crate::ImageDimension::D1 => "1d", + crate::ImageDimension::D2 => "2d", + crate::ImageDimension::D3 => "3d", + crate::ImageDimension::Cube => "cube", + }; + let (texture_str, msaa_str, kind, access) = match class { + crate::ImageClass::Sampled { kind, multi } => { + let (msaa_str, access) = if multi { + ("_ms", "read") + } else { + ("", "sample") + }; + ("texture", msaa_str, kind, access) + } + crate::ImageClass::Depth { multi } => { + let (msaa_str, access) = if multi { + ("_ms", "read") + } else { + ("", "sample") + }; + ("depth", msaa_str, crate::ScalarKind::Float, access) + } + crate::ImageClass::Storage { format, .. } => { + let access = if self + .access + .contains(crate::StorageAccess::LOAD | crate::StorageAccess::STORE) + { + "read_write" + } else if self.access.contains(crate::StorageAccess::STORE) { + "write" + } else if self.access.contains(crate::StorageAccess::LOAD) { + "read" + } else { + log::warn!( + "Storage access for {:?} (name '{}'): {:?}", + self.handle, + ty.name.as_deref().unwrap_or_default(), + self.access + ); + unreachable!("module is not valid"); + }; + ("texture", "", format.into(), access) + } + }; + let base_name = kind.to_msl_name(); + let array_str = if arrayed { "_array" } else { "" }; + write!( + out, + "{NAMESPACE}::{texture_str}{dim_str}{msaa_str}{array_str}<{base_name}, {NAMESPACE}::access::{access}>", + ) + } + crate::TypeInner::Sampler { comparison: _ } => { + write!(out, "{NAMESPACE}::sampler") + } + crate::TypeInner::AccelerationStructure => { + write!(out, "{RT_NAMESPACE}::instance_acceleration_structure") + } + crate::TypeInner::RayQuery => { + write!(out, "{RAY_QUERY_TYPE}") + } + crate::TypeInner::BindingArray { base, size } => { + let base_tyname = Self { + handle: base, + first_time: false, + ..*self + }; + + if let Some(&super::ResolvedBinding::Resource(super::BindTarget { + binding_array_size: Some(override_size), + .. + })) = self.binding + { + write!(out, "{NAMESPACE}::array<{base_tyname}, {override_size}>") + } else if let crate::ArraySize::Constant(size) = size { + let constant_ctx = ConstantContext { + handle: size, + arena: &self.module.constants, + names: self.names, + first_time: false, + }; + write!(out, "{NAMESPACE}::array<{base_tyname}, {constant_ctx}>") + } else { + unreachable!("metal requires all arrays be constant sized"); + } + } + } + } +} + +struct TypedGlobalVariable<'a> { + module: &'a crate::Module, + names: &'a FastHashMap<NameKey, String>, + handle: Handle<crate::GlobalVariable>, + usage: valid::GlobalUse, + binding: Option<&'a super::ResolvedBinding>, + reference: bool, +} + +impl<'a> TypedGlobalVariable<'a> { + fn try_fmt<W: Write>(&self, out: &mut W) -> BackendResult { + let var = &self.module.global_variables[self.handle]; + let name = &self.names[&NameKey::GlobalVariable(self.handle)]; + + let storage_access = match var.space { + crate::AddressSpace::Storage { access } => access, + _ => match self.module.types[var.ty].inner { + crate::TypeInner::Image { + class: crate::ImageClass::Storage { access, .. }, + .. + } => access, + crate::TypeInner::BindingArray { base, .. } => { + match self.module.types[base].inner { + crate::TypeInner::Image { + class: crate::ImageClass::Storage { access, .. }, + .. + } => access, + _ => crate::StorageAccess::default(), + } + } + _ => crate::StorageAccess::default(), + }, + }; + let ty_name = TypeContext { + handle: var.ty, + module: self.module, + names: self.names, + access: storage_access, + binding: self.binding, + first_time: false, + }; + + let (space, access, reference) = match var.space.to_msl_name() { + Some(space) if self.reference => { + let access = if var.space.needs_access_qualifier() + && !self.usage.contains(valid::GlobalUse::WRITE) + { + "const" + } else { + "" + }; + (space, access, "&") + } + _ => ("", "", ""), + }; + + Ok(write!( + out, + "{}{}{}{}{}{} {}", + space, + if space.is_empty() { "" } else { " " }, + ty_name, + if access.is_empty() { "" } else { " " }, + access, + reference, + name, + )?) + } +} + +struct ConstantContext<'a> { + handle: Handle<crate::Constant>, + arena: &'a crate::Arena<crate::Constant>, + names: &'a FastHashMap<NameKey, String>, + first_time: bool, +} + +impl<'a> Display for ConstantContext<'a> { + fn fmt(&self, out: &mut Formatter<'_>) -> Result<(), FmtError> { + let con = &self.arena[self.handle]; + if con.needs_alias() && !self.first_time { + let name = &self.names[&NameKey::Constant(self.handle)]; + return write!(out, "{name}"); + } + + match con.inner { + crate::ConstantInner::Scalar { value, width: _ } => match value { + crate::ScalarValue::Sint(value) => { + write!(out, "{value}") + } + crate::ScalarValue::Uint(value) => { + write!(out, "{value}u") + } + crate::ScalarValue::Float(value) => { + if value.is_infinite() { + let sign = if value.is_sign_negative() { "-" } else { "" }; + write!(out, "{sign}INFINITY") + } else if value.is_nan() { + write!(out, "NAN") + } else { + let suffix = if value.fract() == 0.0 { ".0" } else { "" }; + + write!(out, "{value}{suffix}") + } + } + crate::ScalarValue::Bool(value) => { + write!(out, "{value}") + } + }, + crate::ConstantInner::Composite { .. } => unreachable!("should be aliased"), + } + } +} + +pub struct Writer<W> { + out: W, + names: FastHashMap<NameKey, String>, + named_expressions: crate::NamedExpressions, + /// Set of expressions that need to be baked to avoid unnecessary repetition in output + need_bake_expressions: back::NeedBakeExpressions, + namer: proc::Namer, + #[cfg(test)] + put_expression_stack_pointers: FastHashSet<*const ()>, + #[cfg(test)] + put_block_stack_pointers: FastHashSet<*const ()>, + /// Set of (struct type, struct field index) denoting which fields require + /// padding inserted **before** them (i.e. between fields at index - 1 and index) + struct_member_pads: FastHashSet<(Handle<crate::Type>, u32)>, +} + +impl crate::ScalarKind { + const fn to_msl_name(self) -> &'static str { + match self { + Self::Float => "float", + Self::Sint => "int", + Self::Uint => "uint", + Self::Bool => "bool", + } + } +} + +const fn separate(need_separator: bool) -> &'static str { + if need_separator { + "," + } else { + "" + } +} + +fn should_pack_struct_member( + members: &[crate::StructMember], + span: u32, + index: usize, + module: &crate::Module, +) -> Option<crate::ScalarKind> { + let member = &members[index]; + //Note: this is imperfect - the same structure can be used for host-shared + // things, where packed float would matter. + if member.binding.is_some() { + return None; + } + + let ty_inner = &module.types[member.ty].inner; + let last_offset = member.offset + ty_inner.size(&module.constants); + let next_offset = match members.get(index + 1) { + Some(next) => next.offset, + None => span, + }; + let is_tight = next_offset == last_offset; + + match *ty_inner { + crate::TypeInner::Vector { + size: crate::VectorSize::Tri, + width: 4, + kind, + } if member.offset & 0xF != 0 || is_tight => Some(kind), + _ => None, + } +} + +fn needs_array_length(ty: Handle<crate::Type>, arena: &crate::UniqueArena<crate::Type>) -> bool { + match arena[ty].inner { + crate::TypeInner::Struct { ref members, .. } => { + if let Some(member) = members.last() { + if let crate::TypeInner::Array { + size: crate::ArraySize::Dynamic, + .. + } = arena[member.ty].inner + { + return true; + } + } + false + } + crate::TypeInner::Array { + size: crate::ArraySize::Dynamic, + .. + } => true, + _ => false, + } +} + +impl crate::AddressSpace { + /// Returns true if global variables in this address space are + /// passed in function arguments. These arguments need to be + /// passed through any functions called from the entry point. + const fn needs_pass_through(&self) -> bool { + match *self { + Self::Uniform + | Self::Storage { .. } + | Self::Private + | Self::WorkGroup + | Self::PushConstant + | Self::Handle => true, + Self::Function => false, + } + } + + /// Returns true if the address space may need a "const" qualifier. + const fn needs_access_qualifier(&self) -> bool { + match *self { + //Note: we are ignoring the storage access here, and instead + // rely on the actual use of a global by functions. This means we + // may end up with "const" even if the binding is read-write, + // and that should be OK. + Self::Storage { .. } => true, + // These should always be read-write. + Self::Private | Self::WorkGroup => false, + // These translate to `constant` address space, no need for qualifiers. + Self::Uniform | Self::PushConstant => false, + // Not applicable. + Self::Handle | Self::Function => false, + } + } + + const fn to_msl_name(self) -> Option<&'static str> { + match self { + Self::Handle => None, + Self::Uniform | Self::PushConstant => Some("constant"), + Self::Storage { .. } => Some("device"), + Self::Private | Self::Function => Some("thread"), + Self::WorkGroup => Some("threadgroup"), + } + } +} + +impl crate::Type { + // Returns `true` if we need to emit an alias for this type. + const fn needs_alias(&self) -> bool { + use crate::TypeInner as Ti; + + match self.inner { + // value types are concise enough, we only alias them if they are named + Ti::Scalar { .. } + | Ti::Vector { .. } + | Ti::Matrix { .. } + | Ti::Atomic { .. } + | Ti::Pointer { .. } + | Ti::ValuePointer { .. } => self.name.is_some(), + // composite types are better to be aliased, regardless of the name + Ti::Struct { .. } | Ti::Array { .. } => true, + // handle types may be different, depending on the global var access, so we always inline them + Ti::Image { .. } + | Ti::Sampler { .. } + | Ti::AccelerationStructure + | Ti::RayQuery + | Ti::BindingArray { .. } => false, + } + } +} + +impl crate::Constant { + // Returns `true` if we need to emit an alias for this constant. + const fn needs_alias(&self) -> bool { + match self.inner { + crate::ConstantInner::Scalar { .. } => self.name.is_some(), + crate::ConstantInner::Composite { .. } => true, + } + } +} + +enum FunctionOrigin { + Handle(Handle<crate::Function>), + EntryPoint(proc::EntryPointIndex), +} + +/// A level of detail argument. +/// +/// When [`BoundsCheckPolicy::Restrict`] applies to an [`ImageLoad`] access, we +/// save the clamped level of detail in a temporary variable whose name is based +/// on the handle of the `ImageLoad` expression. But for other policies, we just +/// use the expression directly. +/// +/// [`BoundsCheckPolicy::Restrict`]: index::BoundsCheckPolicy::Restrict +/// [`ImageLoad`]: crate::Expression::ImageLoad +#[derive(Clone, Copy)] +enum LevelOfDetail { + Direct(Handle<crate::Expression>), + Restricted(Handle<crate::Expression>), +} + +/// Values needed to select a particular texel for [`ImageLoad`] and [`ImageStore`]. +/// +/// When this is used in code paths unconcerned with the `Restrict` bounds check +/// policy, the `LevelOfDetail` enum introduces an unneeded match, since `level` +/// will always be either `None` or `Some(Direct(_))`. But this turns out not to +/// be too awkward. If that changes, we can revisit. +/// +/// [`ImageLoad`]: crate::Expression::ImageLoad +/// [`ImageStore`]: crate::Statement::ImageStore +struct TexelAddress { + coordinate: Handle<crate::Expression>, + array_index: Option<Handle<crate::Expression>>, + sample: Option<Handle<crate::Expression>>, + level: Option<LevelOfDetail>, +} + +struct ExpressionContext<'a> { + function: &'a crate::Function, + origin: FunctionOrigin, + info: &'a valid::FunctionInfo, + module: &'a crate::Module, + pipeline_options: &'a PipelineOptions, + policies: index::BoundsCheckPolicies, + + /// A bitset containing the `Expression` handle indexes of expressions used + /// as indices in `ReadZeroSkipWrite`-policy accesses. These may need to be + /// cached in temporary variables. See `index::find_checked_indexes` for + /// details. + guarded_indices: BitSet, +} + +impl<'a> ExpressionContext<'a> { + fn resolve_type(&self, handle: Handle<crate::Expression>) -> &'a crate::TypeInner { + self.info[handle].ty.inner_with(&self.module.types) + } + + /// Return true if calls to `image`'s `read` and `write` methods should supply a level of detail. + /// + /// Only mipmapped images need to specify a level of detail. Since 1D + /// textures cannot have mipmaps, MSL requires that the level argument to + /// texture1d queries and accesses must be a constexpr 0. It's easiest + /// just to omit the level entirely for 1D textures. + fn image_needs_lod(&self, image: Handle<crate::Expression>) -> bool { + let image_ty = self.resolve_type(image); + if let crate::TypeInner::Image { dim, class, .. } = *image_ty { + class.is_mipmapped() && dim != crate::ImageDimension::D1 + } else { + false + } + } + + fn choose_bounds_check_policy( + &self, + pointer: Handle<crate::Expression>, + ) -> index::BoundsCheckPolicy { + self.policies + .choose_policy(pointer, &self.module.types, self.info) + } + + fn access_needs_check( + &self, + base: Handle<crate::Expression>, + index: index::GuardedIndex, + ) -> Option<index::IndexableLength> { + index::access_needs_check(base, index, self.module, self.function, self.info) + } + + fn get_packed_vec_kind( + &self, + expr_handle: Handle<crate::Expression>, + ) -> Option<crate::ScalarKind> { + match self.function.expressions[expr_handle] { + crate::Expression::AccessIndex { base, index } => { + let ty = match *self.resolve_type(base) { + crate::TypeInner::Pointer { base, .. } => &self.module.types[base].inner, + ref ty => ty, + }; + match *ty { + crate::TypeInner::Struct { + ref members, span, .. + } => should_pack_struct_member(members, span, index as usize, self.module), + _ => None, + } + } + _ => None, + } + } +} + +struct StatementContext<'a> { + expression: ExpressionContext<'a>, + mod_info: &'a valid::ModuleInfo, + result_struct: Option<&'a str>, +} + +impl<W: Write> Writer<W> { + /// Creates a new `Writer` instance. + pub fn new(out: W) -> Self { + Writer { + out, + names: FastHashMap::default(), + named_expressions: Default::default(), + need_bake_expressions: Default::default(), + namer: proc::Namer::default(), + #[cfg(test)] + put_expression_stack_pointers: Default::default(), + #[cfg(test)] + put_block_stack_pointers: Default::default(), + struct_member_pads: FastHashSet::default(), + } + } + + /// Finishes writing and returns the output. + // See https://github.com/rust-lang/rust-clippy/issues/4979. + #[allow(clippy::missing_const_for_fn)] + pub fn finish(self) -> W { + self.out + } + + fn put_call_parameters( + &mut self, + parameters: impl Iterator<Item = Handle<crate::Expression>>, + context: &ExpressionContext, + ) -> BackendResult { + write!(self.out, "(")?; + for (i, handle) in parameters.enumerate() { + if i != 0 { + write!(self.out, ", ")?; + } + self.put_expression(handle, context, true)?; + } + write!(self.out, ")")?; + Ok(()) + } + + fn put_level_of_detail( + &mut self, + level: LevelOfDetail, + context: &ExpressionContext, + ) -> BackendResult { + match level { + LevelOfDetail::Direct(expr) => self.put_expression(expr, context, true)?, + LevelOfDetail::Restricted(load) => { + write!(self.out, "{}{}", CLAMPED_LOD_LOAD_PREFIX, load.index())? + } + } + Ok(()) + } + + fn put_image_query( + &mut self, + image: Handle<crate::Expression>, + query: &str, + level: Option<LevelOfDetail>, + context: &ExpressionContext, + ) -> BackendResult { + self.put_expression(image, context, false)?; + write!(self.out, ".get_{query}(")?; + if let Some(level) = level { + self.put_level_of_detail(level, context)?; + } + write!(self.out, ")")?; + Ok(()) + } + + fn put_image_size_query( + &mut self, + image: Handle<crate::Expression>, + level: Option<LevelOfDetail>, + kind: crate::ScalarKind, + context: &ExpressionContext, + ) -> BackendResult { + //Note: MSL only has separate width/height/depth queries, + // so compose the result of them. + let dim = match *context.resolve_type(image) { + crate::TypeInner::Image { dim, .. } => dim, + ref other => unreachable!("Unexpected type {:?}", other), + }; + let coordinate_type = kind.to_msl_name(); + match dim { + crate::ImageDimension::D1 => { + // Since 1D textures never have mipmaps, MSL requires that the + // `level` argument be a constexpr 0. It's simplest for us just + // to pass `None` and omit the level entirely. + if kind == crate::ScalarKind::Uint { + // No need to construct a vector. No cast needed. + self.put_image_query(image, "width", None, context)?; + } else { + // There's no definition for `int` in the `metal` namespace. + write!(self.out, "int(")?; + self.put_image_query(image, "width", None, context)?; + write!(self.out, ")")?; + } + } + crate::ImageDimension::D2 => { + write!(self.out, "{NAMESPACE}::{coordinate_type}2(")?; + self.put_image_query(image, "width", level, context)?; + write!(self.out, ", ")?; + self.put_image_query(image, "height", level, context)?; + write!(self.out, ")")?; + } + crate::ImageDimension::D3 => { + write!(self.out, "{NAMESPACE}::{coordinate_type}3(")?; + self.put_image_query(image, "width", level, context)?; + write!(self.out, ", ")?; + self.put_image_query(image, "height", level, context)?; + write!(self.out, ", ")?; + self.put_image_query(image, "depth", level, context)?; + write!(self.out, ")")?; + } + crate::ImageDimension::Cube => { + write!(self.out, "{NAMESPACE}::{coordinate_type}2(")?; + self.put_image_query(image, "width", level, context)?; + write!(self.out, ")")?; + } + } + Ok(()) + } + + fn put_cast_to_uint_scalar_or_vector( + &mut self, + expr: Handle<crate::Expression>, + context: &ExpressionContext, + ) -> BackendResult { + // coordinates in IR are int, but Metal expects uint + match *context.resolve_type(expr) { + crate::TypeInner::Scalar { .. } => { + put_numeric_type(&mut self.out, crate::ScalarKind::Uint, &[])? + } + crate::TypeInner::Vector { size, .. } => { + put_numeric_type(&mut self.out, crate::ScalarKind::Uint, &[size])? + } + _ => return Err(Error::Validation), + }; + + write!(self.out, "(")?; + self.put_expression(expr, context, true)?; + write!(self.out, ")")?; + Ok(()) + } + + fn put_image_sample_level( + &mut self, + image: Handle<crate::Expression>, + level: crate::SampleLevel, + context: &ExpressionContext, + ) -> BackendResult { + let has_levels = context.image_needs_lod(image); + match level { + crate::SampleLevel::Auto => {} + crate::SampleLevel::Zero => { + //TODO: do we support Zero on `Sampled` image classes? + } + _ if !has_levels => { + log::warn!("1D image can't be sampled with level {:?}", level); + } + crate::SampleLevel::Exact(h) => { + write!(self.out, ", {NAMESPACE}::level(")?; + self.put_expression(h, context, true)?; + write!(self.out, ")")?; + } + crate::SampleLevel::Bias(h) => { + write!(self.out, ", {NAMESPACE}::bias(")?; + self.put_expression(h, context, true)?; + write!(self.out, ")")?; + } + crate::SampleLevel::Gradient { x, y } => { + write!(self.out, ", {NAMESPACE}::gradient2d(")?; + self.put_expression(x, context, true)?; + write!(self.out, ", ")?; + self.put_expression(y, context, true)?; + write!(self.out, ")")?; + } + } + Ok(()) + } + + fn put_image_coordinate_limits( + &mut self, + image: Handle<crate::Expression>, + level: Option<LevelOfDetail>, + context: &ExpressionContext, + ) -> BackendResult { + self.put_image_size_query(image, level, crate::ScalarKind::Uint, context)?; + write!(self.out, " - 1")?; + Ok(()) + } + + /// General function for writing restricted image indexes. + /// + /// This is used to produce restricted mip levels, array indices, and sample + /// indices for [`ImageLoad`] and [`ImageStore`] accesses under the + /// [`Restrict`] bounds check policy. + /// + /// This function writes an expression of the form: + /// + /// ```ignore + /// + /// metal::min(uint(INDEX), IMAGE.LIMIT_METHOD() - 1) + /// + /// ``` + /// + /// [`ImageLoad`]: crate::Expression::ImageLoad + /// [`ImageStore`]: crate::Statement::ImageStore + /// [`Restrict`]: index::BoundsCheckPolicy::Restrict + fn put_restricted_scalar_image_index( + &mut self, + image: Handle<crate::Expression>, + index: Handle<crate::Expression>, + limit_method: &str, + context: &ExpressionContext, + ) -> BackendResult { + write!(self.out, "{NAMESPACE}::min(uint(")?; + self.put_expression(index, context, true)?; + write!(self.out, "), ")?; + self.put_expression(image, context, false)?; + write!(self.out, ".{limit_method}() - 1)")?; + Ok(()) + } + + fn put_restricted_texel_address( + &mut self, + image: Handle<crate::Expression>, + address: &TexelAddress, + context: &ExpressionContext, + ) -> BackendResult { + // Write the coordinate. + write!(self.out, "{NAMESPACE}::min(")?; + self.put_cast_to_uint_scalar_or_vector(address.coordinate, context)?; + write!(self.out, ", ")?; + self.put_image_coordinate_limits(image, address.level, context)?; + write!(self.out, ")")?; + + // Write the array index, if present. + if let Some(array_index) = address.array_index { + write!(self.out, ", ")?; + self.put_restricted_scalar_image_index(image, array_index, "get_array_size", context)?; + } + + // Write the sample index, if present. + if let Some(sample) = address.sample { + write!(self.out, ", ")?; + self.put_restricted_scalar_image_index(image, sample, "get_num_samples", context)?; + } + + // The level of detail should be clamped and cached by + // `put_cache_restricted_level`, so we don't need to clamp it here. + if let Some(level) = address.level { + write!(self.out, ", ")?; + self.put_level_of_detail(level, context)?; + } + + Ok(()) + } + + /// Write an expression that is true if the given image access is in bounds. + fn put_image_access_bounds_check( + &mut self, + image: Handle<crate::Expression>, + address: &TexelAddress, + context: &ExpressionContext, + ) -> BackendResult { + let mut conjunction = ""; + + // First, check the level of detail. Only if that is in bounds can we + // use it to find the appropriate bounds for the coordinates. + let level = if let Some(level) = address.level { + write!(self.out, "uint(")?; + self.put_level_of_detail(level, context)?; + write!(self.out, ") < ")?; + self.put_expression(image, context, true)?; + write!(self.out, ".get_num_mip_levels()")?; + conjunction = " && "; + Some(level) + } else { + None + }; + + // Check sample index, if present. + if let Some(sample) = address.sample { + write!(self.out, "uint(")?; + self.put_expression(sample, context, true)?; + write!(self.out, ") < ")?; + self.put_expression(image, context, true)?; + write!(self.out, ".get_num_samples()")?; + conjunction = " && "; + } + + // Check array index, if present. + if let Some(array_index) = address.array_index { + write!(self.out, "{conjunction}uint(")?; + self.put_expression(array_index, context, true)?; + write!(self.out, ") < ")?; + self.put_expression(image, context, true)?; + write!(self.out, ".get_array_size()")?; + conjunction = " && "; + } + + // Finally, check if the coordinates are within bounds. + let coord_is_vector = match *context.resolve_type(address.coordinate) { + crate::TypeInner::Vector { .. } => true, + _ => false, + }; + write!(self.out, "{conjunction}")?; + if coord_is_vector { + write!(self.out, "{NAMESPACE}::all(")?; + } + self.put_cast_to_uint_scalar_or_vector(address.coordinate, context)?; + write!(self.out, " < ")?; + self.put_image_size_query(image, level, crate::ScalarKind::Uint, context)?; + if coord_is_vector { + write!(self.out, ")")?; + } + + Ok(()) + } + + fn put_image_load( + &mut self, + load: Handle<crate::Expression>, + image: Handle<crate::Expression>, + mut address: TexelAddress, + context: &ExpressionContext, + ) -> BackendResult { + match context.policies.image { + proc::BoundsCheckPolicy::Restrict => { + // Use the cached restricted level of detail, if any. Omit the + // level altogether for 1D textures. + if address.level.is_some() { + address.level = if context.image_needs_lod(image) { + Some(LevelOfDetail::Restricted(load)) + } else { + None + } + } + + self.put_expression(image, context, false)?; + write!(self.out, ".read(")?; + self.put_restricted_texel_address(image, &address, context)?; + write!(self.out, ")")?; + } + proc::BoundsCheckPolicy::ReadZeroSkipWrite => { + write!(self.out, "(")?; + self.put_image_access_bounds_check(image, &address, context)?; + write!(self.out, " ? ")?; + self.put_unchecked_image_load(image, &address, context)?; + write!(self.out, ": DefaultConstructible())")?; + } + proc::BoundsCheckPolicy::Unchecked => { + self.put_unchecked_image_load(image, &address, context)?; + } + } + + Ok(()) + } + + fn put_unchecked_image_load( + &mut self, + image: Handle<crate::Expression>, + address: &TexelAddress, + context: &ExpressionContext, + ) -> BackendResult { + self.put_expression(image, context, false)?; + write!(self.out, ".read(")?; + // coordinates in IR are int, but Metal expects uint + self.put_cast_to_uint_scalar_or_vector(address.coordinate, context)?; + if let Some(expr) = address.array_index { + write!(self.out, ", ")?; + self.put_expression(expr, context, true)?; + } + if let Some(sample) = address.sample { + write!(self.out, ", ")?; + self.put_expression(sample, context, true)?; + } + if let Some(level) = address.level { + if context.image_needs_lod(image) { + write!(self.out, ", ")?; + self.put_level_of_detail(level, context)?; + } + } + write!(self.out, ")")?; + + Ok(()) + } + + fn put_image_store( + &mut self, + level: back::Level, + image: Handle<crate::Expression>, + address: &TexelAddress, + value: Handle<crate::Expression>, + context: &StatementContext, + ) -> BackendResult { + match context.expression.policies.image { + proc::BoundsCheckPolicy::Restrict => { + // We don't have a restricted level value, because we don't + // support writes to mipmapped textures. + debug_assert!(address.level.is_none()); + + write!(self.out, "{level}")?; + self.put_expression(image, &context.expression, false)?; + write!(self.out, ".write(")?; + self.put_expression(value, &context.expression, true)?; + write!(self.out, ", ")?; + self.put_restricted_texel_address(image, address, &context.expression)?; + writeln!(self.out, ");")?; + } + proc::BoundsCheckPolicy::ReadZeroSkipWrite => { + write!(self.out, "{level}if (")?; + self.put_image_access_bounds_check(image, address, &context.expression)?; + writeln!(self.out, ") {{")?; + self.put_unchecked_image_store(level.next(), image, address, value, context)?; + writeln!(self.out, "{level}}}")?; + } + proc::BoundsCheckPolicy::Unchecked => { + self.put_unchecked_image_store(level, image, address, value, context)?; + } + } + + Ok(()) + } + + fn put_unchecked_image_store( + &mut self, + level: back::Level, + image: Handle<crate::Expression>, + address: &TexelAddress, + value: Handle<crate::Expression>, + context: &StatementContext, + ) -> BackendResult { + write!(self.out, "{level}")?; + self.put_expression(image, &context.expression, false)?; + write!(self.out, ".write(")?; + self.put_expression(value, &context.expression, true)?; + write!(self.out, ", ")?; + // coordinates in IR are int, but Metal expects uint + self.put_cast_to_uint_scalar_or_vector(address.coordinate, &context.expression)?; + if let Some(expr) = address.array_index { + write!(self.out, ", ")?; + self.put_expression(expr, &context.expression, true)?; + } + writeln!(self.out, ");")?; + + Ok(()) + } + + fn put_compose( + &mut self, + ty: Handle<crate::Type>, + components: &[Handle<crate::Expression>], + context: &ExpressionContext, + ) -> BackendResult { + match context.module.types[ty].inner { + crate::TypeInner::Scalar { width: 4, kind } if components.len() == 1 => { + write!(self.out, "{}", kind.to_msl_name())?; + self.put_call_parameters(components.iter().cloned(), context)?; + } + crate::TypeInner::Vector { size, kind, .. } => { + put_numeric_type(&mut self.out, kind, &[size])?; + self.put_call_parameters(components.iter().cloned(), context)?; + } + crate::TypeInner::Matrix { columns, rows, .. } => { + put_numeric_type(&mut self.out, crate::ScalarKind::Float, &[rows, columns])?; + self.put_call_parameters(components.iter().cloned(), context)?; + } + crate::TypeInner::Array { .. } | crate::TypeInner::Struct { .. } => { + write!(self.out, "{} {{", &self.names[&NameKey::Type(ty)])?; + for (index, &component) in components.iter().enumerate() { + if index != 0 { + write!(self.out, ", ")?; + } + // insert padding initialization, if needed + if self.struct_member_pads.contains(&(ty, index as u32)) { + write!(self.out, "{{}}, ")?; + } + self.put_expression(component, context, true)?; + } + write!(self.out, "}}")?; + } + _ => return Err(Error::UnsupportedCompose(ty)), + } + Ok(()) + } + + /// Write the maximum valid index of the dynamically sized array at the end of `handle`. + /// + /// The 'maximum valid index' is simply one less than the array's length. + /// + /// This emits an expression of the form `a / b`, so the caller must + /// parenthesize its output if it will be applying operators of higher + /// precedence. + /// + /// `handle` must be the handle of a global variable whose final member is a + /// dynamically sized array. + fn put_dynamic_array_max_index( + &mut self, + handle: Handle<crate::GlobalVariable>, + context: &ExpressionContext, + ) -> BackendResult { + let global = &context.module.global_variables[handle]; + let (offset, array_ty) = match context.module.types[global.ty].inner { + crate::TypeInner::Struct { ref members, .. } => match members.last() { + Some(&crate::StructMember { offset, ty, .. }) => (offset, ty), + None => return Err(Error::Validation), + }, + crate::TypeInner::Array { + size: crate::ArraySize::Dynamic, + .. + } => (0, global.ty), + _ => return Err(Error::Validation), + }; + + let (size, stride) = match context.module.types[array_ty].inner { + crate::TypeInner::Array { base, stride, .. } => ( + context.module.types[base] + .inner + .size(&context.module.constants), + stride, + ), + _ => return Err(Error::Validation), + }; + + // When the stride length is larger than the size, the final element's stride of + // bytes would have padding following the value. But the buffer size in + // `buffer_sizes.sizeN` may not include this padding - it only needs to be large + // enough to hold the actual values' bytes. + // + // So subtract off the size to get a byte size that falls at the start or within + // the final element. Then divide by the stride size, to get one less than the + // length, and then add one. This works even if the buffer size does include the + // stride padding, since division rounds towards zero (MSL 2.4 §6.1). It will fail + // if there are zero elements in the array, but the WebGPU `validating shader binding` + // rules, together with draw-time validation when `minBindingSize` is zero, + // prevent that. + write!( + self.out, + "(_buffer_sizes.size{idx} - {offset} - {size}) / {stride}", + idx = handle.index(), + offset = offset, + size = size, + stride = stride, + )?; + Ok(()) + } + + fn put_atomic_fetch( + &mut self, + pointer: Handle<crate::Expression>, + key: &str, + value: Handle<crate::Expression>, + context: &ExpressionContext, + ) -> BackendResult { + self.put_atomic_operation(pointer, "fetch_", key, value, context) + } + + fn put_atomic_operation( + &mut self, + pointer: Handle<crate::Expression>, + key1: &str, + key2: &str, + value: Handle<crate::Expression>, + context: &ExpressionContext, + ) -> BackendResult { + // If the pointer we're passing to the atomic operation needs to be conditional + // for `ReadZeroSkipWrite`, the condition needs to *surround* the atomic op, and + // the pointer operand should be unchecked. + let policy = context.choose_bounds_check_policy(pointer); + let checked = policy == index::BoundsCheckPolicy::ReadZeroSkipWrite + && self.put_bounds_checks(pointer, context, back::Level(0), "")?; + + // If requested and successfully put bounds checks, continue the ternary expression. + if checked { + write!(self.out, " ? ")?; + } + + write!( + self.out, + "{NAMESPACE}::atomic_{key1}{key2}_explicit({ATOMIC_REFERENCE}" + )?; + self.put_access_chain(pointer, policy, context)?; + write!(self.out, ", ")?; + self.put_expression(value, context, true)?; + write!(self.out, ", {NAMESPACE}::memory_order_relaxed)")?; + + // Finish the ternary expression. + if checked { + write!(self.out, " : DefaultConstructible()")?; + } + + Ok(()) + } + + /// Emit code for the arithmetic expression of the dot product. + /// + fn put_dot_product( + &mut self, + arg: Handle<crate::Expression>, + arg1: Handle<crate::Expression>, + size: usize, + context: &ExpressionContext, + ) -> BackendResult { + // Write parantheses around the dot product expression to prevent operators + // with different precedences from applying earlier. + write!(self.out, "(")?; + + // Cycle trough all the components of the vector + for index in 0..size { + let component = back::COMPONENTS[index]; + // Write the addition to the previous product + // This will print an extra '+' at the beginning but that is fine in msl + write!(self.out, " + ")?; + // Write the first vector expression, this expression is marked to be + // cached so unless it can't be cached (for example, it's a Constant) + // it shouldn't produce large expressions. + self.put_expression(arg, context, true)?; + // Access the current component on the first vector + write!(self.out, ".{component} * ")?; + // Write the second vector expression, this expression is marked to be + // cached so unless it can't be cached (for example, it's a Constant) + // it shouldn't produce large expressions. + self.put_expression(arg1, context, true)?; + // Access the current component on the second vector + write!(self.out, ".{component}")?; + } + + write!(self.out, ")")?; + Ok(()) + } + + /// Emit code for the expression `expr_handle`. + /// + /// The `is_scoped` argument is true if the surrounding operators have the + /// precedence of the comma operator, or lower. So, for example: + /// + /// - Pass `true` for `is_scoped` when writing function arguments, an + /// expression statement, an initializer expression, or anything already + /// wrapped in parenthesis. + /// + /// - Pass `false` if it is an operand of a `?:` operator, a `[]`, or really + /// almost anything else. + fn put_expression( + &mut self, + expr_handle: Handle<crate::Expression>, + context: &ExpressionContext, + is_scoped: bool, + ) -> BackendResult { + // Add to the set in order to track the stack size. + #[cfg(test)] + #[allow(trivial_casts)] + self.put_expression_stack_pointers + .insert(&expr_handle as *const _ as *const ()); + + if let Some(name) = self.named_expressions.get(&expr_handle) { + write!(self.out, "{name}")?; + return Ok(()); + } + + let expression = &context.function.expressions[expr_handle]; + log::trace!("expression {:?} = {:?}", expr_handle, expression); + match *expression { + crate::Expression::Access { base, .. } + | crate::Expression::AccessIndex { base, .. } => { + // This is an acceptable place to generate a `ReadZeroSkipWrite` check. + // Since `put_bounds_checks` and `put_access_chain` handle an entire + // access chain at a time, recursing back through `put_expression` only + // for index expressions and the base object, we will never see intermediate + // `Access` or `AccessIndex` expressions here. + let policy = context.choose_bounds_check_policy(base); + if policy == index::BoundsCheckPolicy::ReadZeroSkipWrite + && self.put_bounds_checks( + expr_handle, + context, + back::Level(0), + if is_scoped { "" } else { "(" }, + )? + { + write!(self.out, " ? ")?; + self.put_access_chain(expr_handle, policy, context)?; + write!(self.out, " : DefaultConstructible()")?; + + if !is_scoped { + write!(self.out, ")")?; + } + } else { + self.put_access_chain(expr_handle, policy, context)?; + } + } + crate::Expression::Constant(handle) => { + let coco = ConstantContext { + handle, + arena: &context.module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, "{coco}")?; + } + crate::Expression::Splat { size, value } => { + let scalar_kind = match *context.resolve_type(value) { + crate::TypeInner::Scalar { kind, .. } => kind, + _ => return Err(Error::Validation), + }; + put_numeric_type(&mut self.out, scalar_kind, &[size])?; + write!(self.out, "(")?; + self.put_expression(value, context, true)?; + write!(self.out, ")")?; + } + crate::Expression::Swizzle { + size, + vector, + pattern, + } => { + self.put_wrapped_expression_for_packed_vec3_access(vector, context, false)?; + write!(self.out, ".")?; + for &sc in pattern[..size as usize].iter() { + write!(self.out, "{}", back::COMPONENTS[sc as usize])?; + } + } + crate::Expression::Compose { ty, ref components } => { + self.put_compose(ty, components, context)?; + } + crate::Expression::FunctionArgument(index) => { + let name_key = match context.origin { + FunctionOrigin::Handle(handle) => NameKey::FunctionArgument(handle, index), + FunctionOrigin::EntryPoint(ep_index) => { + NameKey::EntryPointArgument(ep_index, index) + } + }; + let name = &self.names[&name_key]; + write!(self.out, "{name}")?; + } + crate::Expression::GlobalVariable(handle) => { + let name = &self.names[&NameKey::GlobalVariable(handle)]; + write!(self.out, "{name}")?; + } + crate::Expression::LocalVariable(handle) => { + let name_key = match context.origin { + FunctionOrigin::Handle(fun_handle) => { + NameKey::FunctionLocal(fun_handle, handle) + } + FunctionOrigin::EntryPoint(ep_index) => { + NameKey::EntryPointLocal(ep_index, handle) + } + }; + let name = &self.names[&name_key]; + write!(self.out, "{name}")?; + } + crate::Expression::Load { pointer } => self.put_load(pointer, context, is_scoped)?, + crate::Expression::ImageSample { + image, + sampler, + gather, + coordinate, + array_index, + offset, + level, + depth_ref, + } => { + let main_op = match gather { + Some(_) => "gather", + None => "sample", + }; + let comparison_op = match depth_ref { + Some(_) => "_compare", + None => "", + }; + self.put_expression(image, context, false)?; + write!(self.out, ".{main_op}{comparison_op}(")?; + self.put_expression(sampler, context, true)?; + write!(self.out, ", ")?; + self.put_expression(coordinate, context, true)?; + if let Some(expr) = array_index { + write!(self.out, ", ")?; + self.put_expression(expr, context, true)?; + } + if let Some(dref) = depth_ref { + write!(self.out, ", ")?; + self.put_expression(dref, context, true)?; + } + + self.put_image_sample_level(image, level, context)?; + + if let Some(constant) = offset { + let coco = ConstantContext { + handle: constant, + arena: &context.module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, ", {coco}")?; + } + match gather { + None | Some(crate::SwizzleComponent::X) => {} + Some(component) => { + let is_cube_map = match *context.resolve_type(image) { + crate::TypeInner::Image { + dim: crate::ImageDimension::Cube, + .. + } => true, + _ => false, + }; + // Offset always comes before the gather, except + // in cube maps where it's not applicable + if offset.is_none() && !is_cube_map { + write!(self.out, ", {NAMESPACE}::int2(0)")?; + } + let letter = back::COMPONENTS[component as usize]; + write!(self.out, ", {NAMESPACE}::component::{letter}")?; + } + } + write!(self.out, ")")?; + } + crate::Expression::ImageLoad { + image, + coordinate, + array_index, + sample, + level, + } => { + let address = TexelAddress { + coordinate, + array_index, + sample, + level: level.map(LevelOfDetail::Direct), + }; + self.put_image_load(expr_handle, image, address, context)?; + } + //Note: for all the queries, the signed integers are expected, + // so a conversion is needed. + crate::Expression::ImageQuery { image, query } => match query { + crate::ImageQuery::Size { level } => { + self.put_image_size_query( + image, + level.map(LevelOfDetail::Direct), + crate::ScalarKind::Uint, + context, + )?; + } + crate::ImageQuery::NumLevels => { + self.put_expression(image, context, false)?; + write!(self.out, ".get_num_mip_levels()")?; + } + crate::ImageQuery::NumLayers => { + self.put_expression(image, context, false)?; + write!(self.out, ".get_array_size()")?; + } + crate::ImageQuery::NumSamples => { + self.put_expression(image, context, false)?; + write!(self.out, ".get_num_samples()")?; + } + }, + crate::Expression::Unary { op, expr } => { + use crate::{ScalarKind as Sk, UnaryOperator as Uo}; + let op_str = match op { + Uo::Negate => "-", + Uo::Not => match context.resolve_type(expr).scalar_kind() { + Some(Sk::Sint) | Some(Sk::Uint) => "~", + Some(Sk::Bool) => "!", + _ => return Err(Error::Validation), + }, + }; + write!(self.out, "{op_str}(")?; + self.put_expression(expr, context, false)?; + write!(self.out, ")")?; + } + crate::Expression::Binary { op, left, right } => { + let op_str = crate::back::binary_operation_str(op); + let kind = context + .resolve_type(left) + .scalar_kind() + .ok_or(Error::UnsupportedBinaryOp(op))?; + + // TODO: handle undefined behavior of BinaryOperator::Modulo + // + // sint: + // if right == 0 return 0 + // if left == min(type_of(left)) && right == -1 return 0 + // if sign(left) == -1 || sign(right) == -1 return result as defined by WGSL + // + // uint: + // if right == 0 return 0 + // + // float: + // if right == 0 return ? see https://github.com/gpuweb/gpuweb/issues/2798 + + if op == crate::BinaryOperator::Modulo && kind == crate::ScalarKind::Float { + write!(self.out, "{NAMESPACE}::fmod(")?; + self.put_expression(left, context, true)?; + write!(self.out, ", ")?; + self.put_expression(right, context, true)?; + write!(self.out, ")")?; + } else { + if !is_scoped { + write!(self.out, "(")?; + } + + // Cast packed vector if necessary + // Packed vector - matrix multiplications are not supported in MSL + if op == crate::BinaryOperator::Multiply + && matches!( + context.resolve_type(right), + &crate::TypeInner::Matrix { .. } + ) + { + self.put_wrapped_expression_for_packed_vec3_access(left, context, false)?; + } else { + self.put_expression(left, context, false)?; + } + + write!(self.out, " {op_str} ")?; + + // See comment above + if op == crate::BinaryOperator::Multiply + && matches!(context.resolve_type(left), &crate::TypeInner::Matrix { .. }) + { + self.put_wrapped_expression_for_packed_vec3_access(right, context, false)?; + } else { + self.put_expression(right, context, false)?; + } + + if !is_scoped { + write!(self.out, ")")?; + } + } + } + crate::Expression::Select { + condition, + accept, + reject, + } => match *context.resolve_type(condition) { + crate::TypeInner::Scalar { + kind: crate::ScalarKind::Bool, + .. + } => { + if !is_scoped { + write!(self.out, "(")?; + } + self.put_expression(condition, context, false)?; + write!(self.out, " ? ")?; + self.put_expression(accept, context, false)?; + write!(self.out, " : ")?; + self.put_expression(reject, context, false)?; + if !is_scoped { + write!(self.out, ")")?; + } + } + crate::TypeInner::Vector { + kind: crate::ScalarKind::Bool, + .. + } => { + write!(self.out, "{NAMESPACE}::select(")?; + self.put_expression(reject, context, true)?; + write!(self.out, ", ")?; + self.put_expression(accept, context, true)?; + write!(self.out, ", ")?; + self.put_expression(condition, context, true)?; + write!(self.out, ")")?; + } + _ => return Err(Error::Validation), + }, + crate::Expression::Derivative { axis, expr, .. } => { + use crate::DerivativeAxis as Axis; + let op = match axis { + Axis::X => "dfdx", + Axis::Y => "dfdy", + Axis::Width => "fwidth", + }; + write!(self.out, "{NAMESPACE}::{op}")?; + self.put_call_parameters(iter::once(expr), context)?; + } + crate::Expression::Relational { fun, argument } => { + let op = match fun { + crate::RelationalFunction::Any => "any", + crate::RelationalFunction::All => "all", + crate::RelationalFunction::IsNan => "isnan", + crate::RelationalFunction::IsInf => "isinf", + crate::RelationalFunction::IsFinite => "isfinite", + crate::RelationalFunction::IsNormal => "isnormal", + }; + write!(self.out, "{NAMESPACE}::{op}")?; + self.put_call_parameters(iter::once(argument), context)?; + } + crate::Expression::Math { + fun, + arg, + arg1, + arg2, + arg3, + } => { + use crate::MathFunction as Mf; + + let scalar_argument = match *context.resolve_type(arg) { + crate::TypeInner::Scalar { .. } => true, + _ => false, + }; + + let fun_name = match fun { + // comparison + Mf::Abs => "abs", + Mf::Min => "min", + Mf::Max => "max", + Mf::Clamp => "clamp", + Mf::Saturate => "saturate", + // trigonometry + Mf::Cos => "cos", + Mf::Cosh => "cosh", + Mf::Sin => "sin", + Mf::Sinh => "sinh", + Mf::Tan => "tan", + Mf::Tanh => "tanh", + Mf::Acos => "acos", + Mf::Asin => "asin", + Mf::Atan => "atan", + Mf::Atan2 => "atan2", + Mf::Asinh => "asinh", + Mf::Acosh => "acosh", + Mf::Atanh => "atanh", + Mf::Radians => "", + Mf::Degrees => "", + // decomposition + Mf::Ceil => "ceil", + Mf::Floor => "floor", + Mf::Round => "rint", + Mf::Fract => "fract", + Mf::Trunc => "trunc", + Mf::Modf => "modf", + Mf::Frexp => "frexp", + Mf::Ldexp => "ldexp", + // exponent + Mf::Exp => "exp", + Mf::Exp2 => "exp2", + Mf::Log => "log", + Mf::Log2 => "log2", + Mf::Pow => "pow", + // geometry + Mf::Dot => match *context.resolve_type(arg) { + crate::TypeInner::Vector { + kind: crate::ScalarKind::Float, + .. + } => "dot", + crate::TypeInner::Vector { size, .. } => { + return self.put_dot_product(arg, arg1.unwrap(), size as usize, context) + } + _ => unreachable!( + "Correct TypeInner for dot product should be already validated" + ), + }, + Mf::Outer => return Err(Error::UnsupportedCall(format!("{fun:?}"))), + Mf::Cross => "cross", + Mf::Distance => "distance", + Mf::Length if scalar_argument => "abs", + Mf::Length => "length", + Mf::Normalize => "normalize", + Mf::FaceForward => "faceforward", + Mf::Reflect => "reflect", + Mf::Refract => "refract", + // computational + Mf::Sign => "sign", + Mf::Fma => "fma", + Mf::Mix => "mix", + Mf::Step => "step", + Mf::SmoothStep => "smoothstep", + Mf::Sqrt => "sqrt", + Mf::InverseSqrt => "rsqrt", + Mf::Inverse => return Err(Error::UnsupportedCall(format!("{fun:?}"))), + Mf::Transpose => "transpose", + Mf::Determinant => "determinant", + // bits + Mf::CountTrailingZeros => "ctz", + Mf::CountLeadingZeros => "clz", + Mf::CountOneBits => "popcount", + Mf::ReverseBits => "reverse_bits", + Mf::ExtractBits => "extract_bits", + Mf::InsertBits => "insert_bits", + Mf::FindLsb => "", + Mf::FindMsb => "", + // data packing + Mf::Pack4x8snorm => "pack_float_to_snorm4x8", + Mf::Pack4x8unorm => "pack_float_to_unorm4x8", + Mf::Pack2x16snorm => "pack_float_to_snorm2x16", + Mf::Pack2x16unorm => "pack_float_to_unorm2x16", + Mf::Pack2x16float => "", + // data unpacking + Mf::Unpack4x8snorm => "unpack_snorm4x8_to_float", + Mf::Unpack4x8unorm => "unpack_unorm4x8_to_float", + Mf::Unpack2x16snorm => "unpack_snorm2x16_to_float", + Mf::Unpack2x16unorm => "unpack_unorm2x16_to_float", + Mf::Unpack2x16float => "", + }; + + if fun == Mf::Distance && scalar_argument { + write!(self.out, "{NAMESPACE}::abs(")?; + self.put_expression(arg, context, false)?; + write!(self.out, " - ")?; + self.put_expression(arg1.unwrap(), context, false)?; + write!(self.out, ")")?; + } else if fun == Mf::FindLsb { + write!(self.out, "((({NAMESPACE}::ctz(")?; + self.put_expression(arg, context, true)?; + write!(self.out, ") + 1) % 33) - 1)")?; + } else if fun == Mf::FindMsb { + let inner = context.resolve_type(arg); + + write!(self.out, "{NAMESPACE}::select(31 - {NAMESPACE}::clz(")?; + + if let Some(crate::ScalarKind::Sint) = inner.scalar_kind() { + write!(self.out, "{NAMESPACE}::select(")?; + self.put_expression(arg, context, true)?; + write!(self.out, ", ~")?; + self.put_expression(arg, context, true)?; + write!(self.out, ", ")?; + self.put_expression(arg, context, true)?; + write!(self.out, " < 0)")?; + } else { + self.put_expression(arg, context, true)?; + } + + write!(self.out, "), ")?; + + // or metal will complain that select is ambiguous + match *inner { + crate::TypeInner::Vector { size, kind, .. } => { + let size = back::vector_size_str(size); + if let crate::ScalarKind::Sint = kind { + write!(self.out, "int{size}")?; + } else { + write!(self.out, "uint{size}")?; + } + } + crate::TypeInner::Scalar { kind, .. } => { + if let crate::ScalarKind::Sint = kind { + write!(self.out, "int")?; + } else { + write!(self.out, "uint")?; + } + } + _ => (), + } + + write!(self.out, "(-1), ")?; + self.put_expression(arg, context, true)?; + write!(self.out, " == 0 || ")?; + self.put_expression(arg, context, true)?; + write!(self.out, " == -1)")?; + } else if fun == Mf::Unpack2x16float { + write!(self.out, "float2(as_type<half2>(")?; + self.put_expression(arg, context, false)?; + write!(self.out, "))")?; + } else if fun == Mf::Pack2x16float { + write!(self.out, "as_type<uint>(half2(")?; + self.put_expression(arg, context, false)?; + write!(self.out, "))")?; + } else if fun == Mf::Radians { + write!(self.out, "((")?; + self.put_expression(arg, context, false)?; + write!(self.out, ") * 0.017453292519943295474)")?; + } else if fun == Mf::Degrees { + write!(self.out, "((")?; + self.put_expression(arg, context, false)?; + write!(self.out, ") * 57.295779513082322865)")?; + } else { + write!(self.out, "{NAMESPACE}::{fun_name}")?; + self.put_call_parameters( + iter::once(arg).chain(arg1).chain(arg2).chain(arg3), + context, + )?; + } + } + crate::Expression::As { + expr, + kind, + convert, + } => match *context.resolve_type(expr) { + crate::TypeInner::Scalar { + kind: src_kind, + width: src_width, + } + | crate::TypeInner::Vector { + kind: src_kind, + width: src_width, + .. + } => { + let is_bool_cast = + kind == crate::ScalarKind::Bool || src_kind == crate::ScalarKind::Bool; + let op = match convert { + Some(w) if w == src_width || is_bool_cast => "static_cast", + Some(8) if kind == crate::ScalarKind::Float => { + return Err(Error::CapabilityNotSupported(valid::Capabilities::FLOAT64)) + } + Some(_) => return Err(Error::Validation), + None => "as_type", + }; + write!(self.out, "{op}<")?; + match *context.resolve_type(expr) { + crate::TypeInner::Vector { size, .. } => { + put_numeric_type(&mut self.out, kind, &[size])? + } + _ => put_numeric_type(&mut self.out, kind, &[])?, + }; + write!(self.out, ">(")?; + self.put_expression(expr, context, true)?; + write!(self.out, ")")?; + } + crate::TypeInner::Matrix { columns, rows, .. } => { + put_numeric_type(&mut self.out, kind, &[rows, columns])?; + write!(self.out, "(")?; + self.put_expression(expr, context, true)?; + write!(self.out, ")")?; + } + _ => return Err(Error::Validation), + }, + // has to be a named expression + crate::Expression::CallResult(_) + | crate::Expression::AtomicResult { .. } + | crate::Expression::RayQueryProceedResult => { + unreachable!() + } + crate::Expression::ArrayLength(expr) => { + // Find the global to which the array belongs. + let global = match context.function.expressions[expr] { + crate::Expression::AccessIndex { base, .. } => { + match context.function.expressions[base] { + crate::Expression::GlobalVariable(handle) => handle, + _ => return Err(Error::Validation), + } + } + crate::Expression::GlobalVariable(handle) => handle, + _ => return Err(Error::Validation), + }; + + if !is_scoped { + write!(self.out, "(")?; + } + write!(self.out, "1 + ")?; + self.put_dynamic_array_max_index(global, context)?; + if !is_scoped { + write!(self.out, ")")?; + } + } + crate::Expression::RayQueryGetIntersection { query, committed } => { + if !committed { + unimplemented!() + } + let ty = context.module.special_types.ray_intersection.unwrap(); + let type_name = &self.names[&NameKey::Type(ty)]; + write!(self.out, "{type_name} {{{RAY_QUERY_FUN_MAP_INTERSECTION}(")?; + self.put_expression(query, context, true)?; + write!(self.out, ".{RAY_QUERY_FIELD_INTERSECTION}.type)")?; + let fields = [ + "distance", + "user_instance_id", + "instance_id", + "", // SBT offset + "geometry_id", + "primitive_id", + "triangle_barycentric_coord", + "triangle_front_facing", + "", // padding + "object_to_world_transform", + "world_to_object_transform", + ]; + for field in fields { + write!(self.out, ", ")?; + if field.is_empty() { + write!(self.out, "{{}}")?; + } else { + self.put_expression(query, context, true)?; + write!(self.out, ".{RAY_QUERY_FIELD_INTERSECTION}.{field}")?; + } + } + write!(self.out, "}}")?; + } + } + Ok(()) + } + + /// Used by expressions like Swizzle and Binary since they need packed_vec3's to be casted to a vec3 + fn put_wrapped_expression_for_packed_vec3_access( + &mut self, + expr_handle: Handle<crate::Expression>, + context: &ExpressionContext, + is_scoped: bool, + ) -> BackendResult { + if let Some(scalar_kind) = context.get_packed_vec_kind(expr_handle) { + write!(self.out, "{}::{}3(", NAMESPACE, scalar_kind.to_msl_name())?; + self.put_expression(expr_handle, context, is_scoped)?; + write!(self.out, ")")?; + } else { + self.put_expression(expr_handle, context, is_scoped)?; + } + Ok(()) + } + + /// Write a `GuardedIndex` as a Metal expression. + fn put_index( + &mut self, + index: index::GuardedIndex, + context: &ExpressionContext, + is_scoped: bool, + ) -> BackendResult { + match index { + index::GuardedIndex::Expression(expr) => { + self.put_expression(expr, context, is_scoped)? + } + index::GuardedIndex::Known(value) => write!(self.out, "{value}")?, + } + Ok(()) + } + + /// Emit an index bounds check condition for `chain`, if required. + /// + /// `chain` is a subtree of `Access` and `AccessIndex` expressions, + /// operating either on a pointer to a value, or on a value directly. If we cannot + /// statically determine that all indexing operations in `chain` are within + /// bounds, then write a conditional expression to check them dynamically, + /// and return true. All accesses in the chain are checked by the generated + /// expression. + /// + /// This assumes that the [`BoundsCheckPolicy`] for `chain` is [`ReadZeroSkipWrite`]. + /// + /// The text written is of the form: + /// + /// ```ignore + /// {level}{prefix}uint(i) < 4 && uint(j) < 10 + /// ``` + /// + /// where `{level}` and `{prefix}` are the arguments to this function. For [`Store`] + /// statements, presumably these arguments start an indented `if` statement; for + /// [`Load`] expressions, the caller is probably building up a ternary `?:` + /// expression. In either case, what is written is not a complete syntactic structure + /// in its own right, and the caller will have to finish it off if we return `true`. + /// + /// If no expression is written, return false. + /// + /// [`BoundsCheckPolicy`]: index::BoundsCheckPolicy + /// [`ReadZeroSkipWrite`]: index::BoundsCheckPolicy::ReadZeroSkipWrite + /// [`Store`]: crate::Statement::Store + /// [`Load`]: crate::Expression::Load + #[allow(unused_variables)] + fn put_bounds_checks( + &mut self, + mut chain: Handle<crate::Expression>, + context: &ExpressionContext, + level: back::Level, + prefix: &'static str, + ) -> Result<bool, Error> { + let mut check_written = false; + + // Iterate over the access chain, handling each expression. + loop { + // Produce a `GuardedIndex`, so we can shared code between the + // `Access` and `AccessIndex` cases. + let (base, guarded_index) = match context.function.expressions[chain] { + crate::Expression::Access { base, index } => { + (base, Some(index::GuardedIndex::Expression(index))) + } + crate::Expression::AccessIndex { base, index } => { + // Don't try to check indices into structs. Validation already took + // care of them, and index::needs_guard doesn't handle that case. + let mut base_inner = context.resolve_type(base); + if let crate::TypeInner::Pointer { base, .. } = *base_inner { + base_inner = &context.module.types[base].inner; + } + match *base_inner { + crate::TypeInner::Struct { .. } => (base, None), + _ => (base, Some(index::GuardedIndex::Known(index))), + } + } + _ => break, + }; + + if let Some(index) = guarded_index { + if let Some(length) = context.access_needs_check(base, index) { + if check_written { + write!(self.out, " && ")?; + } else { + write!(self.out, "{level}{prefix}")?; + check_written = true; + } + + // Check that the index falls within bounds. Do this with a single + // comparison, by casting the index to `uint` first, so that negative + // indices become large positive values. + write!(self.out, "uint(")?; + self.put_index(index, context, true)?; + self.out.write_str(") < ")?; + match length { + index::IndexableLength::Known(value) => write!(self.out, "{value}")?, + index::IndexableLength::Dynamic => { + let global = context + .function + .originating_global(base) + .ok_or(Error::Validation)?; + write!(self.out, "1 + ")?; + self.put_dynamic_array_max_index(global, context)? + } + } + } + } + + chain = base + } + + Ok(check_written) + } + + /// Write the access chain `chain`. + /// + /// `chain` is a subtree of [`Access`] and [`AccessIndex`] expressions, + /// operating either on a pointer to a value, or on a value directly. + /// + /// Generate bounds checks code only if `policy` is [`Restrict`]. The + /// [`ReadZeroSkipWrite`] policy requires checks before any accesses take place, so + /// that must be handled in the caller. + /// + /// Handle the entire chain, recursing back into `put_expression` only for index + /// expressions and the base expression that originates the pointer or composite value + /// being accessed. This allows `put_expression` to assume that any `Access` or + /// `AccessIndex` expressions it sees are the top of a chain, so it can emit + /// `ReadZeroSkipWrite` checks. + /// + /// [`Access`]: crate::Expression::Access + /// [`AccessIndex`]: crate::Expression::AccessIndex + /// [`Restrict`]: crate::proc::index::BoundsCheckPolicy::Restrict + /// [`ReadZeroSkipWrite`]: crate::proc::index::BoundsCheckPolicy::ReadZeroSkipWrite + fn put_access_chain( + &mut self, + chain: Handle<crate::Expression>, + policy: index::BoundsCheckPolicy, + context: &ExpressionContext, + ) -> BackendResult { + match context.function.expressions[chain] { + crate::Expression::Access { base, index } => { + let mut base_ty = context.resolve_type(base); + + // Look through any pointers to see what we're really indexing. + if let crate::TypeInner::Pointer { base, space: _ } = *base_ty { + base_ty = &context.module.types[base].inner; + } + + self.put_subscripted_access_chain( + base, + base_ty, + index::GuardedIndex::Expression(index), + policy, + context, + )?; + } + crate::Expression::AccessIndex { base, index } => { + let base_resolution = &context.info[base].ty; + let mut base_ty = base_resolution.inner_with(&context.module.types); + let mut base_ty_handle = base_resolution.handle(); + + // Look through any pointers to see what we're really indexing. + if let crate::TypeInner::Pointer { base, space: _ } = *base_ty { + base_ty = &context.module.types[base].inner; + base_ty_handle = Some(base); + } + + // Handle structs and anything else that can use `.x` syntax here, so + // `put_subscripted_access_chain` won't have to handle the absurd case of + // indexing a struct with an expression. + match *base_ty { + crate::TypeInner::Struct { .. } => { + let base_ty = base_ty_handle.unwrap(); + self.put_access_chain(base, policy, context)?; + let name = &self.names[&NameKey::StructMember(base_ty, index)]; + write!(self.out, ".{name}")?; + } + crate::TypeInner::ValuePointer { .. } | crate::TypeInner::Vector { .. } => { + self.put_access_chain(base, policy, context)?; + // Prior to Metal v2.1 component access for packed vectors wasn't available + // however array indexing is + if context.get_packed_vec_kind(base).is_some() { + write!(self.out, "[{index}]")?; + } else { + write!(self.out, ".{}", back::COMPONENTS[index as usize])?; + } + } + _ => { + self.put_subscripted_access_chain( + base, + base_ty, + index::GuardedIndex::Known(index), + policy, + context, + )?; + } + } + } + _ => self.put_expression(chain, context, false)?, + } + + Ok(()) + } + + /// Write a `[]`-style access of `base` by `index`. + /// + /// If `policy` is [`Restrict`], then generate code as needed to force all index + /// values within bounds. + /// + /// The `base_ty` argument must be the type we are actually indexing, like [`Array`] or + /// [`Vector`]. In other words, it's `base`'s type with any surrounding [`Pointer`] + /// removed. Our callers often already have this handy. + /// + /// This only emits `[]` expressions; it doesn't handle struct member accesses or + /// referencing vector components by name. + /// + /// [`Restrict`]: crate::proc::index::BoundsCheckPolicy::Restrict + /// [`Array`]: crate::TypeInner::Array + /// [`Vector`]: crate::TypeInner::Vector + /// [`Pointer`]: crate::TypeInner::Pointer + fn put_subscripted_access_chain( + &mut self, + base: Handle<crate::Expression>, + base_ty: &crate::TypeInner, + index: index::GuardedIndex, + policy: index::BoundsCheckPolicy, + context: &ExpressionContext, + ) -> BackendResult { + let accessing_wrapped_array = match *base_ty { + crate::TypeInner::Array { + size: crate::ArraySize::Constant(_), + .. + } => true, + _ => false, + }; + + self.put_access_chain(base, policy, context)?; + if accessing_wrapped_array { + write!(self.out, ".{WRAPPED_ARRAY_FIELD}")?; + } + write!(self.out, "[")?; + + // Decide whether this index needs to be clamped to fall within range. + let restriction_needed = if policy == index::BoundsCheckPolicy::Restrict { + context.access_needs_check(base, index) + } else { + None + }; + if let Some(limit) = restriction_needed { + write!(self.out, "{NAMESPACE}::min(unsigned(")?; + self.put_index(index, context, true)?; + write!(self.out, "), ")?; + match limit { + index::IndexableLength::Known(limit) => { + write!(self.out, "{}u", limit - 1)?; + } + index::IndexableLength::Dynamic => { + let global = context + .function + .originating_global(base) + .ok_or(Error::Validation)?; + self.put_dynamic_array_max_index(global, context)?; + } + } + write!(self.out, ")")?; + } else { + self.put_index(index, context, true)?; + } + + write!(self.out, "]")?; + + Ok(()) + } + + fn put_load( + &mut self, + pointer: Handle<crate::Expression>, + context: &ExpressionContext, + is_scoped: bool, + ) -> BackendResult { + // Since access chains never cross between address spaces, we can just + // check the index bounds check policy once at the top. + let policy = context.choose_bounds_check_policy(pointer); + if policy == index::BoundsCheckPolicy::ReadZeroSkipWrite + && self.put_bounds_checks( + pointer, + context, + back::Level(0), + if is_scoped { "" } else { "(" }, + )? + { + write!(self.out, " ? ")?; + self.put_unchecked_load(pointer, policy, context)?; + write!(self.out, " : DefaultConstructible()")?; + + if !is_scoped { + write!(self.out, ")")?; + } + } else { + self.put_unchecked_load(pointer, policy, context)?; + } + + Ok(()) + } + + fn put_unchecked_load( + &mut self, + pointer: Handle<crate::Expression>, + policy: index::BoundsCheckPolicy, + context: &ExpressionContext, + ) -> BackendResult { + let is_atomic = match *context.resolve_type(pointer) { + crate::TypeInner::Pointer { base, .. } => match context.module.types[base].inner { + crate::TypeInner::Atomic { .. } => true, + _ => false, + }, + _ => false, + }; + + if is_atomic { + write!( + self.out, + "{NAMESPACE}::atomic_load_explicit({ATOMIC_REFERENCE}" + )?; + self.put_access_chain(pointer, policy, context)?; + write!(self.out, ", {NAMESPACE}::memory_order_relaxed)")?; + } else { + // We don't do any dereferencing with `*` here as pointer arguments to functions + // are done by `&` references and not `*` pointers. These do not need to be + // dereferenced. + self.put_access_chain(pointer, policy, context)?; + } + + Ok(()) + } + + fn put_return_value( + &mut self, + level: back::Level, + expr_handle: Handle<crate::Expression>, + result_struct: Option<&str>, + context: &ExpressionContext, + ) -> BackendResult { + match result_struct { + Some(struct_name) => { + let mut has_point_size = false; + let result_ty = context.function.result.as_ref().unwrap().ty; + match context.module.types[result_ty].inner { + crate::TypeInner::Struct { ref members, .. } => { + let tmp = "_tmp"; + write!(self.out, "{level}const auto {tmp} = ")?; + self.put_expression(expr_handle, context, true)?; + writeln!(self.out, ";")?; + write!(self.out, "{level}return {struct_name} {{")?; + + let mut is_first = true; + + for (index, member) in members.iter().enumerate() { + if let Some(crate::Binding::BuiltIn(crate::BuiltIn::PointSize)) = + member.binding + { + has_point_size = true; + if !context.pipeline_options.allow_point_size { + continue; + } + } + + let comma = if is_first { "" } else { "," }; + is_first = false; + let name = &self.names[&NameKey::StructMember(result_ty, index as u32)]; + // HACK: we are forcefully deduplicating the expression here + // to convert from a wrapped struct to a raw array, e.g. + // `float gl_ClipDistance1 [[clip_distance]] [1];`. + if let crate::TypeInner::Array { + size: crate::ArraySize::Constant(const_handle), + .. + } = context.module.types[member.ty].inner + { + let size = context.module.constants[const_handle] + .to_array_length() + .unwrap(); + write!(self.out, "{comma} {{")?; + for j in 0..size { + if j != 0 { + write!(self.out, ",")?; + } + write!(self.out, "{tmp}.{name}.{WRAPPED_ARRAY_FIELD}[{j}]")?; + } + write!(self.out, "}}")?; + } else { + write!(self.out, "{comma} {tmp}.{name}")?; + } + } + } + _ => { + write!(self.out, "{level}return {struct_name} {{ ")?; + self.put_expression(expr_handle, context, true)?; + } + } + + if let FunctionOrigin::EntryPoint(ep_index) = context.origin { + let stage = context.module.entry_points[ep_index as usize].stage; + if context.pipeline_options.allow_point_size + && stage == crate::ShaderStage::Vertex + && !has_point_size + { + // point size was injected and comes last + write!(self.out, ", 1.0")?; + } + } + write!(self.out, " }}")?; + } + None => { + write!(self.out, "{level}return ")?; + self.put_expression(expr_handle, context, true)?; + } + } + writeln!(self.out, ";")?; + Ok(()) + } + + /// Helper method used to find which expressions of a given function require baking + /// + /// # Notes + /// This function overwrites the contents of `self.need_bake_expressions` + fn update_expressions_to_bake( + &mut self, + func: &crate::Function, + info: &valid::FunctionInfo, + context: &ExpressionContext, + ) { + use crate::Expression; + self.need_bake_expressions.clear(); + + for (expr_handle, expr) in func.expressions.iter() { + // Expressions whose reference count is above the + // threshold should always be stored in temporaries. + let expr_info = &info[expr_handle]; + let min_ref_count = func.expressions[expr_handle].bake_ref_count(); + if min_ref_count <= expr_info.ref_count { + self.need_bake_expressions.insert(expr_handle); + } else { + match expr_info.ty { + // force ray desc to be baked: it's used multiple times internally + TypeResolution::Handle(h) + if Some(h) == context.module.special_types.ray_desc => + { + self.need_bake_expressions.insert(expr_handle); + } + _ => {} + } + } + + if let Expression::Math { fun, arg, arg1, .. } = *expr { + match fun { + crate::MathFunction::Dot => { + // WGSL's `dot` function works on any `vecN` type, but Metal's only + // works on floating-point vectors, so we emit inline code for + // integer vector `dot` calls. But that code uses each argument `N` + // times, once for each component (see `put_dot_product`), so to + // avoid duplicated evaluation, we must bake integer operands. + + // check what kind of product this is depending + // on the resolve type of the Dot function itself + if let crate::TypeInner::Scalar { kind, .. } = + *context.resolve_type(expr_handle) + { + match kind { + crate::ScalarKind::Sint | crate::ScalarKind::Uint => { + self.need_bake_expressions.insert(arg); + self.need_bake_expressions.insert(arg1.unwrap()); + } + _ => {} + } + } + } + crate::MathFunction::FindMsb => { + self.need_bake_expressions.insert(arg); + } + _ => {} + } + } + } + } + + fn start_baking_expression( + &mut self, + handle: Handle<crate::Expression>, + context: &ExpressionContext, + name: &str, + ) -> BackendResult { + match context.info[handle].ty { + TypeResolution::Handle(ty_handle) => { + let ty_name = TypeContext { + handle: ty_handle, + module: context.module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + write!(self.out, "{ty_name}")?; + } + TypeResolution::Value(crate::TypeInner::Scalar { kind, .. }) => { + put_numeric_type(&mut self.out, kind, &[])?; + } + TypeResolution::Value(crate::TypeInner::Vector { size, kind, .. }) => { + put_numeric_type(&mut self.out, kind, &[size])?; + } + TypeResolution::Value(crate::TypeInner::Matrix { columns, rows, .. }) => { + put_numeric_type(&mut self.out, crate::ScalarKind::Float, &[rows, columns])?; + } + TypeResolution::Value(ref other) => { + log::warn!("Type {:?} isn't a known local", other); //TEMP! + return Err(Error::FeatureNotImplemented("weird local type".to_string())); + } + } + + //TODO: figure out the naming scheme that wouldn't collide with user names. + write!(self.out, " {name} = ")?; + + Ok(()) + } + + /// Cache a clamped level of detail value, if necessary. + /// + /// [`ImageLoad`] accesses covered by [`BoundsCheckPolicy::Restrict`] use a + /// properly clamped level of detail value both in the access itself, and + /// for fetching the size of the requested MIP level, needed to clamp the + /// coordinates. To avoid recomputing this clamped level of detail, we cache + /// it in a temporary variable, as part of the [`Emit`] statement covering + /// the [`ImageLoad`] expression. + /// + /// [`ImageLoad`]: crate::Expression::ImageLoad + /// [`BoundsCheckPolicy::Restrict`]: index::BoundsCheckPolicy::Restrict + /// [`Emit`]: crate::Statement::Emit + fn put_cache_restricted_level( + &mut self, + load: Handle<crate::Expression>, + image: Handle<crate::Expression>, + mip_level: Option<Handle<crate::Expression>>, + indent: back::Level, + context: &StatementContext, + ) -> BackendResult { + // Does this image access actually require (or even permit) a + // level-of-detail, and does the policy require us to restrict it? + let level_of_detail = match mip_level { + Some(level) => level, + None => return Ok(()), + }; + + if context.expression.policies.image != index::BoundsCheckPolicy::Restrict + || !context.expression.image_needs_lod(image) + { + return Ok(()); + } + + write!( + self.out, + "{}uint {}{} = ", + indent, + CLAMPED_LOD_LOAD_PREFIX, + load.index(), + )?; + self.put_restricted_scalar_image_index( + image, + level_of_detail, + "get_num_mip_levels", + &context.expression, + )?; + writeln!(self.out, ";")?; + + Ok(()) + } + + fn put_block( + &mut self, + level: back::Level, + statements: &[crate::Statement], + context: &StatementContext, + ) -> BackendResult { + // Add to the set in order to track the stack size. + #[cfg(test)] + #[allow(trivial_casts)] + self.put_block_stack_pointers + .insert(&level as *const _ as *const ()); + + for statement in statements { + log::trace!("statement[{}] {:?}", level.0, statement); + match *statement { + crate::Statement::Emit(ref range) => { + for handle in range.clone() { + // `ImageLoad` expressions covered by the `Restrict` bounds check policy + // may need to cache a clamped version of their level-of-detail argument. + if let crate::Expression::ImageLoad { + image, + level: mip_level, + .. + } = context.expression.function.expressions[handle] + { + self.put_cache_restricted_level( + handle, image, mip_level, level, context, + )?; + } + + let info = &context.expression.info[handle]; + let ptr_class = info + .ty + .inner_with(&context.expression.module.types) + .pointer_space(); + let expr_name = if ptr_class.is_some() { + None // don't bake pointer expressions (just yet) + } else if let Some(name) = + context.expression.function.named_expressions.get(&handle) + { + // The `crate::Function::named_expressions` table holds + // expressions that should be saved in temporaries once they + // are `Emit`ted. We only add them to `self.named_expressions` + // when we reach the `Emit` that covers them, so that we don't + // try to use their names before we've actually initialized + // the temporary that holds them. + // + // Don't assume the names in `named_expressions` are unique, + // or even valid. Use the `Namer`. + Some(self.namer.call(name)) + } else if info.ref_count == 0 { + Some(self.namer.call("")) + } else { + // If this expression is an index that we're going to first compare + // against a limit, and then actually use as an index, then we may + // want to cache it in a temporary, to avoid evaluating it twice. + let bake = + if context.expression.guarded_indices.contains(handle.index()) { + true + } else { + self.need_bake_expressions.contains(&handle) + }; + + if bake { + Some(format!("{}{}", back::BAKE_PREFIX, handle.index())) + } else { + None + } + }; + + if let Some(name) = expr_name { + write!(self.out, "{level}")?; + self.start_baking_expression(handle, &context.expression, &name)?; + self.put_expression(handle, &context.expression, true)?; + self.named_expressions.insert(handle, name); + writeln!(self.out, ";")?; + } + } + } + crate::Statement::Block(ref block) => { + if !block.is_empty() { + writeln!(self.out, "{level}{{")?; + self.put_block(level.next(), block, context)?; + writeln!(self.out, "{level}}}")?; + } + } + crate::Statement::If { + condition, + ref accept, + ref reject, + } => { + write!(self.out, "{level}if (")?; + self.put_expression(condition, &context.expression, true)?; + writeln!(self.out, ") {{")?; + self.put_block(level.next(), accept, context)?; + if !reject.is_empty() { + writeln!(self.out, "{level}}} else {{")?; + self.put_block(level.next(), reject, context)?; + } + writeln!(self.out, "{level}}}")?; + } + crate::Statement::Switch { + selector, + ref cases, + } => { + write!(self.out, "{level}switch(")?; + self.put_expression(selector, &context.expression, true)?; + writeln!(self.out, ") {{")?; + let lcase = level.next(); + for case in cases.iter() { + match case.value { + crate::SwitchValue::I32(value) => { + write!(self.out, "{lcase}case {value}:")?; + } + crate::SwitchValue::U32(value) => { + write!(self.out, "{lcase}case {value}u:")?; + } + crate::SwitchValue::Default => { + write!(self.out, "{lcase}default:")?; + } + } + + let write_block_braces = !(case.fall_through && case.body.is_empty()); + if write_block_braces { + writeln!(self.out, " {{")?; + } else { + writeln!(self.out)?; + } + + self.put_block(lcase.next(), &case.body, context)?; + if !case.fall_through + && case.body.last().map_or(true, |s| !s.is_terminator()) + { + writeln!(self.out, "{}break;", lcase.next())?; + } + + if write_block_braces { + writeln!(self.out, "{lcase}}}")?; + } + } + writeln!(self.out, "{level}}}")?; + } + crate::Statement::Loop { + ref body, + ref continuing, + break_if, + } => { + if !continuing.is_empty() || break_if.is_some() { + let gate_name = self.namer.call("loop_init"); + writeln!(self.out, "{level}bool {gate_name} = true;")?; + writeln!(self.out, "{level}while(true) {{")?; + let lif = level.next(); + let lcontinuing = lif.next(); + writeln!(self.out, "{lif}if (!{gate_name}) {{")?; + self.put_block(lcontinuing, continuing, context)?; + if let Some(condition) = break_if { + write!(self.out, "{lcontinuing}if (")?; + self.put_expression(condition, &context.expression, true)?; + writeln!(self.out, ") {{")?; + writeln!(self.out, "{}break;", lcontinuing.next())?; + writeln!(self.out, "{lcontinuing}}}")?; + } + writeln!(self.out, "{lif}}}")?; + writeln!(self.out, "{lif}{gate_name} = false;")?; + } else { + writeln!(self.out, "{level}while(true) {{")?; + } + self.put_block(level.next(), body, context)?; + writeln!(self.out, "{level}}}")?; + } + crate::Statement::Break => { + writeln!(self.out, "{level}break;")?; + } + crate::Statement::Continue => { + writeln!(self.out, "{level}continue;")?; + } + crate::Statement::Return { + value: Some(expr_handle), + } => { + self.put_return_value( + level, + expr_handle, + context.result_struct, + &context.expression, + )?; + } + crate::Statement::Return { value: None } => { + writeln!(self.out, "{level}return;")?; + } + crate::Statement::Kill => { + writeln!(self.out, "{level}{NAMESPACE}::discard_fragment();")?; + } + crate::Statement::Barrier(flags) => { + self.write_barrier(flags, level)?; + } + crate::Statement::Store { pointer, value } => { + self.put_store(pointer, value, level, context)? + } + crate::Statement::ImageStore { + image, + coordinate, + array_index, + value, + } => { + let address = TexelAddress { + coordinate, + array_index, + sample: None, + level: None, + }; + self.put_image_store(level, image, &address, value, context)? + } + crate::Statement::Call { + function, + ref arguments, + result, + } => { + write!(self.out, "{level}")?; + if let Some(expr) = result { + let name = format!("{}{}", back::BAKE_PREFIX, expr.index()); + self.start_baking_expression(expr, &context.expression, &name)?; + self.named_expressions.insert(expr, name); + } + let fun_name = &self.names[&NameKey::Function(function)]; + write!(self.out, "{fun_name}(")?; + // first, write down the actual arguments + for (i, &handle) in arguments.iter().enumerate() { + if i != 0 { + write!(self.out, ", ")?; + } + self.put_expression(handle, &context.expression, true)?; + } + // follow-up with any global resources used + let mut separate = !arguments.is_empty(); + let fun_info = &context.mod_info[function]; + let mut supports_array_length = false; + for (handle, var) in context.expression.module.global_variables.iter() { + if fun_info[handle].is_empty() { + continue; + } + if var.space.needs_pass_through() { + let name = &self.names[&NameKey::GlobalVariable(handle)]; + if separate { + write!(self.out, ", ")?; + } else { + separate = true; + } + write!(self.out, "{name}")?; + } + supports_array_length |= + needs_array_length(var.ty, &context.expression.module.types); + } + if supports_array_length { + if separate { + write!(self.out, ", ")?; + } + write!(self.out, "_buffer_sizes")?; + } + + // done + writeln!(self.out, ");")?; + } + crate::Statement::Atomic { + pointer, + ref fun, + value, + result, + } => { + write!(self.out, "{level}")?; + let res_name = format!("{}{}", back::BAKE_PREFIX, result.index()); + self.start_baking_expression(result, &context.expression, &res_name)?; + self.named_expressions.insert(result, res_name); + match *fun { + crate::AtomicFunction::Add => { + self.put_atomic_fetch(pointer, "add", value, &context.expression)?; + } + crate::AtomicFunction::Subtract => { + self.put_atomic_fetch(pointer, "sub", value, &context.expression)?; + } + crate::AtomicFunction::And => { + self.put_atomic_fetch(pointer, "and", value, &context.expression)?; + } + crate::AtomicFunction::InclusiveOr => { + self.put_atomic_fetch(pointer, "or", value, &context.expression)?; + } + crate::AtomicFunction::ExclusiveOr => { + self.put_atomic_fetch(pointer, "xor", value, &context.expression)?; + } + crate::AtomicFunction::Min => { + self.put_atomic_fetch(pointer, "min", value, &context.expression)?; + } + crate::AtomicFunction::Max => { + self.put_atomic_fetch(pointer, "max", value, &context.expression)?; + } + crate::AtomicFunction::Exchange { compare: None } => { + self.put_atomic_operation( + pointer, + "exchange", + "", + value, + &context.expression, + )?; + } + crate::AtomicFunction::Exchange { .. } => { + return Err(Error::FeatureNotImplemented( + "atomic CompareExchange".to_string(), + )); + } + } + // done + writeln!(self.out, ";")?; + } + crate::Statement::RayQuery { query, ref fun } => { + match *fun { + crate::RayQueryFunction::Initialize { + acceleration_structure, + descriptor, + } => { + //TODO: how to deal with winding? + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + writeln!(self.out, ".{RAY_QUERY_FIELD_INTERSECTOR}.assume_geometry_type({RT_NAMESPACE}::geometry_type::triangle);")?; + { + let f_opaque = back::RayFlag::CULL_OPAQUE.bits(); + let f_no_opaque = back::RayFlag::CULL_NO_OPAQUE.bits(); + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + write!( + self.out, + ".{RAY_QUERY_FIELD_INTERSECTOR}.set_opacity_cull_mode((" + )?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".flags & {f_opaque}) != 0 ? {RT_NAMESPACE}::opacity_cull_mode::opaque : (")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".flags & {f_no_opaque}) != 0 ? {RT_NAMESPACE}::opacity_cull_mode::non_opaque : ")?; + writeln!(self.out, "{RT_NAMESPACE}::opacity_cull_mode::none);")?; + } + { + let f_opaque = back::RayFlag::OPAQUE.bits(); + let f_no_opaque = back::RayFlag::NO_OPAQUE.bits(); + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + write!(self.out, ".{RAY_QUERY_FIELD_INTERSECTOR}.force_opacity((")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".flags & {f_opaque}) != 0 ? {RT_NAMESPACE}::forced_opacity::opaque : (")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".flags & {f_no_opaque}) != 0 ? {RT_NAMESPACE}::forced_opacity::non_opaque : ")?; + writeln!(self.out, "{RT_NAMESPACE}::forced_opacity::none);")?; + } + { + let flag = back::RayFlag::TERMINATE_ON_FIRST_HIT.bits(); + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + write!( + self.out, + ".{RAY_QUERY_FIELD_INTERSECTOR}.accept_any_intersection((" + )?; + self.put_expression(descriptor, &context.expression, true)?; + writeln!(self.out, ".flags & {flag}) != 0);")?; + } + + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + write!(self.out, ".{RAY_QUERY_FIELD_INTERSECTION} = ")?; + self.put_expression(query, &context.expression, true)?; + write!( + self.out, + ".{RAY_QUERY_FIELD_INTERSECTOR}.intersect({RT_NAMESPACE}::ray(" + )?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".origin, ")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".dir, ")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".tmin, ")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".tmax), ")?; + self.put_expression(acceleration_structure, &context.expression, true)?; + write!(self.out, ", ")?; + self.put_expression(descriptor, &context.expression, true)?; + write!(self.out, ".cull_mask);")?; + + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + writeln!(self.out, ".{RAY_QUERY_FIELD_READY} = true;")?; + } + crate::RayQueryFunction::Proceed { result } => { + write!(self.out, "{level}")?; + let name = format!("{}{}", back::BAKE_PREFIX, result.index()); + self.start_baking_expression(result, &context.expression, &name)?; + self.named_expressions.insert(result, name); + self.put_expression(query, &context.expression, true)?; + writeln!(self.out, ".{RAY_QUERY_FIELD_READY};")?; + //TODO: actually proceed? + + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + writeln!(self.out, ".{RAY_QUERY_FIELD_READY} = false;")?; + } + crate::RayQueryFunction::Terminate => { + write!(self.out, "{level}")?; + self.put_expression(query, &context.expression, true)?; + writeln!(self.out, ".{RAY_QUERY_FIELD_INTERSECTION}.abort();")?; + } + } + } + } + } + + // un-emit expressions + //TODO: take care of loop/continuing? + for statement in statements { + if let crate::Statement::Emit(ref range) = *statement { + for handle in range.clone() { + self.named_expressions.remove(&handle); + } + } + } + Ok(()) + } + + fn put_store( + &mut self, + pointer: Handle<crate::Expression>, + value: Handle<crate::Expression>, + level: back::Level, + context: &StatementContext, + ) -> BackendResult { + let policy = context.expression.choose_bounds_check_policy(pointer); + if policy == index::BoundsCheckPolicy::ReadZeroSkipWrite + && self.put_bounds_checks(pointer, &context.expression, level, "if (")? + { + writeln!(self.out, ") {{")?; + self.put_unchecked_store(pointer, value, policy, level.next(), context)?; + writeln!(self.out, "{level}}}")?; + } else { + self.put_unchecked_store(pointer, value, policy, level, context)?; + } + + Ok(()) + } + + fn put_unchecked_store( + &mut self, + pointer: Handle<crate::Expression>, + value: Handle<crate::Expression>, + policy: index::BoundsCheckPolicy, + level: back::Level, + context: &StatementContext, + ) -> BackendResult { + let pointer_inner = context.expression.resolve_type(pointer); + let (array_size, is_atomic) = match *pointer_inner { + crate::TypeInner::Pointer { base, .. } => { + match context.expression.module.types[base].inner { + crate::TypeInner::Array { + size: crate::ArraySize::Constant(ch), + .. + } => (Some(ch), false), + crate::TypeInner::Atomic { .. } => (None, true), + _ => (None, false), + } + } + _ => (None, false), + }; + + // we can't assign fixed-size arrays + if let Some(const_handle) = array_size { + let size = context.expression.module.constants[const_handle] + .to_array_length() + .unwrap(); + write!(self.out, "{level}for(int _i=0; _i<{size}; ++_i) ")?; + self.put_access_chain(pointer, policy, &context.expression)?; + write!(self.out, ".{WRAPPED_ARRAY_FIELD}[_i] = ")?; + self.put_expression(value, &context.expression, true)?; + writeln!(self.out, ".{WRAPPED_ARRAY_FIELD}[_i];")?; + } else if is_atomic { + write!( + self.out, + "{level}{NAMESPACE}::atomic_store_explicit({ATOMIC_REFERENCE}" + )?; + self.put_access_chain(pointer, policy, &context.expression)?; + write!(self.out, ", ")?; + self.put_expression(value, &context.expression, true)?; + writeln!(self.out, ", {NAMESPACE}::memory_order_relaxed);")?; + } else { + write!(self.out, "{level}")?; + self.put_access_chain(pointer, policy, &context.expression)?; + write!(self.out, " = ")?; + self.put_expression(value, &context.expression, true)?; + writeln!(self.out, ";")?; + } + + Ok(()) + } + + pub fn write( + &mut self, + module: &crate::Module, + info: &valid::ModuleInfo, + options: &Options, + pipeline_options: &PipelineOptions, + ) -> Result<TranslationInfo, Error> { + self.names.clear(); + self.namer + .reset(module, super::keywords::RESERVED, &[], &mut self.names); + self.struct_member_pads.clear(); + + writeln!( + self.out, + "// language: metal{}.{}", + options.lang_version.0, options.lang_version.1 + )?; + writeln!(self.out, "#include <metal_stdlib>")?; + writeln!(self.out, "#include <simd/simd.h>")?; + writeln!(self.out)?; + // Work around Metal bug where `uint` is not available by default + writeln!(self.out, "using {NAMESPACE}::uint;")?; + + if module.types.iter().any(|(_, t)| match t.inner { + crate::TypeInner::RayQuery => true, + _ => false, + }) { + let tab = back::INDENT; + writeln!(self.out, "struct {RAY_QUERY_TYPE} {{")?; + let full_type = format!("{RT_NAMESPACE}::intersector<{RT_NAMESPACE}::instancing, {RT_NAMESPACE}::triangle_data, {RT_NAMESPACE}::world_space_data>"); + writeln!(self.out, "{tab}{full_type} {RAY_QUERY_FIELD_INTERSECTOR};")?; + writeln!( + self.out, + "{tab}{full_type}::result_type {RAY_QUERY_FIELD_INTERSECTION};" + )?; + writeln!(self.out, "{tab}bool {RAY_QUERY_FIELD_READY} = false;")?; + writeln!(self.out, "}};")?; + writeln!(self.out, "constexpr {NAMESPACE}::uint {RAY_QUERY_FUN_MAP_INTERSECTION}(const {RT_NAMESPACE}::intersection_type ty) {{")?; + let v_triangle = back::RayIntersectionType::Triangle as u32; + let v_bbox = back::RayIntersectionType::BoundingBox as u32; + writeln!( + self.out, + "{tab}return ty=={RT_NAMESPACE}::intersection_type::triangle ? {v_triangle} : " + )?; + writeln!( + self.out, + "{tab}{tab}ty=={RT_NAMESPACE}::intersection_type::bounding_box ? {v_bbox} : 0;" + )?; + writeln!(self.out, "}}")?; + } + if options + .bounds_check_policies + .contains(index::BoundsCheckPolicy::ReadZeroSkipWrite) + { + self.put_default_constructible()?; + } + writeln!(self.out)?; + + { + let mut indices = vec![]; + for (handle, var) in module.global_variables.iter() { + if needs_array_length(var.ty, &module.types) { + let idx = handle.index(); + indices.push(idx); + } + } + + if !indices.is_empty() { + writeln!(self.out, "struct _mslBufferSizes {{")?; + + for idx in indices { + writeln!(self.out, "{}uint size{};", back::INDENT, idx)?; + } + + writeln!(self.out, "}};")?; + writeln!(self.out)?; + } + }; + + self.write_scalar_constants(module)?; + self.write_type_defs(module)?; + self.write_composite_constants(module)?; + self.write_functions(module, info, options, pipeline_options) + } + + /// Write the definition for the `DefaultConstructible` class. + /// + /// The [`ReadZeroSkipWrite`] bounds check policy requires us to be able to + /// produce 'zero' values for any type, including structs, arrays, and so + /// on. We could do this by emitting default constructor applications, but + /// that would entail printing the name of the type, which is more trouble + /// than you'd think. Instead, we just construct this magic C++14 class that + /// can be converted to any type that can be default constructed, using + /// template parameter inference to detect which type is needed, so we don't + /// have to figure out the name. + /// + /// [`ReadZeroSkipWrite`]: index::BoundsCheckPolicy::ReadZeroSkipWrite + fn put_default_constructible(&mut self) -> BackendResult { + let tab = back::INDENT; + writeln!(self.out, "struct DefaultConstructible {{")?; + writeln!(self.out, "{tab}template<typename T>")?; + writeln!(self.out, "{tab}operator T() && {{")?; + writeln!(self.out, "{tab}{tab}return T {{}};")?; + writeln!(self.out, "{tab}}}")?; + writeln!(self.out, "}};")?; + Ok(()) + } + + fn write_type_defs(&mut self, module: &crate::Module) -> BackendResult { + for (handle, ty) in module.types.iter() { + if !ty.needs_alias() { + continue; + } + let name = &self.names[&NameKey::Type(handle)]; + match ty.inner { + // Naga IR can pass around arrays by value, but Metal, following + // C++, performs an array-to-pointer conversion (C++ [conv.array]) + // on expressions of array type, so assigning the array by value + // isn't possible. However, Metal *does* assign structs by + // value. So in our Metal output, we wrap all array types in + // synthetic struct types: + // + // struct type1 { + // float inner[10] + // }; + // + // Then we carefully include `.inner` (`WRAPPED_ARRAY_FIELD`) in + // any expression that actually wants access to the array. + crate::TypeInner::Array { + base, + size, + stride: _, + } => { + let base_name = TypeContext { + handle: base, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + + match size { + crate::ArraySize::Constant(const_handle) => { + let coco = ConstantContext { + handle: const_handle, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + + writeln!(self.out, "struct {name} {{")?; + writeln!( + self.out, + "{}{} {}[{}];", + back::INDENT, + base_name, + WRAPPED_ARRAY_FIELD, + coco + )?; + writeln!(self.out, "}};")?; + } + crate::ArraySize::Dynamic => { + writeln!(self.out, "typedef {base_name} {name}[1];")?; + } + } + } + crate::TypeInner::Struct { + ref members, span, .. + } => { + writeln!(self.out, "struct {name} {{")?; + let mut last_offset = 0; + for (index, member) in members.iter().enumerate() { + // quick and dirty way to figure out if we need this... + if member.binding.is_none() && member.offset > last_offset { + self.struct_member_pads.insert((handle, index as u32)); + let pad = member.offset - last_offset; + writeln!(self.out, "{}char _pad{}[{}];", back::INDENT, index, pad)?; + } + let ty_inner = &module.types[member.ty].inner; + last_offset = member.offset + ty_inner.size(&module.constants); + + let member_name = &self.names[&NameKey::StructMember(handle, index as u32)]; + + // If the member should be packed (as is the case for a misaligned vec3) issue a packed vector + match should_pack_struct_member(members, span, index, module) { + Some(kind) => { + writeln!( + self.out, + "{}{}::packed_{}3 {};", + back::INDENT, + NAMESPACE, + kind.to_msl_name(), + member_name + )?; + } + None => { + let base_name = TypeContext { + handle: member.ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + writeln!( + self.out, + "{}{} {};", + back::INDENT, + base_name, + member_name + )?; + + // for 3-component vectors, add one component + if let crate::TypeInner::Vector { + size: crate::VectorSize::Tri, + kind: _, + width, + } = *ty_inner + { + last_offset += width as u32; + } + } + } + } + writeln!(self.out, "}};")?; + } + _ => { + let ty_name = TypeContext { + handle, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: true, + }; + writeln!(self.out, "typedef {ty_name} {name};")?; + } + } + } + Ok(()) + } + + fn write_scalar_constants(&mut self, module: &crate::Module) -> BackendResult { + for (handle, constant) in module.constants.iter() { + match constant.inner { + crate::ConstantInner::Scalar { + width: _, + ref value, + } if constant.name.is_some() => { + debug_assert!(constant.needs_alias()); + write!(self.out, "constexpr constant ")?; + match *value { + crate::ScalarValue::Sint(_) => { + write!(self.out, "int")?; + } + crate::ScalarValue::Uint(_) => { + write!(self.out, "unsigned")?; + } + crate::ScalarValue::Float(_) => { + write!(self.out, "float")?; + } + crate::ScalarValue::Bool(_) => { + write!(self.out, "bool")?; + } + } + let name = &self.names[&NameKey::Constant(handle)]; + let coco = ConstantContext { + handle, + arena: &module.constants, + names: &self.names, + first_time: true, + }; + writeln!(self.out, " {name} = {coco};")?; + } + _ => {} + } + } + Ok(()) + } + + fn write_composite_constants(&mut self, module: &crate::Module) -> BackendResult { + for (handle, constant) in module.constants.iter() { + match constant.inner { + crate::ConstantInner::Scalar { .. } => {} + crate::ConstantInner::Composite { ty, ref components } => { + debug_assert!(constant.needs_alias()); + let name = &self.names[&NameKey::Constant(handle)]; + let ty_name = TypeContext { + handle: ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + write!(self.out, "constant {ty_name} {name} = {{",)?; + for (i, &sub_handle) in components.iter().enumerate() { + // insert padding initialization, if needed + if self.struct_member_pads.contains(&(ty, i as u32)) { + write!(self.out, ", {{}}")?; + } + let separator = if i != 0 { ", " } else { "" }; + let coco = ConstantContext { + handle: sub_handle, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, "{separator}{coco}")?; + } + writeln!(self.out, "}};")?; + } + } + } + Ok(()) + } + + fn put_inline_sampler_properties( + &mut self, + level: back::Level, + sampler: &sm::InlineSampler, + ) -> BackendResult { + for (&letter, address) in ['s', 't', 'r'].iter().zip(sampler.address.iter()) { + writeln!( + self.out, + "{}{}::{}_address::{},", + level, + NAMESPACE, + letter, + address.as_str(), + )?; + } + writeln!( + self.out, + "{}{}::mag_filter::{},", + level, + NAMESPACE, + sampler.mag_filter.as_str(), + )?; + writeln!( + self.out, + "{}{}::min_filter::{},", + level, + NAMESPACE, + sampler.min_filter.as_str(), + )?; + if let Some(filter) = sampler.mip_filter { + writeln!( + self.out, + "{}{}::mip_filter::{},", + level, + NAMESPACE, + filter.as_str(), + )?; + } + // avoid setting it on platforms that don't support it + if sampler.border_color != sm::BorderColor::TransparentBlack { + writeln!( + self.out, + "{}{}::border_color::{},", + level, + NAMESPACE, + sampler.border_color.as_str(), + )?; + } + //TODO: I'm not able to feed this in a way that MSL likes: + //>error: use of undeclared identifier 'lod_clamp' + //>error: no member named 'max_anisotropy' in namespace 'metal' + if false { + if let Some(ref lod) = sampler.lod_clamp { + writeln!(self.out, "{}lod_clamp({},{}),", level, lod.start, lod.end,)?; + } + if let Some(aniso) = sampler.max_anisotropy { + writeln!(self.out, "{}max_anisotropy({}),", level, aniso.get(),)?; + } + } + if sampler.compare_func != sm::CompareFunc::Never { + writeln!( + self.out, + "{}{}::compare_func::{},", + level, + NAMESPACE, + sampler.compare_func.as_str(), + )?; + } + writeln!( + self.out, + "{}{}::coord::{}", + level, + NAMESPACE, + sampler.coord.as_str() + )?; + Ok(()) + } + + // Returns the array of mapped entry point names. + fn write_functions( + &mut self, + module: &crate::Module, + mod_info: &valid::ModuleInfo, + options: &Options, + pipeline_options: &PipelineOptions, + ) -> Result<TranslationInfo, Error> { + let mut pass_through_globals = Vec::new(); + for (fun_handle, fun) in module.functions.iter() { + log::trace!( + "function {:?}, handle {:?}", + fun.name.as_deref().unwrap_or("(anonymous)"), + fun_handle + ); + + let fun_info = &mod_info[fun_handle]; + pass_through_globals.clear(); + let mut supports_array_length = false; + for (handle, var) in module.global_variables.iter() { + if !fun_info[handle].is_empty() { + if var.space.needs_pass_through() { + pass_through_globals.push(handle); + } + supports_array_length |= needs_array_length(var.ty, &module.types); + } + } + + writeln!(self.out)?; + let fun_name = &self.names[&NameKey::Function(fun_handle)]; + match fun.result { + Some(ref result) => { + let ty_name = TypeContext { + handle: result.ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + write!(self.out, "{ty_name}")?; + } + None => { + write!(self.out, "void")?; + } + } + writeln!(self.out, " {fun_name}(")?; + + for (index, arg) in fun.arguments.iter().enumerate() { + let name = &self.names[&NameKey::FunctionArgument(fun_handle, index as u32)]; + let param_type_name = TypeContext { + handle: arg.ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + let separator = separate( + !pass_through_globals.is_empty() + || index + 1 != fun.arguments.len() + || supports_array_length, + ); + writeln!( + self.out, + "{}{} {}{}", + back::INDENT, + param_type_name, + name, + separator + )?; + } + for (index, &handle) in pass_through_globals.iter().enumerate() { + let tyvar = TypedGlobalVariable { + module, + names: &self.names, + handle, + usage: fun_info[handle], + binding: None, + reference: true, + }; + let separator = + separate(index + 1 != pass_through_globals.len() || supports_array_length); + write!(self.out, "{}", back::INDENT)?; + tyvar.try_fmt(&mut self.out)?; + writeln!(self.out, "{separator}")?; + } + + if supports_array_length { + writeln!( + self.out, + "{}constant _mslBufferSizes& _buffer_sizes", + back::INDENT + )?; + } + + writeln!(self.out, ") {{")?; + + for (local_handle, local) in fun.local_variables.iter() { + let ty_name = TypeContext { + handle: local.ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + let local_name = &self.names[&NameKey::FunctionLocal(fun_handle, local_handle)]; + write!(self.out, "{}{} {}", back::INDENT, ty_name, local_name)?; + match local.init { + Some(value) => { + let coco = ConstantContext { + handle: value, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, " = {coco}")?; + } + None => { + write!(self.out, " = {{}}")?; + } + }; + writeln!(self.out, ";")?; + } + + let guarded_indices = + index::find_checked_indexes(module, fun, fun_info, options.bounds_check_policies); + + let context = StatementContext { + expression: ExpressionContext { + function: fun, + origin: FunctionOrigin::Handle(fun_handle), + info: fun_info, + policies: options.bounds_check_policies, + guarded_indices, + module, + pipeline_options, + }, + mod_info, + result_struct: None, + }; + self.named_expressions.clear(); + self.update_expressions_to_bake(fun, fun_info, &context.expression); + self.put_block(back::Level(1), &fun.body, &context)?; + writeln!(self.out, "}}")?; + } + + let mut info = TranslationInfo { + entry_point_names: Vec::with_capacity(module.entry_points.len()), + }; + for (ep_index, ep) in module.entry_points.iter().enumerate() { + let fun = &ep.function; + let fun_info = mod_info.get_entry_point(ep_index); + let mut ep_error = None; + + log::trace!( + "entry point {:?}, index {:?}", + fun.name.as_deref().unwrap_or("(anonymous)"), + ep_index + ); + + // Is any global variable used by this entry point dynamically sized? + let supports_array_length = module + .global_variables + .iter() + .filter(|&(handle, _)| !fun_info[handle].is_empty()) + .any(|(_, var)| needs_array_length(var.ty, &module.types)); + + // skip this entry point if any global bindings are missing, + // or their types are incompatible. + if !options.fake_missing_bindings { + for (var_handle, var) in module.global_variables.iter() { + if fun_info[var_handle].is_empty() { + continue; + } + match var.space { + crate::AddressSpace::Uniform + | crate::AddressSpace::Storage { .. } + | crate::AddressSpace::Handle => { + let br = match var.binding { + Some(ref br) => br, + None => { + let var_name = var.name.clone().unwrap_or_default(); + ep_error = + Some(super::EntryPointError::MissingBinding(var_name)); + break; + } + }; + let target = options.get_resource_binding_target(ep, br); + let good = match target { + Some(target) => { + let binding_ty = match module.types[var.ty].inner { + crate::TypeInner::BindingArray { base, .. } => { + &module.types[base].inner + } + ref ty => ty, + }; + match *binding_ty { + crate::TypeInner::Image { .. } => target.texture.is_some(), + crate::TypeInner::Sampler { .. } => { + target.sampler.is_some() + } + _ => target.buffer.is_some(), + } + } + None => false, + }; + if !good { + ep_error = + Some(super::EntryPointError::MissingBindTarget(br.clone())); + break; + } + } + crate::AddressSpace::PushConstant => { + if let Err(e) = options.resolve_push_constants(ep) { + ep_error = Some(e); + break; + } + } + crate::AddressSpace::Function + | crate::AddressSpace::Private + | crate::AddressSpace::WorkGroup => {} + } + } + if supports_array_length { + if let Err(err) = options.resolve_sizes_buffer(ep) { + ep_error = Some(err); + } + } + } + + if let Some(err) = ep_error { + info.entry_point_names.push(Err(err)); + continue; + } + let fun_name = &self.names[&NameKey::EntryPoint(ep_index as _)]; + info.entry_point_names.push(Ok(fun_name.clone())); + + writeln!(self.out)?; + + let (em_str, in_mode, out_mode) = match ep.stage { + crate::ShaderStage::Vertex => ( + "vertex", + LocationMode::VertexInput, + LocationMode::VertexOutput, + ), + crate::ShaderStage::Fragment { .. } => ( + "fragment", + LocationMode::FragmentInput, + LocationMode::FragmentOutput, + ), + crate::ShaderStage::Compute { .. } => { + ("kernel", LocationMode::Uniform, LocationMode::Uniform) + } + }; + + // List all the Naga `EntryPoint`'s `Function`'s arguments, + // flattening structs into their members. In Metal, we will pass + // each of these values to the entry point as a separate argument— + // except for the varyings, handled next. + let mut flattened_arguments = Vec::new(); + for (arg_index, arg) in fun.arguments.iter().enumerate() { + match module.types[arg.ty].inner { + crate::TypeInner::Struct { ref members, .. } => { + for (member_index, member) in members.iter().enumerate() { + let member_index = member_index as u32; + flattened_arguments.push(( + NameKey::StructMember(arg.ty, member_index), + member.ty, + member.binding.as_ref(), + )); + } + } + _ => flattened_arguments.push(( + NameKey::EntryPointArgument(ep_index as _, arg_index as u32), + arg.ty, + arg.binding.as_ref(), + )), + } + } + + // Identify the varyings among the argument values, and emit a + // struct type named `<fun>Input` to hold them. + let stage_in_name = format!("{fun_name}Input"); + let varyings_member_name = self.namer.call("varyings"); + let mut has_varyings = false; + if !flattened_arguments.is_empty() { + writeln!(self.out, "struct {stage_in_name} {{")?; + for &(ref name_key, ty, binding) in flattened_arguments.iter() { + let binding = match binding { + Some(ref binding @ &crate::Binding::Location { .. }) => binding, + _ => continue, + }; + has_varyings = true; + let name = &self.names[name_key]; + let ty_name = TypeContext { + handle: ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + let resolved = options.resolve_local_binding(binding, in_mode)?; + write!(self.out, "{}{} {}", back::INDENT, ty_name, name)?; + resolved.try_fmt(&mut self.out)?; + writeln!(self.out, ";")?; + } + writeln!(self.out, "}};")?; + } + + // Define a struct type named for the return value, if any, named + // `<fun>Output`. + let stage_out_name = format!("{fun_name}Output"); + let result_member_name = self.namer.call("member"); + let result_type_name = match fun.result { + Some(ref result) => { + let mut result_members = Vec::new(); + if let crate::TypeInner::Struct { ref members, .. } = + module.types[result.ty].inner + { + for (member_index, member) in members.iter().enumerate() { + result_members.push(( + &self.names[&NameKey::StructMember(result.ty, member_index as u32)], + member.ty, + member.binding.as_ref(), + )); + } + } else { + result_members.push(( + &result_member_name, + result.ty, + result.binding.as_ref(), + )); + } + + writeln!(self.out, "struct {stage_out_name} {{")?; + let mut has_point_size = false; + for (name, ty, binding) in result_members { + let ty_name = TypeContext { + handle: ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: true, + }; + let binding = binding.ok_or(Error::Validation)?; + + if let crate::Binding::BuiltIn(crate::BuiltIn::PointSize) = *binding { + has_point_size = true; + if !pipeline_options.allow_point_size { + continue; + } + } + + let array_len = match module.types[ty].inner { + crate::TypeInner::Array { + size: crate::ArraySize::Constant(handle), + .. + } => module.constants[handle].to_array_length(), + _ => None, + }; + let resolved = options.resolve_local_binding(binding, out_mode)?; + write!(self.out, "{}{} {}", back::INDENT, ty_name, name)?; + if let Some(array_len) = array_len { + write!(self.out, " [{array_len}]")?; + } + resolved.try_fmt(&mut self.out)?; + writeln!(self.out, ";")?; + } + + if pipeline_options.allow_point_size + && ep.stage == crate::ShaderStage::Vertex + && !has_point_size + { + // inject the point size output last + writeln!( + self.out, + "{}float _point_size [[point_size]];", + back::INDENT + )?; + } + writeln!(self.out, "}};")?; + &stage_out_name + } + None => "void", + }; + + // Write the entry point function's name, and begin its argument list. + writeln!(self.out, "{em_str} {result_type_name} {fun_name}(")?; + let mut is_first_argument = true; + + // If we have produced a struct holding the `EntryPoint`'s + // `Function`'s arguments' varyings, pass that struct first. + if has_varyings { + writeln!( + self.out, + " {stage_in_name} {varyings_member_name} [[stage_in]]" + )?; + is_first_argument = false; + } + + let mut local_invocation_id = None; + + // Then pass the remaining arguments not included in the varyings + // struct. + // + // Since `Namer.reset` wasn't expecting struct members to be + // suddenly injected into the normal namespace like this, + // `self.names` doesn't keep them distinct from other variables. + // Generate fresh names for these arguments, and remember the + // mapping. + let mut flattened_member_names = FastHashMap::default(); + for &(ref name_key, ty, binding) in flattened_arguments.iter() { + let binding = match binding { + Some(binding @ &crate::Binding::BuiltIn { .. }) => binding, + _ => continue, + }; + let name = if let NameKey::StructMember(ty, index) = *name_key { + // We should always insert a fresh entry here, but use + // `or_insert` to get a reference to the `String` we just + // inserted. + flattened_member_names + .entry(NameKey::StructMember(ty, index)) + .or_insert_with(|| self.namer.call(&self.names[name_key])) + } else { + &self.names[name_key] + }; + + if binding == &crate::Binding::BuiltIn(crate::BuiltIn::LocalInvocationId) { + local_invocation_id = Some(name_key); + } + + let ty_name = TypeContext { + handle: ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + let resolved = options.resolve_local_binding(binding, in_mode)?; + let separator = if is_first_argument { + is_first_argument = false; + ' ' + } else { + ',' + }; + write!(self.out, "{separator} {ty_name} {name}")?; + resolved.try_fmt(&mut self.out)?; + writeln!(self.out)?; + } + + let need_workgroup_variables_initialization = + self.need_workgroup_variables_initialization(options, ep, module, fun_info); + + if need_workgroup_variables_initialization && local_invocation_id.is_none() { + let separator = if is_first_argument { + is_first_argument = false; + ' ' + } else { + ',' + }; + writeln!( + self.out, + "{separator} {NAMESPACE}::uint3 __local_invocation_id [[thread_position_in_threadgroup]]" + )?; + } + + // Those global variables used by this entry point and its callees + // get passed as arguments. `Private` globals are an exception, they + // don't outlive this invocation, so we declare them below as locals + // within the entry point. + for (handle, var) in module.global_variables.iter() { + let usage = fun_info[handle]; + if usage.is_empty() || var.space == crate::AddressSpace::Private { + continue; + } + // the resolves have already been checked for `!fake_missing_bindings` case + let resolved = match var.space { + crate::AddressSpace::PushConstant => options.resolve_push_constants(ep).ok(), + crate::AddressSpace::WorkGroup => None, + crate::AddressSpace::Storage { .. } if options.lang_version < (2, 0) => { + return Err(Error::UnsupportedAddressSpace(var.space)) + } + _ => options + .resolve_resource_binding(ep, var.binding.as_ref().unwrap()) + .ok(), + }; + if let Some(ref resolved) = resolved { + // Inline samplers are be defined in the EP body + if resolved.as_inline_sampler(options).is_some() { + continue; + } + } + + let tyvar = TypedGlobalVariable { + module, + names: &self.names, + handle, + usage, + binding: resolved.as_ref(), + reference: true, + }; + let separator = if is_first_argument { + is_first_argument = false; + ' ' + } else { + ',' + }; + write!(self.out, "{separator} ")?; + tyvar.try_fmt(&mut self.out)?; + if let Some(resolved) = resolved { + resolved.try_fmt(&mut self.out)?; + } + if let Some(value) = var.init { + let coco = ConstantContext { + handle: value, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, " = {coco}")?; + } + writeln!(self.out)?; + } + + // If this entry uses any variable-length arrays, their sizes are + // passed as a final struct-typed argument. + if supports_array_length { + // this is checked earlier + let resolved = options.resolve_sizes_buffer(ep).unwrap(); + let separator = if module.global_variables.is_empty() { + ' ' + } else { + ',' + }; + write!( + self.out, + "{separator} constant _mslBufferSizes& _buffer_sizes", + )?; + resolved.try_fmt(&mut self.out)?; + writeln!(self.out)?; + } + + // end of the entry point argument list + writeln!(self.out, ") {{")?; + + if need_workgroup_variables_initialization { + self.write_workgroup_variables_initialization( + module, + mod_info, + fun_info, + local_invocation_id, + )?; + } + + // Metal doesn't support private mutable variables outside of functions, + // so we put them here, just like the locals. + for (handle, var) in module.global_variables.iter() { + let usage = fun_info[handle]; + if usage.is_empty() { + continue; + } + if var.space == crate::AddressSpace::Private { + let tyvar = TypedGlobalVariable { + module, + names: &self.names, + handle, + usage, + binding: None, + reference: false, + }; + write!(self.out, "{}", back::INDENT)?; + tyvar.try_fmt(&mut self.out)?; + match var.init { + Some(value) => { + let coco = ConstantContext { + handle: value, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + writeln!(self.out, " = {coco};")?; + } + None => { + writeln!(self.out, " = {{}};")?; + } + }; + } else if let Some(ref binding) = var.binding { + // write an inline sampler + let resolved = options.resolve_resource_binding(ep, binding).unwrap(); + if let Some(sampler) = resolved.as_inline_sampler(options) { + let name = &self.names[&NameKey::GlobalVariable(handle)]; + writeln!( + self.out, + "{}constexpr {}::sampler {}(", + back::INDENT, + NAMESPACE, + name + )?; + self.put_inline_sampler_properties(back::Level(2), sampler)?; + writeln!(self.out, "{});", back::INDENT)?; + } + } + } + + // Now take the arguments that we gathered into structs, and the + // structs that we flattened into arguments, and emit local + // variables with initializers that put everything back the way the + // body code expects. + // + // If we had to generate fresh names for struct members passed as + // arguments, be sure to use those names when rebuilding the struct. + // + // "Each day, I change some zeros to ones, and some ones to zeros. + // The rest, I leave alone." + for (arg_index, arg) in fun.arguments.iter().enumerate() { + let arg_name = + &self.names[&NameKey::EntryPointArgument(ep_index as _, arg_index as u32)]; + match module.types[arg.ty].inner { + crate::TypeInner::Struct { ref members, .. } => { + let struct_name = &self.names[&NameKey::Type(arg.ty)]; + write!( + self.out, + "{}const {} {} = {{ ", + back::INDENT, + struct_name, + arg_name + )?; + for (member_index, member) in members.iter().enumerate() { + let key = NameKey::StructMember(arg.ty, member_index as u32); + // If it's not in the varying struct, then we should + // have passed it as its own argument and assigned + // it a new name. + let name = match member.binding { + Some(crate::Binding::BuiltIn { .. }) => { + &flattened_member_names[&key] + } + _ => &self.names[&key], + }; + if member_index != 0 { + write!(self.out, ", ")?; + } + if let Some(crate::Binding::Location { .. }) = member.binding { + write!(self.out, "{varyings_member_name}.")?; + } + write!(self.out, "{name}")?; + } + writeln!(self.out, " }};")?; + } + _ => { + if let Some(crate::Binding::Location { .. }) = arg.binding { + writeln!( + self.out, + "{}const auto {} = {}.{};", + back::INDENT, + arg_name, + varyings_member_name, + arg_name + )?; + } + } + } + } + + // Finally, declare all the local variables that we need + //TODO: we can postpone this till the relevant expressions are emitted + for (local_handle, local) in fun.local_variables.iter() { + let name = &self.names[&NameKey::EntryPointLocal(ep_index as _, local_handle)]; + let ty_name = TypeContext { + handle: local.ty, + module, + names: &self.names, + access: crate::StorageAccess::empty(), + binding: None, + first_time: false, + }; + write!(self.out, "{}{} {}", back::INDENT, ty_name, name)?; + match local.init { + Some(value) => { + let coco = ConstantContext { + handle: value, + arena: &module.constants, + names: &self.names, + first_time: false, + }; + write!(self.out, " = {coco}")?; + } + None => { + write!(self.out, " = {{}}")?; + } + }; + writeln!(self.out, ";")?; + } + + let guarded_indices = + index::find_checked_indexes(module, fun, fun_info, options.bounds_check_policies); + + let context = StatementContext { + expression: ExpressionContext { + function: fun, + origin: FunctionOrigin::EntryPoint(ep_index as _), + info: fun_info, + policies: options.bounds_check_policies, + guarded_indices, + module, + pipeline_options, + }, + mod_info, + result_struct: Some(&stage_out_name), + }; + self.named_expressions.clear(); + self.update_expressions_to_bake(fun, fun_info, &context.expression); + self.put_block(back::Level(1), &fun.body, &context)?; + writeln!(self.out, "}}")?; + if ep_index + 1 != module.entry_points.len() { + writeln!(self.out)?; + } + } + + Ok(info) + } + + fn write_barrier(&mut self, flags: crate::Barrier, level: back::Level) -> BackendResult { + // Note: OR-ring bitflags requires `__HAVE_MEMFLAG_OPERATORS__`, + // so we try to avoid it here. + if flags.is_empty() { + writeln!( + self.out, + "{level}{NAMESPACE}::threadgroup_barrier({NAMESPACE}::mem_flags::mem_none);", + )?; + } + if flags.contains(crate::Barrier::STORAGE) { + writeln!( + self.out, + "{level}{NAMESPACE}::threadgroup_barrier({NAMESPACE}::mem_flags::mem_device);", + )?; + } + if flags.contains(crate::Barrier::WORK_GROUP) { + writeln!( + self.out, + "{level}{NAMESPACE}::threadgroup_barrier({NAMESPACE}::mem_flags::mem_threadgroup);", + )?; + } + Ok(()) + } +} + +/// Initializing workgroup variables is more tricky for Metal because we have to deal +/// with atomics at the type-level (which don't have a copy constructor). +mod workgroup_mem_init { + use crate::EntryPoint; + + use super::*; + + enum Access { + GlobalVariable(Handle<crate::GlobalVariable>), + StructMember(Handle<crate::Type>, u32), + Array(usize), + } + + impl Access { + fn write<W: Write>( + &self, + writer: &mut W, + names: &FastHashMap<NameKey, String>, + ) -> Result<(), core::fmt::Error> { + match *self { + Access::GlobalVariable(handle) => { + write!(writer, "{}", &names[&NameKey::GlobalVariable(handle)]) + } + Access::StructMember(handle, index) => { + write!(writer, ".{}", &names[&NameKey::StructMember(handle, index)]) + } + Access::Array(depth) => write!(writer, ".{WRAPPED_ARRAY_FIELD}[__i{depth}]"), + } + } + } + + struct AccessStack { + stack: Vec<Access>, + array_depth: usize, + } + + impl AccessStack { + const fn new() -> Self { + Self { + stack: Vec::new(), + array_depth: 0, + } + } + + fn enter_array<R>(&mut self, cb: impl FnOnce(&mut Self, usize) -> R) -> R { + let array_depth = self.array_depth; + self.stack.push(Access::Array(array_depth)); + self.array_depth += 1; + let res = cb(self, array_depth); + self.stack.pop(); + self.array_depth -= 1; + res + } + + fn enter<R>(&mut self, new: Access, cb: impl FnOnce(&mut Self) -> R) -> R { + self.stack.push(new); + let res = cb(self); + self.stack.pop(); + res + } + + fn write<W: Write>( + &self, + writer: &mut W, + names: &FastHashMap<NameKey, String>, + ) -> Result<(), core::fmt::Error> { + for next in self.stack.iter() { + next.write(writer, names)?; + } + Ok(()) + } + } + + impl<W: Write> Writer<W> { + pub(super) fn need_workgroup_variables_initialization( + &mut self, + options: &Options, + ep: &EntryPoint, + module: &crate::Module, + fun_info: &valid::FunctionInfo, + ) -> bool { + options.zero_initialize_workgroup_memory + && ep.stage == crate::ShaderStage::Compute + && module.global_variables.iter().any(|(handle, var)| { + !fun_info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup + }) + } + + pub(super) fn write_workgroup_variables_initialization( + &mut self, + module: &crate::Module, + module_info: &valid::ModuleInfo, + fun_info: &valid::FunctionInfo, + local_invocation_id: Option<&NameKey>, + ) -> BackendResult { + let level = back::Level(1); + + writeln!( + self.out, + "{}if ({}::all({} == {}::uint3(0u))) {{", + level, + NAMESPACE, + local_invocation_id + .map(|name_key| self.names[name_key].as_str()) + .unwrap_or("__local_invocation_id"), + NAMESPACE, + )?; + + let mut access_stack = AccessStack::new(); + + let vars = module.global_variables.iter().filter(|&(handle, var)| { + !fun_info[handle].is_empty() && var.space == crate::AddressSpace::WorkGroup + }); + + for (handle, var) in vars { + access_stack.enter(Access::GlobalVariable(handle), |access_stack| { + self.write_workgroup_variable_initialization( + module, + module_info, + var.ty, + access_stack, + level.next(), + ) + })?; + } + + writeln!(self.out, "{level}}}")?; + self.write_barrier(crate::Barrier::WORK_GROUP, level) + } + + fn write_workgroup_variable_initialization( + &mut self, + module: &crate::Module, + module_info: &valid::ModuleInfo, + ty: Handle<crate::Type>, + access_stack: &mut AccessStack, + level: back::Level, + ) -> BackendResult { + if module_info[ty].contains(valid::TypeFlags::CONSTRUCTIBLE) { + write!(self.out, "{level}")?; + access_stack.write(&mut self.out, &self.names)?; + writeln!(self.out, " = {{}};")?; + } else { + match module.types[ty].inner { + crate::TypeInner::Atomic { .. } => { + write!( + self.out, + "{level}{NAMESPACE}::atomic_store_explicit({ATOMIC_REFERENCE}" + )?; + access_stack.write(&mut self.out, &self.names)?; + writeln!(self.out, ", 0, {NAMESPACE}::memory_order_relaxed);")?; + } + crate::TypeInner::Array { base, size, .. } => { + let count = match size.to_indexable_length(module).expect("Bad array size") + { + proc::IndexableLength::Known(count) => count, + proc::IndexableLength::Dynamic => unreachable!(), + }; + + access_stack.enter_array(|access_stack, array_depth| { + writeln!( + self.out, + "{level}for (int __i{array_depth} = 0; __i{array_depth} < {count}; __i{array_depth}++) {{" + )?; + self.write_workgroup_variable_initialization( + module, + module_info, + base, + access_stack, + level.next(), + )?; + writeln!(self.out, "{level}}}")?; + BackendResult::Ok(()) + })?; + } + crate::TypeInner::Struct { ref members, .. } => { + for (index, member) in members.iter().enumerate() { + access_stack.enter( + Access::StructMember(ty, index as u32), + |access_stack| { + self.write_workgroup_variable_initialization( + module, + module_info, + member.ty, + access_stack, + level, + ) + }, + )?; + } + } + _ => unreachable!(), + } + } + + Ok(()) + } + } +} + +#[test] +fn test_stack_size() { + use crate::valid::{Capabilities, ValidationFlags}; + // create a module with at least one expression nested + let mut module = crate::Module::default(); + let constant = module.constants.append( + crate::Constant { + name: None, + specialization: None, + inner: crate::ConstantInner::Scalar { + value: crate::ScalarValue::Float(1.0), + width: 4, + }, + }, + Default::default(), + ); + let mut fun = crate::Function::default(); + let const_expr = fun + .expressions + .append(crate::Expression::Constant(constant), Default::default()); + let nested_expr = fun.expressions.append( + crate::Expression::Unary { + op: crate::UnaryOperator::Negate, + expr: const_expr, + }, + Default::default(), + ); + fun.body.push( + crate::Statement::Emit(fun.expressions.range_from(1)), + Default::default(), + ); + fun.body.push( + crate::Statement::If { + condition: nested_expr, + accept: crate::Block::new(), + reject: crate::Block::new(), + }, + Default::default(), + ); + let _ = module.functions.append(fun, Default::default()); + // analyse the module + let info = crate::valid::Validator::new(ValidationFlags::empty(), Capabilities::empty()) + .validate(&module) + .unwrap(); + // process the module + let mut writer = Writer::new(String::new()); + writer + .write(&module, &info, &Default::default(), &Default::default()) + .unwrap(); + + { + // check expression stack + let mut addresses_start = usize::MAX; + let mut addresses_end = 0usize; + for pointer in writer.put_expression_stack_pointers { + addresses_start = addresses_start.min(pointer as usize); + addresses_end = addresses_end.max(pointer as usize); + } + let stack_size = addresses_end - addresses_start; + // check the size (in debug only) + // last observed macOS value: 20528 (CI) + if !(11000..=25000).contains(&stack_size) { + panic!("`put_expression` stack size {stack_size} has changed!"); + } + } + + { + // check block stack + let mut addresses_start = usize::MAX; + let mut addresses_end = 0usize; + for pointer in writer.put_block_stack_pointers { + addresses_start = addresses_start.min(pointer as usize); + addresses_end = addresses_end.max(pointer as usize); + } + let stack_size = addresses_end - addresses_start; + // check the size (in debug only) + // last observed macOS value: 19152 (CI) + if !(9000..=20000).contains(&stack_size) { + panic!("`put_block` stack size {stack_size} has changed!"); + } + } +} |