summaryrefslogtreecommitdiffstats
path: root/third_party/rust/num-integer
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/num-integer
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-integer')
-rw-r--r--third_party/rust/num-integer/.cargo-checksum.json1
-rw-r--r--third_party/rust/num-integer/Cargo.toml51
-rw-r--r--third_party/rust/num-integer/LICENSE-APACHE201
-rw-r--r--third_party/rust/num-integer/LICENSE-MIT25
-rw-r--r--third_party/rust/num-integer/README.md64
-rw-r--r--third_party/rust/num-integer/RELEASES.md112
-rw-r--r--third_party/rust/num-integer/benches/average.rs414
-rw-r--r--third_party/rust/num-integer/benches/gcd.rs176
-rw-r--r--third_party/rust/num-integer/benches/roots.rs170
-rw-r--r--third_party/rust/num-integer/build.rs13
-rw-r--r--third_party/rust/num-integer/src/average.rs78
-rw-r--r--third_party/rust/num-integer/src/lib.rs1386
-rw-r--r--third_party/rust/num-integer/src/roots.rs391
-rw-r--r--third_party/rust/num-integer/tests/average.rs100
-rw-r--r--third_party/rust/num-integer/tests/roots.rs272
15 files changed, 3454 insertions, 0 deletions
diff --git a/third_party/rust/num-integer/.cargo-checksum.json b/third_party/rust/num-integer/.cargo-checksum.json
new file mode 100644
index 0000000000..52b0e246de
--- /dev/null
+++ b/third_party/rust/num-integer/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"01a1f6e6771981ddeaf682be79918c45a88d032d887f188fdcb1ee7eedcf63a6","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"68f533703554b9130ea902776bd9eb20d1a2d32b213ebadebcd49ed0f1ef9728","RELEASES.md":"21252a72a308b4dfff190bc4b67d95f2be968fab5d7ddb58cd5cfbcdab8c5adf","benches/average.rs":"94ceeb7423bcd18ab0476bc3499505ce12d9552e53fa959e50975d71300f8404","benches/gcd.rs":"9b5c0ae8ccd6c7fc8f8384fb351d10cfdd0be5fbea9365f9ea925d8915b015bf","benches/roots.rs":"79b4ab2d8fe7bbf43fe65314d2e1bc206165bc4cb34b3ceaa899f9ea7af31c09","build.rs":"575b157527243fe355a7c8d7d874a1f790c3fb0177beba9032076a7803c5b9dd","src/average.rs":"a66cf6a49f893e60697c17b2540258e69daa15ab97d8d444c6f2e8cac2f01ae9","src/lib.rs":"b77bd1a04555b180da9661d98d69fb28eb59a02f02abbaaa332c2b27c4e753c9","src/roots.rs":"2a9b908bd3666b5cffc58c1b37d329e46ed02f71ad6d5deea1e8440c10660e1a","tests/average.rs":"5f26a31be042626e9af66f7b751798621561fa090da48b1ec5ab63e388288a91","tests/roots.rs":"a0caa4142899ec8cb806a7a0d3410c39d50de97cceadc4c2ceca707be91b1ddd"},"package":"225d3389fb3509a24c93f5c29eb6bde2586b98d9f016636dff58d7c6f7569cd9"} \ No newline at end of file
diff --git a/third_party/rust/num-integer/Cargo.toml b/third_party/rust/num-integer/Cargo.toml
new file mode 100644
index 0000000000..51a1a3e2f8
--- /dev/null
+++ b/third_party/rust/num-integer/Cargo.toml
@@ -0,0 +1,51 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+name = "num-integer"
+version = "0.1.45"
+authors = ["The Rust Project Developers"]
+build = "build.rs"
+exclude = [
+ "/bors.toml",
+ "/ci/*",
+ "/.github/*",
+]
+description = "Integer traits and functions"
+homepage = "https://github.com/rust-num/num-integer"
+documentation = "https://docs.rs/num-integer"
+readme = "README.md"
+keywords = [
+ "mathematics",
+ "numerics",
+]
+categories = [
+ "algorithms",
+ "science",
+ "no-std",
+]
+license = "MIT OR Apache-2.0"
+repository = "https://github.com/rust-num/num-integer"
+
+[package.metadata.docs.rs]
+features = ["std"]
+
+[dependencies.num-traits]
+version = "0.2.11"
+default-features = false
+
+[build-dependencies.autocfg]
+version = "1"
+
+[features]
+default = ["std"]
+i128 = ["num-traits/i128"]
+std = ["num-traits/std"]
diff --git a/third_party/rust/num-integer/LICENSE-APACHE b/third_party/rust/num-integer/LICENSE-APACHE
new file mode 100644
index 0000000000..16fe87b06e
--- /dev/null
+++ b/third_party/rust/num-integer/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/num-integer/LICENSE-MIT b/third_party/rust/num-integer/LICENSE-MIT
new file mode 100644
index 0000000000..39d4bdb5ac
--- /dev/null
+++ b/third_party/rust/num-integer/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/num-integer/README.md b/third_party/rust/num-integer/README.md
new file mode 100644
index 0000000000..5f638cd0f4
--- /dev/null
+++ b/third_party/rust/num-integer/README.md
@@ -0,0 +1,64 @@
+# num-integer
+
+[![crate](https://img.shields.io/crates/v/num-integer.svg)](https://crates.io/crates/num-integer)
+[![documentation](https://docs.rs/num-integer/badge.svg)](https://docs.rs/num-integer)
+[![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html)
+[![build status](https://github.com/rust-num/num-integer/workflows/master/badge.svg)](https://github.com/rust-num/num-integer/actions)
+
+`Integer` trait and functions for Rust.
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+num-integer = "0.1"
+```
+
+and this to your crate root:
+
+```rust
+extern crate num_integer;
+```
+
+## Features
+
+This crate can be used without the standard library (`#![no_std]`) by disabling
+the default `std` feature. Use this in `Cargo.toml`:
+
+```toml
+[dependencies.num-integer]
+version = "0.1.36"
+default-features = false
+```
+
+There is no functional difference with and without `std` at this time, but
+there may be in the future.
+
+Implementations for `i128` and `u128` are only available with Rust 1.26 and
+later. The build script automatically detects this, but you can make it
+mandatory by enabling the `i128` crate feature.
+
+## Releases
+
+Release notes are available in [RELEASES.md](RELEASES.md).
+
+## Compatibility
+
+The `num-integer` crate is tested for rustc 1.8 and greater.
+
+## License
+
+Licensed under either of
+
+ * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
+ * [MIT license](http://opensource.org/licenses/MIT)
+
+at your option.
+
+### Contribution
+
+Unless you explicitly state otherwise, any contribution intentionally submitted
+for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
+dual licensed as above, without any additional terms or conditions.
diff --git a/third_party/rust/num-integer/RELEASES.md b/third_party/rust/num-integer/RELEASES.md
new file mode 100644
index 0000000000..05c649b91c
--- /dev/null
+++ b/third_party/rust/num-integer/RELEASES.md
@@ -0,0 +1,112 @@
+# Release 0.1.45 (2022-04-29)
+
+- [`Integer::next_multiple_of` and `prev_multiple_of` no longer overflow -1][45].
+- [`Integer::is_multiple_of` now handles a 0 argument without panicking][47]
+ for primitive integers.
+- [`ExtendedGcd` no longer has any private fields][46], making it possible for
+ external implementations to customize `Integer::extended_gcd`.
+
+**Contributors**: @ciphergoth, @cuviper, @tspiteri, @WizardOfMenlo
+
+[45]: https://github.com/rust-num/num-integer/pull/45
+[46]: https://github.com/rust-num/num-integer/pull/46
+[47]: https://github.com/rust-num/num-integer/pull/47
+
+# Release 0.1.44 (2020-10-29)
+
+- [The "i128" feature now bypasses compiler probing][35]. The build script
+ used to probe anyway and panic if requested support wasn't found, but
+ sometimes this ran into bad corner cases with `autocfg`.
+
+**Contributors**: @cuviper
+
+[35]: https://github.com/rust-num/num-integer/pull/35
+
+# Release 0.1.43 (2020-06-11)
+
+- [The new `Average` trait][31] computes fast integer averages, rounded up or
+ down, without any risk of overflow.
+
+**Contributors**: @althonos, @cuviper
+
+[31]: https://github.com/rust-num/num-integer/pull/31
+
+# Release 0.1.42 (2020-01-09)
+
+- [Updated the `autocfg` build dependency to 1.0][29].
+
+**Contributors**: @cuviper, @dingelish
+
+[29]: https://github.com/rust-num/num-integer/pull/29
+
+# Release 0.1.41 (2019-05-21)
+
+- [Fixed feature detection on `no_std` targets][25].
+
+**Contributors**: @cuviper
+
+[25]: https://github.com/rust-num/num-integer/pull/25
+
+# Release 0.1.40 (2019-05-20)
+
+- [Optimized primitive `gcd` by avoiding memory swaps][11].
+- [Fixed `lcm(0, 0)` to return `0`, rather than panicking][18].
+- [Added `Integer::div_ceil`, `next_multiple_of`, and `prev_multiple_of`][16].
+- [Added `Integer::gcd_lcm`, `extended_gcd`, and `extended_gcd_lcm`][19].
+
+**Contributors**: @cuviper, @ignatenkobrain, @smarnach, @strake
+
+[11]: https://github.com/rust-num/num-integer/pull/11
+[16]: https://github.com/rust-num/num-integer/pull/16
+[18]: https://github.com/rust-num/num-integer/pull/18
+[19]: https://github.com/rust-num/num-integer/pull/19
+
+# Release 0.1.39 (2018-06-20)
+
+- [The new `Roots` trait provides `sqrt`, `cbrt`, and `nth_root` methods][9],
+ calculating an `Integer`'s principal roots rounded toward zero.
+
+**Contributors**: @cuviper
+
+[9]: https://github.com/rust-num/num-integer/pull/9
+
+# Release 0.1.38 (2018-05-11)
+
+- [Support for 128-bit integers is now automatically detected and enabled.][8]
+ Setting the `i128` crate feature now causes the build script to panic if such
+ support is not detected.
+
+**Contributors**: @cuviper
+
+[8]: https://github.com/rust-num/num-integer/pull/8
+
+# Release 0.1.37 (2018-05-10)
+
+- [`Integer` is now implemented for `i128` and `u128`][7] starting with Rust
+ 1.26, enabled by the new `i128` crate feature.
+
+**Contributors**: @cuviper
+
+[7]: https://github.com/rust-num/num-integer/pull/7
+
+# Release 0.1.36 (2018-02-06)
+
+- [num-integer now has its own source repository][num-356] at [rust-num/num-integer][home].
+- [Corrected the argument order documented in `Integer::is_multiple_of`][1]
+- [There is now a `std` feature][5], enabled by default, along with the implication
+ that building *without* this feature makes this a `#[no_std]` crate.
+ - There is no difference in the API at this time.
+
+**Contributors**: @cuviper, @jaystrictor
+
+[home]: https://github.com/rust-num/num-integer
+[num-356]: https://github.com/rust-num/num/pull/356
+[1]: https://github.com/rust-num/num-integer/pull/1
+[5]: https://github.com/rust-num/num-integer/pull/5
+
+
+# Prior releases
+
+No prior release notes were kept. Thanks all the same to the many
+contributors that have made this crate what it is!
+
diff --git a/third_party/rust/num-integer/benches/average.rs b/third_party/rust/num-integer/benches/average.rs
new file mode 100644
index 0000000000..649078c39d
--- /dev/null
+++ b/third_party/rust/num-integer/benches/average.rs
@@ -0,0 +1,414 @@
+//! Benchmark sqrt and cbrt
+
+#![feature(test)]
+
+extern crate num_integer;
+extern crate num_traits;
+extern crate test;
+
+use num_integer::Integer;
+use num_traits::{AsPrimitive, PrimInt, WrappingAdd, WrappingMul};
+use std::cmp::{max, min};
+use std::fmt::Debug;
+use test::{black_box, Bencher};
+
+// --- Utilities for RNG ----------------------------------------------------
+
+trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
+
+impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
+
+// Simple PRNG so we don't have to worry about rand compatibility
+fn lcg<T>(x: T) -> T
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+{
+ // LCG parameters from Numerical Recipes
+ // (but we're applying it to arbitrary sizes)
+ const LCG_A: u32 = 1664525;
+ const LCG_C: u32 = 1013904223;
+ x.wrapping_mul(&LCG_A.as_()).wrapping_add(&LCG_C.as_())
+}
+
+// --- Alt. Implementations -------------------------------------------------
+
+trait NaiveAverage {
+ fn naive_average_ceil(&self, other: &Self) -> Self;
+ fn naive_average_floor(&self, other: &Self) -> Self;
+}
+
+trait UncheckedAverage {
+ fn unchecked_average_ceil(&self, other: &Self) -> Self;
+ fn unchecked_average_floor(&self, other: &Self) -> Self;
+}
+
+trait ModuloAverage {
+ fn modulo_average_ceil(&self, other: &Self) -> Self;
+ fn modulo_average_floor(&self, other: &Self) -> Self;
+}
+
+macro_rules! naive_average {
+ ($T:ident) => {
+ impl super::NaiveAverage for $T {
+ fn naive_average_floor(&self, other: &$T) -> $T {
+ match self.checked_add(*other) {
+ Some(z) => Integer::div_floor(&z, &2),
+ None => {
+ if self > other {
+ let diff = self - other;
+ other + Integer::div_floor(&diff, &2)
+ } else {
+ let diff = other - self;
+ self + Integer::div_floor(&diff, &2)
+ }
+ }
+ }
+ }
+ fn naive_average_ceil(&self, other: &$T) -> $T {
+ match self.checked_add(*other) {
+ Some(z) => Integer::div_ceil(&z, &2),
+ None => {
+ if self > other {
+ let diff = self - other;
+ self - Integer::div_floor(&diff, &2)
+ } else {
+ let diff = other - self;
+ other - Integer::div_floor(&diff, &2)
+ }
+ }
+ }
+ }
+ }
+ };
+}
+
+macro_rules! unchecked_average {
+ ($T:ident) => {
+ impl super::UncheckedAverage for $T {
+ fn unchecked_average_floor(&self, other: &$T) -> $T {
+ self.wrapping_add(*other) / 2
+ }
+ fn unchecked_average_ceil(&self, other: &$T) -> $T {
+ (self.wrapping_add(*other) / 2).wrapping_add(1)
+ }
+ }
+ };
+}
+
+macro_rules! modulo_average {
+ ($T:ident) => {
+ impl super::ModuloAverage for $T {
+ fn modulo_average_ceil(&self, other: &$T) -> $T {
+ let (q1, r1) = self.div_mod_floor(&2);
+ let (q2, r2) = other.div_mod_floor(&2);
+ q1 + q2 + (r1 | r2)
+ }
+ fn modulo_average_floor(&self, other: &$T) -> $T {
+ let (q1, r1) = self.div_mod_floor(&2);
+ let (q2, r2) = other.div_mod_floor(&2);
+ q1 + q2 + (r1 * r2)
+ }
+ }
+ };
+}
+
+// --- Bench functions ------------------------------------------------------
+
+fn bench_unchecked<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
+where
+ T: Integer + Debug + Copy,
+ F: Fn(&T, &T) -> T,
+{
+ b.iter(|| {
+ for (x, y) in v {
+ black_box(f(x, y));
+ }
+ });
+}
+
+fn bench_ceil<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
+where
+ T: Integer + Debug + Copy,
+ F: Fn(&T, &T) -> T,
+{
+ for &(i, j) in v {
+ let rt = f(&i, &j);
+ let (a, b) = (min(i, j), max(i, j));
+ // if both number are the same sign, check rt is in the middle
+ if (a < T::zero()) == (b < T::zero()) {
+ if (b - a).is_even() {
+ assert_eq!(rt - a, b - rt);
+ } else {
+ assert_eq!(rt - a, b - rt + T::one());
+ }
+ // if both number have a different sign,
+ } else {
+ if (a + b).is_even() {
+ assert_eq!(rt, (a + b) / (T::one() + T::one()))
+ } else {
+ assert_eq!(rt, (a + b + T::one()) / (T::one() + T::one()))
+ }
+ }
+ }
+ bench_unchecked(b, v, f);
+}
+
+fn bench_floor<T, F>(b: &mut Bencher, v: &[(T, T)], f: F)
+where
+ T: Integer + Debug + Copy,
+ F: Fn(&T, &T) -> T,
+{
+ for &(i, j) in v {
+ let rt = f(&i, &j);
+ let (a, b) = (min(i, j), max(i, j));
+ // if both number are the same sign, check rt is in the middle
+ if (a < T::zero()) == (b < T::zero()) {
+ if (b - a).is_even() {
+ assert_eq!(rt - a, b - rt);
+ } else {
+ assert_eq!(rt - a + T::one(), b - rt);
+ }
+ // if both number have a different sign,
+ } else {
+ if (a + b).is_even() {
+ assert_eq!(rt, (a + b) / (T::one() + T::one()))
+ } else {
+ assert_eq!(rt, (a + b - T::one()) / (T::one() + T::one()))
+ }
+ }
+ }
+ bench_unchecked(b, v, f);
+}
+
+// --- Bench implementation -------------------------------------------------
+
+macro_rules! bench_average {
+ ($($T:ident),*) => {$(
+ mod $T {
+ use test::Bencher;
+ use num_integer::{Average, Integer};
+ use super::{UncheckedAverage, NaiveAverage, ModuloAverage};
+ use super::{bench_ceil, bench_floor, bench_unchecked};
+
+ naive_average!($T);
+ unchecked_average!($T);
+ modulo_average!($T);
+
+ const SIZE: $T = 30;
+
+ fn overflowing() -> Vec<($T, $T)> {
+ (($T::max_value()-SIZE)..$T::max_value())
+ .flat_map(|x| -> Vec<_> {
+ (($T::max_value()-100)..($T::max_value()-100+SIZE))
+ .map(|y| (x, y))
+ .collect()
+ })
+ .collect()
+ }
+
+ fn small() -> Vec<($T, $T)> {
+ (0..SIZE)
+ .flat_map(|x| -> Vec<_> {(0..SIZE).map(|y| (x, y)).collect()})
+ .collect()
+ }
+
+ fn rand() -> Vec<($T, $T)> {
+ small()
+ .into_iter()
+ .map(|(x, y)| (super::lcg(x), super::lcg(y)))
+ .collect()
+ }
+
+ mod ceil {
+
+ use super::*;
+
+ mod small {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = small();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = small();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = small();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = small();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
+ }
+ }
+
+ mod overflowing {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = overflowing();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = overflowing();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = overflowing();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = overflowing();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
+ }
+ }
+
+ mod rand {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = rand();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.average_ceil(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = rand();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.naive_average_ceil(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = rand();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_ceil(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = rand();
+ bench_ceil(b, &v, |x: &$T, y: &$T| x.modulo_average_ceil(y));
+ }
+ }
+
+ }
+
+ mod floor {
+
+ use super::*;
+
+ mod small {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = small();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = small();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = small();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = small();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
+ }
+ }
+
+ mod overflowing {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = overflowing();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = overflowing();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = overflowing();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = overflowing();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
+ }
+ }
+
+ mod rand {
+
+ use super::*;
+
+ #[bench]
+ fn optimized(b: &mut Bencher) {
+ let v = rand();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.average_floor(y));
+ }
+
+ #[bench]
+ fn naive(b: &mut Bencher) {
+ let v = rand();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.naive_average_floor(y));
+ }
+
+ #[bench]
+ fn unchecked(b: &mut Bencher) {
+ let v = rand();
+ bench_unchecked(b, &v, |x: &$T, y: &$T| x.unchecked_average_floor(y));
+ }
+
+ #[bench]
+ fn modulo(b: &mut Bencher) {
+ let v = rand();
+ bench_floor(b, &v, |x: &$T, y: &$T| x.modulo_average_floor(y));
+ }
+ }
+
+ }
+
+ }
+ )*}
+}
+
+bench_average!(i8, i16, i32, i64, i128, isize);
+bench_average!(u8, u16, u32, u64, u128, usize);
diff --git a/third_party/rust/num-integer/benches/gcd.rs b/third_party/rust/num-integer/benches/gcd.rs
new file mode 100644
index 0000000000..082d5ee09d
--- /dev/null
+++ b/third_party/rust/num-integer/benches/gcd.rs
@@ -0,0 +1,176 @@
+//! Benchmark comparing the current GCD implemtation against an older one.
+
+#![feature(test)]
+
+extern crate num_integer;
+extern crate num_traits;
+extern crate test;
+
+use num_integer::Integer;
+use num_traits::{AsPrimitive, Bounded, Signed};
+use test::{black_box, Bencher};
+
+trait GcdOld: Integer {
+ fn gcd_old(&self, other: &Self) -> Self;
+}
+
+macro_rules! impl_gcd_old_for_isize {
+ ($T:ty) => {
+ impl GcdOld for $T {
+ /// Calculates the Greatest Common Divisor (GCD) of the number and
+ /// `other`. The result is always positive.
+ #[inline]
+ fn gcd_old(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return (m | n).abs();
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // The algorithm needs positive numbers, but the minimum value
+ // can't be represented as a positive one.
+ // It's also a power of two, so the gcd can be
+ // calculated by bitshifting in that case
+
+ // Assuming two's complement, the number created by the shift
+ // is positive for all numbers except gcd = abs(min value)
+ // The call to .abs() causes a panic in debug mode
+ if m == Self::min_value() || n == Self::min_value() {
+ return (1 << shift).abs();
+ }
+
+ // guaranteed to be positive now, rest like unsigned algorithm
+ m = m.abs();
+ n = n.abs();
+
+ // divide n and m by 2 until odd
+ // m inside loop
+ n >>= n.trailing_zeros();
+
+ while m != 0 {
+ m >>= m.trailing_zeros();
+ if n > m {
+ std::mem::swap(&mut n, &mut m)
+ }
+ m -= n;
+ }
+
+ n << shift
+ }
+ }
+ };
+}
+
+impl_gcd_old_for_isize!(i8);
+impl_gcd_old_for_isize!(i16);
+impl_gcd_old_for_isize!(i32);
+impl_gcd_old_for_isize!(i64);
+impl_gcd_old_for_isize!(isize);
+impl_gcd_old_for_isize!(i128);
+
+macro_rules! impl_gcd_old_for_usize {
+ ($T:ty) => {
+ impl GcdOld for $T {
+ /// Calculates the Greatest Common Divisor (GCD) of the number and
+ /// `other`. The result is always positive.
+ #[inline]
+ fn gcd_old(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return m | n;
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // divide n and m by 2 until odd
+ // m inside loop
+ n >>= n.trailing_zeros();
+
+ while m != 0 {
+ m >>= m.trailing_zeros();
+ if n > m {
+ std::mem::swap(&mut n, &mut m)
+ }
+ m -= n;
+ }
+
+ n << shift
+ }
+ }
+ };
+}
+
+impl_gcd_old_for_usize!(u8);
+impl_gcd_old_for_usize!(u16);
+impl_gcd_old_for_usize!(u32);
+impl_gcd_old_for_usize!(u64);
+impl_gcd_old_for_usize!(usize);
+impl_gcd_old_for_usize!(u128);
+
+/// Return an iterator that yields all Fibonacci numbers fitting into a u128.
+fn fibonacci() -> impl Iterator<Item = u128> {
+ (0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| {
+ let tmp = *a;
+ *a = *b;
+ *b += tmp;
+ Some(*b)
+ })
+}
+
+fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T)
+where
+ T: AsPrimitive<u128>,
+ u128: AsPrimitive<T>,
+{
+ let max_value: u128 = T::max_value().as_();
+ let pairs: Vec<(T, T)> = fibonacci()
+ .collect::<Vec<_>>()
+ .windows(2)
+ .filter(|&pair| pair[0] <= max_value && pair[1] <= max_value)
+ .map(|pair| (pair[0].as_(), pair[1].as_()))
+ .collect();
+ b.iter(|| {
+ for &(ref m, ref n) in &pairs {
+ black_box(gcd(m, n));
+ }
+ });
+}
+
+macro_rules! bench_gcd {
+ ($T:ident) => {
+ mod $T {
+ use crate::{run_bench, GcdOld};
+ use num_integer::Integer;
+ use test::Bencher;
+
+ #[bench]
+ fn bench_gcd(b: &mut Bencher) {
+ run_bench(b, $T::gcd);
+ }
+
+ #[bench]
+ fn bench_gcd_old(b: &mut Bencher) {
+ run_bench(b, $T::gcd_old);
+ }
+ }
+ };
+}
+
+bench_gcd!(u8);
+bench_gcd!(u16);
+bench_gcd!(u32);
+bench_gcd!(u64);
+bench_gcd!(u128);
+
+bench_gcd!(i8);
+bench_gcd!(i16);
+bench_gcd!(i32);
+bench_gcd!(i64);
+bench_gcd!(i128);
diff --git a/third_party/rust/num-integer/benches/roots.rs b/third_party/rust/num-integer/benches/roots.rs
new file mode 100644
index 0000000000..7f672786a5
--- /dev/null
+++ b/third_party/rust/num-integer/benches/roots.rs
@@ -0,0 +1,170 @@
+//! Benchmark sqrt and cbrt
+
+#![feature(test)]
+
+extern crate num_integer;
+extern crate num_traits;
+extern crate test;
+
+use num_integer::Integer;
+use num_traits::checked_pow;
+use num_traits::{AsPrimitive, PrimInt, WrappingAdd, WrappingMul};
+use test::{black_box, Bencher};
+
+trait BenchInteger: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
+
+impl<T> BenchInteger for T where T: Integer + PrimInt + WrappingAdd + WrappingMul + 'static {}
+
+fn bench<T, F>(b: &mut Bencher, v: &[T], f: F, n: u32)
+where
+ T: BenchInteger,
+ F: Fn(&T) -> T,
+{
+ // Pre-validate the results...
+ for i in v {
+ let rt = f(i);
+ if *i >= T::zero() {
+ let rt1 = rt + T::one();
+ assert!(rt.pow(n) <= *i);
+ if let Some(x) = checked_pow(rt1, n as usize) {
+ assert!(*i < x);
+ }
+ } else {
+ let rt1 = rt - T::one();
+ assert!(rt < T::zero());
+ assert!(*i <= rt.pow(n));
+ if let Some(x) = checked_pow(rt1, n as usize) {
+ assert!(x < *i);
+ }
+ };
+ }
+
+ // Now just run as fast as we can!
+ b.iter(|| {
+ for i in v {
+ black_box(f(i));
+ }
+ });
+}
+
+// Simple PRNG so we don't have to worry about rand compatibility
+fn lcg<T>(x: T) -> T
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+{
+ // LCG parameters from Numerical Recipes
+ // (but we're applying it to arbitrary sizes)
+ const LCG_A: u32 = 1664525;
+ const LCG_C: u32 = 1013904223;
+ x.wrapping_mul(&LCG_A.as_()).wrapping_add(&LCG_C.as_())
+}
+
+fn bench_rand<T, F>(b: &mut Bencher, f: F, n: u32)
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+ F: Fn(&T) -> T,
+{
+ let mut x: T = 3u32.as_();
+ let v: Vec<T> = (0..1000)
+ .map(|_| {
+ x = lcg(x);
+ x
+ })
+ .collect();
+ bench(b, &v, f, n);
+}
+
+fn bench_rand_pos<T, F>(b: &mut Bencher, f: F, n: u32)
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+ F: Fn(&T) -> T,
+{
+ let mut x: T = 3u32.as_();
+ let v: Vec<T> = (0..1000)
+ .map(|_| {
+ x = lcg(x);
+ while x < T::zero() {
+ x = lcg(x);
+ }
+ x
+ })
+ .collect();
+ bench(b, &v, f, n);
+}
+
+fn bench_small<T, F>(b: &mut Bencher, f: F, n: u32)
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+ F: Fn(&T) -> T,
+{
+ let v: Vec<T> = (0..1000).map(|i| i.as_()).collect();
+ bench(b, &v, f, n);
+}
+
+fn bench_small_pos<T, F>(b: &mut Bencher, f: F, n: u32)
+where
+ u32: AsPrimitive<T>,
+ T: BenchInteger,
+ F: Fn(&T) -> T,
+{
+ let v: Vec<T> = (0..1000)
+ .map(|i| i.as_().mod_floor(&T::max_value()))
+ .collect();
+ bench(b, &v, f, n);
+}
+
+macro_rules! bench_roots {
+ ($($T:ident),*) => {$(
+ mod $T {
+ use test::Bencher;
+ use num_integer::Roots;
+
+ #[bench]
+ fn sqrt_rand(b: &mut Bencher) {
+ ::bench_rand_pos(b, $T::sqrt, 2);
+ }
+
+ #[bench]
+ fn sqrt_small(b: &mut Bencher) {
+ ::bench_small_pos(b, $T::sqrt, 2);
+ }
+
+ #[bench]
+ fn cbrt_rand(b: &mut Bencher) {
+ ::bench_rand(b, $T::cbrt, 3);
+ }
+
+ #[bench]
+ fn cbrt_small(b: &mut Bencher) {
+ ::bench_small(b, $T::cbrt, 3);
+ }
+
+ #[bench]
+ fn fourth_root_rand(b: &mut Bencher) {
+ ::bench_rand_pos(b, |x: &$T| x.nth_root(4), 4);
+ }
+
+ #[bench]
+ fn fourth_root_small(b: &mut Bencher) {
+ ::bench_small_pos(b, |x: &$T| x.nth_root(4), 4);
+ }
+
+ #[bench]
+ fn fifth_root_rand(b: &mut Bencher) {
+ ::bench_rand(b, |x: &$T| x.nth_root(5), 5);
+ }
+
+ #[bench]
+ fn fifth_root_small(b: &mut Bencher) {
+ ::bench_small(b, |x: &$T| x.nth_root(5), 5);
+ }
+ }
+ )*}
+}
+
+bench_roots!(i8, i16, i32, i64, i128);
+bench_roots!(u8, u16, u32, u64, u128);
diff --git a/third_party/rust/num-integer/build.rs b/third_party/rust/num-integer/build.rs
new file mode 100644
index 0000000000..37c985766a
--- /dev/null
+++ b/third_party/rust/num-integer/build.rs
@@ -0,0 +1,13 @@
+extern crate autocfg;
+
+use std::env;
+
+fn main() {
+ // If the "i128" feature is explicity requested, don't bother probing for it.
+ // It will still cause a build error if that was set improperly.
+ if env::var_os("CARGO_FEATURE_I128").is_some() || autocfg::new().probe_type("i128") {
+ autocfg::emit("has_i128");
+ }
+
+ autocfg::rerun_path("build.rs");
+}
diff --git a/third_party/rust/num-integer/src/average.rs b/third_party/rust/num-integer/src/average.rs
new file mode 100644
index 0000000000..29cd11e3fe
--- /dev/null
+++ b/third_party/rust/num-integer/src/average.rs
@@ -0,0 +1,78 @@
+use core::ops::{BitAnd, BitOr, BitXor, Shr};
+use Integer;
+
+/// Provides methods to compute the average of two integers, without overflows.
+pub trait Average: Integer {
+ /// Returns the ceiling value of the average of `self` and `other`.
+ /// -- `⌈(self + other)/2⌉`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_integer::Average;
+ ///
+ /// assert_eq!(( 3).average_ceil(&10), 7);
+ /// assert_eq!((-2).average_ceil(&-5), -3);
+ /// assert_eq!(( 4).average_ceil(& 4), 4);
+ ///
+ /// assert_eq!(u8::max_value().average_ceil(&2), 129);
+ /// assert_eq!(i8::min_value().average_ceil(&-1), -64);
+ /// assert_eq!(i8::min_value().average_ceil(&i8::max_value()), 0);
+ /// ```
+ ///
+ fn average_ceil(&self, other: &Self) -> Self;
+
+ /// Returns the floor value of the average of `self` and `other`.
+ /// -- `⌊(self + other)/2⌋`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_integer::Average;
+ ///
+ /// assert_eq!(( 3).average_floor(&10), 6);
+ /// assert_eq!((-2).average_floor(&-5), -4);
+ /// assert_eq!(( 4).average_floor(& 4), 4);
+ ///
+ /// assert_eq!(u8::max_value().average_floor(&2), 128);
+ /// assert_eq!(i8::min_value().average_floor(&-1), -65);
+ /// assert_eq!(i8::min_value().average_floor(&i8::max_value()), -1);
+ /// ```
+ ///
+ fn average_floor(&self, other: &Self) -> Self;
+}
+
+impl<I> Average for I
+where
+ I: Integer + Shr<usize, Output = I>,
+ for<'a, 'b> &'a I:
+ BitAnd<&'b I, Output = I> + BitOr<&'b I, Output = I> + BitXor<&'b I, Output = I>,
+{
+ // The Henry Gordon Dietz implementation as shown in the Hacker's Delight,
+ // see http://aggregate.org/MAGIC/#Average%20of%20Integers
+
+ /// Returns the floor value of the average of `self` and `other`.
+ #[inline]
+ fn average_floor(&self, other: &I) -> I {
+ (self & other) + ((self ^ other) >> 1)
+ }
+
+ /// Returns the ceil value of the average of `self` and `other`.
+ #[inline]
+ fn average_ceil(&self, other: &I) -> I {
+ (self | other) - ((self ^ other) >> 1)
+ }
+}
+
+/// Returns the floor value of the average of `x` and `y` --
+/// see [Average::average_floor](trait.Average.html#tymethod.average_floor).
+#[inline]
+pub fn average_floor<T: Average>(x: T, y: T) -> T {
+ x.average_floor(&y)
+}
+/// Returns the ceiling value of the average of `x` and `y` --
+/// see [Average::average_ceil](trait.Average.html#tymethod.average_ceil).
+#[inline]
+pub fn average_ceil<T: Average>(x: T, y: T) -> T {
+ x.average_ceil(&y)
+}
diff --git a/third_party/rust/num-integer/src/lib.rs b/third_party/rust/num-integer/src/lib.rs
new file mode 100644
index 0000000000..5005801d5b
--- /dev/null
+++ b/third_party/rust/num-integer/src/lib.rs
@@ -0,0 +1,1386 @@
+// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Integer trait and functions.
+//!
+//! ## Compatibility
+//!
+//! The `num-integer` crate is tested for rustc 1.8 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-integer/0.1")]
+#![no_std]
+#[cfg(feature = "std")]
+extern crate std;
+
+extern crate num_traits as traits;
+
+use core::mem;
+use core::ops::Add;
+
+use traits::{Num, Signed, Zero};
+
+mod roots;
+pub use roots::Roots;
+pub use roots::{cbrt, nth_root, sqrt};
+
+mod average;
+pub use average::Average;
+pub use average::{average_ceil, average_floor};
+
+pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
+ /// Floored integer division.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert!(( 8).div_floor(& 3) == 2);
+ /// assert!(( 8).div_floor(&-3) == -3);
+ /// assert!((-8).div_floor(& 3) == -3);
+ /// assert!((-8).div_floor(&-3) == 2);
+ ///
+ /// assert!(( 1).div_floor(& 2) == 0);
+ /// assert!(( 1).div_floor(&-2) == -1);
+ /// assert!((-1).div_floor(& 2) == -1);
+ /// assert!((-1).div_floor(&-2) == 0);
+ /// ~~~
+ fn div_floor(&self, other: &Self) -> Self;
+
+ /// Floored integer modulo, satisfying:
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// # let n = 1; let d = 1;
+ /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
+ /// ~~~
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert!(( 8).mod_floor(& 3) == 2);
+ /// assert!(( 8).mod_floor(&-3) == -1);
+ /// assert!((-8).mod_floor(& 3) == 1);
+ /// assert!((-8).mod_floor(&-3) == -2);
+ ///
+ /// assert!(( 1).mod_floor(& 2) == 1);
+ /// assert!(( 1).mod_floor(&-2) == -1);
+ /// assert!((-1).mod_floor(& 2) == 1);
+ /// assert!((-1).mod_floor(&-2) == -1);
+ /// ~~~
+ fn mod_floor(&self, other: &Self) -> Self;
+
+ /// Ceiled integer division.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(( 8).div_ceil( &3), 3);
+ /// assert_eq!(( 8).div_ceil(&-3), -2);
+ /// assert_eq!((-8).div_ceil( &3), -2);
+ /// assert_eq!((-8).div_ceil(&-3), 3);
+ ///
+ /// assert_eq!(( 1).div_ceil( &2), 1);
+ /// assert_eq!(( 1).div_ceil(&-2), 0);
+ /// assert_eq!((-1).div_ceil( &2), 0);
+ /// assert_eq!((-1).div_ceil(&-2), 1);
+ /// ~~~
+ fn div_ceil(&self, other: &Self) -> Self {
+ let (q, r) = self.div_mod_floor(other);
+ if r.is_zero() {
+ q
+ } else {
+ q + Self::one()
+ }
+ }
+
+ /// Greatest Common Divisor (GCD).
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(6.gcd(&8), 2);
+ /// assert_eq!(7.gcd(&3), 1);
+ /// ~~~
+ fn gcd(&self, other: &Self) -> Self;
+
+ /// Lowest Common Multiple (LCM).
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(7.lcm(&3), 21);
+ /// assert_eq!(2.lcm(&4), 4);
+ /// assert_eq!(0.lcm(&0), 0);
+ /// ~~~
+ fn lcm(&self, other: &Self) -> Self;
+
+ /// Greatest Common Divisor (GCD) and
+ /// Lowest Common Multiple (LCM) together.
+ ///
+ /// Potentially more efficient than calling `gcd` and `lcm`
+ /// individually for identical inputs.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(10.gcd_lcm(&4), (2, 20));
+ /// assert_eq!(8.gcd_lcm(&9), (1, 72));
+ /// ~~~
+ #[inline]
+ fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
+ (self.gcd(other), self.lcm(other))
+ }
+
+ /// Greatest common divisor and Bézout coefficients.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # extern crate num_integer;
+ /// # extern crate num_traits;
+ /// # fn main() {
+ /// # use num_integer::{ExtendedGcd, Integer};
+ /// # use num_traits::NumAssign;
+ /// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
+ /// let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
+ /// gcd == x * a + y * b
+ /// }
+ /// assert!(check(10isize, 4isize));
+ /// assert!(check(8isize, 9isize));
+ /// # }
+ /// ~~~
+ #[inline]
+ fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
+ where
+ Self: Clone,
+ {
+ let mut s = (Self::zero(), Self::one());
+ let mut t = (Self::one(), Self::zero());
+ let mut r = (other.clone(), self.clone());
+
+ while !r.0.is_zero() {
+ let q = r.1.clone() / r.0.clone();
+ let f = |mut r: (Self, Self)| {
+ mem::swap(&mut r.0, &mut r.1);
+ r.0 = r.0 - q.clone() * r.1.clone();
+ r
+ };
+ r = f(r);
+ s = f(s);
+ t = f(t);
+ }
+
+ if r.1 >= Self::zero() {
+ ExtendedGcd {
+ gcd: r.1,
+ x: s.1,
+ y: t.1,
+ }
+ } else {
+ ExtendedGcd {
+ gcd: Self::zero() - r.1,
+ x: Self::zero() - s.1,
+ y: Self::zero() - t.1,
+ }
+ }
+ }
+
+ /// Greatest common divisor, least common multiple, and Bézout coefficients.
+ #[inline]
+ fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
+ where
+ Self: Clone + Signed,
+ {
+ (self.extended_gcd(other), self.lcm(other))
+ }
+
+ /// Deprecated, use `is_multiple_of` instead.
+ fn divides(&self, other: &Self) -> bool;
+
+ /// Returns `true` if `self` is a multiple of `other`.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(9.is_multiple_of(&3), true);
+ /// assert_eq!(3.is_multiple_of(&9), false);
+ /// ~~~
+ fn is_multiple_of(&self, other: &Self) -> bool;
+
+ /// Returns `true` if the number is even.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(3.is_even(), false);
+ /// assert_eq!(4.is_even(), true);
+ /// ~~~
+ fn is_even(&self) -> bool;
+
+ /// Returns `true` if the number is odd.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(3.is_odd(), true);
+ /// assert_eq!(4.is_odd(), false);
+ /// ~~~
+ fn is_odd(&self) -> bool;
+
+ /// Simultaneous truncated integer division and modulus.
+ /// Returns `(quotient, remainder)`.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(( 8).div_rem( &3), ( 2, 2));
+ /// assert_eq!(( 8).div_rem(&-3), (-2, 2));
+ /// assert_eq!((-8).div_rem( &3), (-2, -2));
+ /// assert_eq!((-8).div_rem(&-3), ( 2, -2));
+ ///
+ /// assert_eq!(( 1).div_rem( &2), ( 0, 1));
+ /// assert_eq!(( 1).div_rem(&-2), ( 0, 1));
+ /// assert_eq!((-1).div_rem( &2), ( 0, -1));
+ /// assert_eq!((-1).div_rem(&-2), ( 0, -1));
+ /// ~~~
+ fn div_rem(&self, other: &Self) -> (Self, Self);
+
+ /// Simultaneous floored integer division and modulus.
+ /// Returns `(quotient, remainder)`.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2));
+ /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
+ /// assert_eq!((-8).div_mod_floor( &3), (-3, 1));
+ /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
+ ///
+ /// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1));
+ /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
+ /// assert_eq!((-1).div_mod_floor( &2), (-1, 1));
+ /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
+ /// ~~~
+ fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
+ (self.div_floor(other), self.mod_floor(other))
+ }
+
+ /// Rounds up to nearest multiple of argument.
+ ///
+ /// # Notes
+ ///
+ /// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(( 16).next_multiple_of(& 8), 16);
+ /// assert_eq!(( 23).next_multiple_of(& 8), 24);
+ /// assert_eq!(( 16).next_multiple_of(&-8), 16);
+ /// assert_eq!(( 23).next_multiple_of(&-8), 16);
+ /// assert_eq!((-16).next_multiple_of(& 8), -16);
+ /// assert_eq!((-23).next_multiple_of(& 8), -16);
+ /// assert_eq!((-16).next_multiple_of(&-8), -16);
+ /// assert_eq!((-23).next_multiple_of(&-8), -24);
+ /// ~~~
+ #[inline]
+ fn next_multiple_of(&self, other: &Self) -> Self
+ where
+ Self: Clone,
+ {
+ let m = self.mod_floor(other);
+ self.clone()
+ + if m.is_zero() {
+ Self::zero()
+ } else {
+ other.clone() - m
+ }
+ }
+
+ /// Rounds down to nearest multiple of argument.
+ ///
+ /// # Notes
+ ///
+ /// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`.
+ ///
+ /// # Examples
+ ///
+ /// ~~~
+ /// # use num_integer::Integer;
+ /// assert_eq!(( 16).prev_multiple_of(& 8), 16);
+ /// assert_eq!(( 23).prev_multiple_of(& 8), 16);
+ /// assert_eq!(( 16).prev_multiple_of(&-8), 16);
+ /// assert_eq!(( 23).prev_multiple_of(&-8), 24);
+ /// assert_eq!((-16).prev_multiple_of(& 8), -16);
+ /// assert_eq!((-23).prev_multiple_of(& 8), -24);
+ /// assert_eq!((-16).prev_multiple_of(&-8), -16);
+ /// assert_eq!((-23).prev_multiple_of(&-8), -16);
+ /// ~~~
+ #[inline]
+ fn prev_multiple_of(&self, other: &Self) -> Self
+ where
+ Self: Clone,
+ {
+ self.clone() - self.mod_floor(other)
+ }
+}
+
+/// Greatest common divisor and Bézout coefficients
+///
+/// ```no_build
+/// let e = isize::extended_gcd(a, b);
+/// assert_eq!(e.gcd, e.x*a + e.y*b);
+/// ```
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+pub struct ExtendedGcd<A> {
+ pub gcd: A,
+ pub x: A,
+ pub y: A,
+}
+
+/// Simultaneous integer division and modulus
+#[inline]
+pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
+ x.div_rem(&y)
+}
+/// Floored integer division
+#[inline]
+pub fn div_floor<T: Integer>(x: T, y: T) -> T {
+ x.div_floor(&y)
+}
+/// Floored integer modulus
+#[inline]
+pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
+ x.mod_floor(&y)
+}
+/// Simultaneous floored integer division and modulus
+#[inline]
+pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
+ x.div_mod_floor(&y)
+}
+/// Ceiled integer division
+#[inline]
+pub fn div_ceil<T: Integer>(x: T, y: T) -> T {
+ x.div_ceil(&y)
+}
+
+/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
+/// result is always non-negative.
+#[inline(always)]
+pub fn gcd<T: Integer>(x: T, y: T) -> T {
+ x.gcd(&y)
+}
+/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
+#[inline(always)]
+pub fn lcm<T: Integer>(x: T, y: T) -> T {
+ x.lcm(&y)
+}
+
+/// Calculates the Greatest Common Divisor (GCD) and
+/// Lowest Common Multiple (LCM) of the number and `other`.
+#[inline(always)]
+pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
+ x.gcd_lcm(&y)
+}
+
+macro_rules! impl_integer_for_isize {
+ ($T:ty, $test_mod:ident) => {
+ impl Integer for $T {
+ /// Floored integer division
+ #[inline]
+ fn div_floor(&self, other: &Self) -> Self {
+ // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+ // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+ let (d, r) = self.div_rem(other);
+ if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
+ d - 1
+ } else {
+ d
+ }
+ }
+
+ /// Floored integer modulo
+ #[inline]
+ fn mod_floor(&self, other: &Self) -> Self {
+ // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+ // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+ let r = *self % *other;
+ if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
+ r + *other
+ } else {
+ r
+ }
+ }
+
+ /// Calculates `div_floor` and `mod_floor` simultaneously
+ #[inline]
+ fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
+ // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
+ // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
+ let (d, r) = self.div_rem(other);
+ if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
+ (d - 1, r + *other)
+ } else {
+ (d, r)
+ }
+ }
+
+ #[inline]
+ fn div_ceil(&self, other: &Self) -> Self {
+ let (d, r) = self.div_rem(other);
+ if (r > 0 && *other > 0) || (r < 0 && *other < 0) {
+ d + 1
+ } else {
+ d
+ }
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) of the number and
+ /// `other`. The result is always non-negative.
+ #[inline]
+ fn gcd(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return (m | n).abs();
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // The algorithm needs positive numbers, but the minimum value
+ // can't be represented as a positive one.
+ // It's also a power of two, so the gcd can be
+ // calculated by bitshifting in that case
+
+ // Assuming two's complement, the number created by the shift
+ // is positive for all numbers except gcd = abs(min value)
+ // The call to .abs() causes a panic in debug mode
+ if m == Self::min_value() || n == Self::min_value() {
+ return (1 << shift).abs();
+ }
+
+ // guaranteed to be positive now, rest like unsigned algorithm
+ m = m.abs();
+ n = n.abs();
+
+ // divide n and m by 2 until odd
+ m >>= m.trailing_zeros();
+ n >>= n.trailing_zeros();
+
+ while m != n {
+ if m > n {
+ m -= n;
+ m >>= m.trailing_zeros();
+ } else {
+ n -= m;
+ n >>= n.trailing_zeros();
+ }
+ }
+ m << shift
+ }
+
+ #[inline]
+ fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
+ let egcd = self.extended_gcd(other);
+ // should not have to recalculate abs
+ let lcm = if egcd.gcd.is_zero() {
+ Self::zero()
+ } else {
+ (*self * (*other / egcd.gcd)).abs()
+ };
+ (egcd, lcm)
+ }
+
+ /// Calculates the Lowest Common Multiple (LCM) of the number and
+ /// `other`.
+ #[inline]
+ fn lcm(&self, other: &Self) -> Self {
+ self.gcd_lcm(other).1
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) and
+ /// Lowest Common Multiple (LCM) of the number and `other`.
+ #[inline]
+ fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
+ if self.is_zero() && other.is_zero() {
+ return (Self::zero(), Self::zero());
+ }
+ let gcd = self.gcd(other);
+ // should not have to recalculate abs
+ let lcm = (*self * (*other / gcd)).abs();
+ (gcd, lcm)
+ }
+
+ /// Deprecated, use `is_multiple_of` instead.
+ #[inline]
+ fn divides(&self, other: &Self) -> bool {
+ self.is_multiple_of(other)
+ }
+
+ /// Returns `true` if the number is a multiple of `other`.
+ #[inline]
+ fn is_multiple_of(&self, other: &Self) -> bool {
+ if other.is_zero() {
+ return self.is_zero();
+ }
+ *self % *other == 0
+ }
+
+ /// Returns `true` if the number is divisible by `2`
+ #[inline]
+ fn is_even(&self) -> bool {
+ (*self) & 1 == 0
+ }
+
+ /// Returns `true` if the number is not divisible by `2`
+ #[inline]
+ fn is_odd(&self) -> bool {
+ !self.is_even()
+ }
+
+ /// Simultaneous truncated integer division and modulus.
+ #[inline]
+ fn div_rem(&self, other: &Self) -> (Self, Self) {
+ (*self / *other, *self % *other)
+ }
+
+ /// Rounds up to nearest multiple of argument.
+ #[inline]
+ fn next_multiple_of(&self, other: &Self) -> Self {
+ // Avoid the overflow of `MIN % -1`
+ if *other == -1 {
+ return *self;
+ }
+
+ let m = Integer::mod_floor(self, other);
+ *self + if m == 0 { 0 } else { other - m }
+ }
+
+ /// Rounds down to nearest multiple of argument.
+ #[inline]
+ fn prev_multiple_of(&self, other: &Self) -> Self {
+ // Avoid the overflow of `MIN % -1`
+ if *other == -1 {
+ return *self;
+ }
+
+ *self - Integer::mod_floor(self, other)
+ }
+ }
+
+ #[cfg(test)]
+ mod $test_mod {
+ use core::mem;
+ use Integer;
+
+ /// Checks that the division rule holds for:
+ ///
+ /// - `n`: numerator (dividend)
+ /// - `d`: denominator (divisor)
+ /// - `qr`: quotient and remainder
+ #[cfg(test)]
+ fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) {
+ assert_eq!(d * q + r, n);
+ }
+
+ #[test]
+ fn test_div_rem() {
+ fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) {
+ let (n, d) = nd;
+ let separate_div_rem = (n / d, n % d);
+ let combined_div_rem = n.div_rem(&d);
+
+ assert_eq!(separate_div_rem, qr);
+ assert_eq!(combined_div_rem, qr);
+
+ test_division_rule(nd, separate_div_rem);
+ test_division_rule(nd, combined_div_rem);
+ }
+
+ test_nd_dr((8, 3), (2, 2));
+ test_nd_dr((8, -3), (-2, 2));
+ test_nd_dr((-8, 3), (-2, -2));
+ test_nd_dr((-8, -3), (2, -2));
+
+ test_nd_dr((1, 2), (0, 1));
+ test_nd_dr((1, -2), (0, 1));
+ test_nd_dr((-1, 2), (0, -1));
+ test_nd_dr((-1, -2), (0, -1));
+ }
+
+ #[test]
+ fn test_div_mod_floor() {
+ fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) {
+ let (n, d) = nd;
+ let separate_div_mod_floor =
+ (Integer::div_floor(&n, &d), Integer::mod_floor(&n, &d));
+ let combined_div_mod_floor = Integer::div_mod_floor(&n, &d);
+
+ assert_eq!(separate_div_mod_floor, dm);
+ assert_eq!(combined_div_mod_floor, dm);
+
+ test_division_rule(nd, separate_div_mod_floor);
+ test_division_rule(nd, combined_div_mod_floor);
+ }
+
+ test_nd_dm((8, 3), (2, 2));
+ test_nd_dm((8, -3), (-3, -1));
+ test_nd_dm((-8, 3), (-3, 1));
+ test_nd_dm((-8, -3), (2, -2));
+
+ test_nd_dm((1, 2), (0, 1));
+ test_nd_dm((1, -2), (-1, -1));
+ test_nd_dm((-1, 2), (-1, 1));
+ test_nd_dm((-1, -2), (0, -1));
+ }
+
+ #[test]
+ fn test_gcd() {
+ assert_eq!((10 as $T).gcd(&2), 2 as $T);
+ assert_eq!((10 as $T).gcd(&3), 1 as $T);
+ assert_eq!((0 as $T).gcd(&3), 3 as $T);
+ assert_eq!((3 as $T).gcd(&3), 3 as $T);
+ assert_eq!((56 as $T).gcd(&42), 14 as $T);
+ assert_eq!((3 as $T).gcd(&-3), 3 as $T);
+ assert_eq!((-6 as $T).gcd(&3), 3 as $T);
+ assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
+ }
+
+ #[test]
+ fn test_gcd_cmp_with_euclidean() {
+ fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
+ while m != 0 {
+ mem::swap(&mut m, &mut n);
+ m %= n;
+ }
+
+ n.abs()
+ }
+
+ // gcd(-128, b) = 128 is not representable as positive value
+ // for i8
+ for i in -127..127 {
+ for j in -127..127 {
+ assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
+ }
+ }
+
+ // last value
+ // FIXME: Use inclusive ranges for above loop when implemented
+ let i = 127;
+ for j in -127..127 {
+ assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
+ }
+ assert_eq!(127.gcd(&127), 127);
+ }
+
+ #[test]
+ fn test_gcd_min_val() {
+ let min = <$T>::min_value();
+ let max = <$T>::max_value();
+ let max_pow2 = max / 2 + 1;
+ assert_eq!(min.gcd(&max), 1 as $T);
+ assert_eq!(max.gcd(&min), 1 as $T);
+ assert_eq!(min.gcd(&max_pow2), max_pow2);
+ assert_eq!(max_pow2.gcd(&min), max_pow2);
+ assert_eq!(min.gcd(&42), 2 as $T);
+ assert_eq!((42 as $T).gcd(&min), 2 as $T);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gcd_min_val_min_val() {
+ let min = <$T>::min_value();
+ assert!(min.gcd(&min) >= 0);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gcd_min_val_0() {
+ let min = <$T>::min_value();
+ assert!(min.gcd(&0) >= 0);
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_gcd_0_min_val() {
+ let min = <$T>::min_value();
+ assert!((0 as $T).gcd(&min) >= 0);
+ }
+
+ #[test]
+ fn test_lcm() {
+ assert_eq!((1 as $T).lcm(&0), 0 as $T);
+ assert_eq!((0 as $T).lcm(&1), 0 as $T);
+ assert_eq!((1 as $T).lcm(&1), 1 as $T);
+ assert_eq!((-1 as $T).lcm(&1), 1 as $T);
+ assert_eq!((1 as $T).lcm(&-1), 1 as $T);
+ assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
+ assert_eq!((8 as $T).lcm(&9), 72 as $T);
+ assert_eq!((11 as $T).lcm(&5), 55 as $T);
+ }
+
+ #[test]
+ fn test_gcd_lcm() {
+ use core::iter::once;
+ for i in once(0)
+ .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
+ .chain(once(-128))
+ {
+ for j in once(0)
+ .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
+ .chain(once(-128))
+ {
+ assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
+ }
+ }
+ }
+
+ #[test]
+ fn test_extended_gcd_lcm() {
+ use core::fmt::Debug;
+ use traits::NumAssign;
+ use ExtendedGcd;
+
+ fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
+ let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
+ assert_eq!(gcd, x * a + y * b);
+ }
+
+ use core::iter::once;
+ for i in once(0)
+ .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
+ .chain(once(-128))
+ {
+ for j in once(0)
+ .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
+ .chain(once(-128))
+ {
+ check(i, j);
+ let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
+ assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
+ }
+ }
+ }
+
+ #[test]
+ fn test_even() {
+ assert_eq!((-4 as $T).is_even(), true);
+ assert_eq!((-3 as $T).is_even(), false);
+ assert_eq!((-2 as $T).is_even(), true);
+ assert_eq!((-1 as $T).is_even(), false);
+ assert_eq!((0 as $T).is_even(), true);
+ assert_eq!((1 as $T).is_even(), false);
+ assert_eq!((2 as $T).is_even(), true);
+ assert_eq!((3 as $T).is_even(), false);
+ assert_eq!((4 as $T).is_even(), true);
+ }
+
+ #[test]
+ fn test_odd() {
+ assert_eq!((-4 as $T).is_odd(), false);
+ assert_eq!((-3 as $T).is_odd(), true);
+ assert_eq!((-2 as $T).is_odd(), false);
+ assert_eq!((-1 as $T).is_odd(), true);
+ assert_eq!((0 as $T).is_odd(), false);
+ assert_eq!((1 as $T).is_odd(), true);
+ assert_eq!((2 as $T).is_odd(), false);
+ assert_eq!((3 as $T).is_odd(), true);
+ assert_eq!((4 as $T).is_odd(), false);
+ }
+
+ #[test]
+ fn test_multiple_of_one_limits() {
+ for x in &[<$T>::min_value(), <$T>::max_value()] {
+ for one in &[1, -1] {
+ assert_eq!(Integer::next_multiple_of(x, one), *x);
+ assert_eq!(Integer::prev_multiple_of(x, one), *x);
+ }
+ }
+ }
+ }
+ };
+}
+
+impl_integer_for_isize!(i8, test_integer_i8);
+impl_integer_for_isize!(i16, test_integer_i16);
+impl_integer_for_isize!(i32, test_integer_i32);
+impl_integer_for_isize!(i64, test_integer_i64);
+impl_integer_for_isize!(isize, test_integer_isize);
+#[cfg(has_i128)]
+impl_integer_for_isize!(i128, test_integer_i128);
+
+macro_rules! impl_integer_for_usize {
+ ($T:ty, $test_mod:ident) => {
+ impl Integer for $T {
+ /// Unsigned integer division. Returns the same result as `div` (`/`).
+ #[inline]
+ fn div_floor(&self, other: &Self) -> Self {
+ *self / *other
+ }
+
+ /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
+ #[inline]
+ fn mod_floor(&self, other: &Self) -> Self {
+ *self % *other
+ }
+
+ #[inline]
+ fn div_ceil(&self, other: &Self) -> Self {
+ *self / *other + (0 != *self % *other) as Self
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
+ #[inline]
+ fn gcd(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return m | n;
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // divide n and m by 2 until odd
+ m >>= m.trailing_zeros();
+ n >>= n.trailing_zeros();
+
+ while m != n {
+ if m > n {
+ m -= n;
+ m >>= m.trailing_zeros();
+ } else {
+ n -= m;
+ n >>= n.trailing_zeros();
+ }
+ }
+ m << shift
+ }
+
+ #[inline]
+ fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
+ let egcd = self.extended_gcd(other);
+ // should not have to recalculate abs
+ let lcm = if egcd.gcd.is_zero() {
+ Self::zero()
+ } else {
+ *self * (*other / egcd.gcd)
+ };
+ (egcd, lcm)
+ }
+
+ /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
+ #[inline]
+ fn lcm(&self, other: &Self) -> Self {
+ self.gcd_lcm(other).1
+ }
+
+ /// Calculates the Greatest Common Divisor (GCD) and
+ /// Lowest Common Multiple (LCM) of the number and `other`.
+ #[inline]
+ fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
+ if self.is_zero() && other.is_zero() {
+ return (Self::zero(), Self::zero());
+ }
+ let gcd = self.gcd(other);
+ let lcm = *self * (*other / gcd);
+ (gcd, lcm)
+ }
+
+ /// Deprecated, use `is_multiple_of` instead.
+ #[inline]
+ fn divides(&self, other: &Self) -> bool {
+ self.is_multiple_of(other)
+ }
+
+ /// Returns `true` if the number is a multiple of `other`.
+ #[inline]
+ fn is_multiple_of(&self, other: &Self) -> bool {
+ if other.is_zero() {
+ return self.is_zero();
+ }
+ *self % *other == 0
+ }
+
+ /// Returns `true` if the number is divisible by `2`.
+ #[inline]
+ fn is_even(&self) -> bool {
+ *self % 2 == 0
+ }
+
+ /// Returns `true` if the number is not divisible by `2`.
+ #[inline]
+ fn is_odd(&self) -> bool {
+ !self.is_even()
+ }
+
+ /// Simultaneous truncated integer division and modulus.
+ #[inline]
+ fn div_rem(&self, other: &Self) -> (Self, Self) {
+ (*self / *other, *self % *other)
+ }
+ }
+
+ #[cfg(test)]
+ mod $test_mod {
+ use core::mem;
+ use Integer;
+
+ #[test]
+ fn test_div_mod_floor() {
+ assert_eq!(<$T as Integer>::div_floor(&10, &3), 3 as $T);
+ assert_eq!(<$T as Integer>::mod_floor(&10, &3), 1 as $T);
+ assert_eq!(<$T as Integer>::div_mod_floor(&10, &3), (3 as $T, 1 as $T));
+ assert_eq!(<$T as Integer>::div_floor(&5, &5), 1 as $T);
+ assert_eq!(<$T as Integer>::mod_floor(&5, &5), 0 as $T);
+ assert_eq!(<$T as Integer>::div_mod_floor(&5, &5), (1 as $T, 0 as $T));
+ assert_eq!(<$T as Integer>::div_floor(&3, &7), 0 as $T);
+ assert_eq!(<$T as Integer>::div_floor(&3, &7), 0 as $T);
+ assert_eq!(<$T as Integer>::mod_floor(&3, &7), 3 as $T);
+ assert_eq!(<$T as Integer>::div_mod_floor(&3, &7), (0 as $T, 3 as $T));
+ }
+
+ #[test]
+ fn test_gcd() {
+ assert_eq!((10 as $T).gcd(&2), 2 as $T);
+ assert_eq!((10 as $T).gcd(&3), 1 as $T);
+ assert_eq!((0 as $T).gcd(&3), 3 as $T);
+ assert_eq!((3 as $T).gcd(&3), 3 as $T);
+ assert_eq!((56 as $T).gcd(&42), 14 as $T);
+ }
+
+ #[test]
+ fn test_gcd_cmp_with_euclidean() {
+ fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
+ while m != 0 {
+ mem::swap(&mut m, &mut n);
+ m %= n;
+ }
+ n
+ }
+
+ for i in 0..255 {
+ for j in 0..255 {
+ assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
+ }
+ }
+
+ // last value
+ // FIXME: Use inclusive ranges for above loop when implemented
+ let i = 255;
+ for j in 0..255 {
+ assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
+ }
+ assert_eq!(255.gcd(&255), 255);
+ }
+
+ #[test]
+ fn test_lcm() {
+ assert_eq!((1 as $T).lcm(&0), 0 as $T);
+ assert_eq!((0 as $T).lcm(&1), 0 as $T);
+ assert_eq!((1 as $T).lcm(&1), 1 as $T);
+ assert_eq!((8 as $T).lcm(&9), 72 as $T);
+ assert_eq!((11 as $T).lcm(&5), 55 as $T);
+ assert_eq!((15 as $T).lcm(&17), 255 as $T);
+ }
+
+ #[test]
+ fn test_gcd_lcm() {
+ for i in (0..).take(256) {
+ for j in (0..).take(256) {
+ assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
+ }
+ }
+ }
+
+ #[test]
+ fn test_is_multiple_of() {
+ assert!((0 as $T).is_multiple_of(&(0 as $T)));
+ assert!((6 as $T).is_multiple_of(&(6 as $T)));
+ assert!((6 as $T).is_multiple_of(&(3 as $T)));
+ assert!((6 as $T).is_multiple_of(&(1 as $T)));
+
+ assert!(!(42 as $T).is_multiple_of(&(5 as $T)));
+ assert!(!(5 as $T).is_multiple_of(&(3 as $T)));
+ assert!(!(42 as $T).is_multiple_of(&(0 as $T)));
+ }
+
+ #[test]
+ fn test_even() {
+ assert_eq!((0 as $T).is_even(), true);
+ assert_eq!((1 as $T).is_even(), false);
+ assert_eq!((2 as $T).is_even(), true);
+ assert_eq!((3 as $T).is_even(), false);
+ assert_eq!((4 as $T).is_even(), true);
+ }
+
+ #[test]
+ fn test_odd() {
+ assert_eq!((0 as $T).is_odd(), false);
+ assert_eq!((1 as $T).is_odd(), true);
+ assert_eq!((2 as $T).is_odd(), false);
+ assert_eq!((3 as $T).is_odd(), true);
+ assert_eq!((4 as $T).is_odd(), false);
+ }
+ }
+ };
+}
+
+impl_integer_for_usize!(u8, test_integer_u8);
+impl_integer_for_usize!(u16, test_integer_u16);
+impl_integer_for_usize!(u32, test_integer_u32);
+impl_integer_for_usize!(u64, test_integer_u64);
+impl_integer_for_usize!(usize, test_integer_usize);
+#[cfg(has_i128)]
+impl_integer_for_usize!(u128, test_integer_u128);
+
+/// An iterator over binomial coefficients.
+pub struct IterBinomial<T> {
+ a: T,
+ n: T,
+ k: T,
+}
+
+impl<T> IterBinomial<T>
+where
+ T: Integer,
+{
+ /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
+ ///
+ /// Note that this might overflow, depending on `T`. For the primitive
+ /// integer types, the following n are the largest ones for which there will
+ /// be no overflow:
+ ///
+ /// type | n
+ /// -----|---
+ /// u8 | 10
+ /// i8 | 9
+ /// u16 | 18
+ /// i16 | 17
+ /// u32 | 34
+ /// i32 | 33
+ /// u64 | 67
+ /// i64 | 66
+ ///
+ /// For larger n, `T` should be a bigint type.
+ pub fn new(n: T) -> IterBinomial<T> {
+ IterBinomial {
+ k: T::zero(),
+ a: T::one(),
+ n: n,
+ }
+ }
+}
+
+impl<T> Iterator for IterBinomial<T>
+where
+ T: Integer + Clone,
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ if self.k > self.n {
+ return None;
+ }
+ self.a = if !self.k.is_zero() {
+ multiply_and_divide(
+ self.a.clone(),
+ self.n.clone() - self.k.clone() + T::one(),
+ self.k.clone(),
+ )
+ } else {
+ T::one()
+ };
+ self.k = self.k.clone() + T::one();
+ Some(self.a.clone())
+ }
+}
+
+/// Calculate r * a / b, avoiding overflows and fractions.
+///
+/// Assumes that b divides r * a evenly.
+fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
+ // See http://blog.plover.com/math/choose-2.html for the idea.
+ let g = gcd(r.clone(), b.clone());
+ r / g.clone() * (a / (b / g))
+}
+
+/// Calculate the binomial coefficient.
+///
+/// Note that this might overflow, depending on `T`. For the primitive integer
+/// types, the following n are the largest ones possible such that there will
+/// be no overflow for any k:
+///
+/// type | n
+/// -----|---
+/// u8 | 10
+/// i8 | 9
+/// u16 | 18
+/// i16 | 17
+/// u32 | 34
+/// i32 | 33
+/// u64 | 67
+/// i64 | 66
+///
+/// For larger n, consider using a bigint type for `T`.
+pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
+ // See http://blog.plover.com/math/choose.html for the idea.
+ if k > n {
+ return T::zero();
+ }
+ if k > n.clone() - k.clone() {
+ return binomial(n.clone(), n - k);
+ }
+ let mut r = T::one();
+ let mut d = T::one();
+ loop {
+ if d > k {
+ break;
+ }
+ r = multiply_and_divide(r, n.clone(), d.clone());
+ n = n - T::one();
+ d = d + T::one();
+ }
+ r
+}
+
+/// Calculate the multinomial coefficient.
+pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T
+where
+ for<'a> T: Add<&'a T, Output = T>,
+{
+ let mut r = T::one();
+ let mut p = T::zero();
+ for i in k {
+ p = p + i;
+ r = r * binomial(p.clone(), i.clone());
+ }
+ r
+}
+
+#[test]
+fn test_lcm_overflow() {
+ macro_rules! check {
+ ($t:ty, $x:expr, $y:expr, $r:expr) => {{
+ let x: $t = $x;
+ let y: $t = $y;
+ let o = x.checked_mul(y);
+ assert!(
+ o.is_none(),
+ "sanity checking that {} input {} * {} overflows",
+ stringify!($t),
+ x,
+ y
+ );
+ assert_eq!(x.lcm(&y), $r);
+ assert_eq!(y.lcm(&x), $r);
+ }};
+ }
+
+ // Original bug (Issue #166)
+ check!(i64, 46656000000000000, 600, 46656000000000000);
+
+ check!(i8, 0x40, 0x04, 0x40);
+ check!(u8, 0x80, 0x02, 0x80);
+ check!(i16, 0x40_00, 0x04, 0x40_00);
+ check!(u16, 0x80_00, 0x02, 0x80_00);
+ check!(i32, 0x4000_0000, 0x04, 0x4000_0000);
+ check!(u32, 0x8000_0000, 0x02, 0x8000_0000);
+ check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000);
+ check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
+}
+
+#[test]
+fn test_iter_binomial() {
+ macro_rules! check_simple {
+ ($t:ty) => {{
+ let n: $t = 3;
+ let expected = [1, 3, 3, 1];
+ for (b, &e) in IterBinomial::new(n).zip(&expected) {
+ assert_eq!(b, e);
+ }
+ }};
+ }
+
+ check_simple!(u8);
+ check_simple!(i8);
+ check_simple!(u16);
+ check_simple!(i16);
+ check_simple!(u32);
+ check_simple!(i32);
+ check_simple!(u64);
+ check_simple!(i64);
+
+ macro_rules! check_binomial {
+ ($t:ty, $n:expr) => {{
+ let n: $t = $n;
+ let mut k: $t = 0;
+ for b in IterBinomial::new(n) {
+ assert_eq!(b, binomial(n, k));
+ k += 1;
+ }
+ }};
+ }
+
+ // Check the largest n for which there is no overflow.
+ check_binomial!(u8, 10);
+ check_binomial!(i8, 9);
+ check_binomial!(u16, 18);
+ check_binomial!(i16, 17);
+ check_binomial!(u32, 34);
+ check_binomial!(i32, 33);
+ check_binomial!(u64, 67);
+ check_binomial!(i64, 66);
+}
+
+#[test]
+fn test_binomial() {
+ macro_rules! check {
+ ($t:ty, $x:expr, $y:expr, $r:expr) => {{
+ let x: $t = $x;
+ let y: $t = $y;
+ let expected: $t = $r;
+ assert_eq!(binomial(x, y), expected);
+ if y <= x {
+ assert_eq!(binomial(x, x - y), expected);
+ }
+ }};
+ }
+ check!(u8, 9, 4, 126);
+ check!(u8, 0, 0, 1);
+ check!(u8, 2, 3, 0);
+
+ check!(i8, 9, 4, 126);
+ check!(i8, 0, 0, 1);
+ check!(i8, 2, 3, 0);
+
+ check!(u16, 100, 2, 4950);
+ check!(u16, 14, 4, 1001);
+ check!(u16, 0, 0, 1);
+ check!(u16, 2, 3, 0);
+
+ check!(i16, 100, 2, 4950);
+ check!(i16, 14, 4, 1001);
+ check!(i16, 0, 0, 1);
+ check!(i16, 2, 3, 0);
+
+ check!(u32, 100, 2, 4950);
+ check!(u32, 35, 11, 417225900);
+ check!(u32, 14, 4, 1001);
+ check!(u32, 0, 0, 1);
+ check!(u32, 2, 3, 0);
+
+ check!(i32, 100, 2, 4950);
+ check!(i32, 35, 11, 417225900);
+ check!(i32, 14, 4, 1001);
+ check!(i32, 0, 0, 1);
+ check!(i32, 2, 3, 0);
+
+ check!(u64, 100, 2, 4950);
+ check!(u64, 35, 11, 417225900);
+ check!(u64, 14, 4, 1001);
+ check!(u64, 0, 0, 1);
+ check!(u64, 2, 3, 0);
+
+ check!(i64, 100, 2, 4950);
+ check!(i64, 35, 11, 417225900);
+ check!(i64, 14, 4, 1001);
+ check!(i64, 0, 0, 1);
+ check!(i64, 2, 3, 0);
+}
+
+#[test]
+fn test_multinomial() {
+ macro_rules! check_binomial {
+ ($t:ty, $k:expr) => {{
+ let n: $t = $k.iter().fold(0, |acc, &x| acc + x);
+ let k: &[$t] = $k;
+ assert_eq!(k.len(), 2);
+ assert_eq!(multinomial(k), binomial(n, k[0]));
+ }};
+ }
+
+ check_binomial!(u8, &[4, 5]);
+
+ check_binomial!(i8, &[4, 5]);
+
+ check_binomial!(u16, &[2, 98]);
+ check_binomial!(u16, &[4, 10]);
+
+ check_binomial!(i16, &[2, 98]);
+ check_binomial!(i16, &[4, 10]);
+
+ check_binomial!(u32, &[2, 98]);
+ check_binomial!(u32, &[11, 24]);
+ check_binomial!(u32, &[4, 10]);
+
+ check_binomial!(i32, &[2, 98]);
+ check_binomial!(i32, &[11, 24]);
+ check_binomial!(i32, &[4, 10]);
+
+ check_binomial!(u64, &[2, 98]);
+ check_binomial!(u64, &[11, 24]);
+ check_binomial!(u64, &[4, 10]);
+
+ check_binomial!(i64, &[2, 98]);
+ check_binomial!(i64, &[11, 24]);
+ check_binomial!(i64, &[4, 10]);
+
+ macro_rules! check_multinomial {
+ ($t:ty, $k:expr, $r:expr) => {{
+ let k: &[$t] = $k;
+ let expected: $t = $r;
+ assert_eq!(multinomial(k), expected);
+ }};
+ }
+
+ check_multinomial!(u8, &[2, 1, 2], 30);
+ check_multinomial!(u8, &[2, 3, 0], 10);
+
+ check_multinomial!(i8, &[2, 1, 2], 30);
+ check_multinomial!(i8, &[2, 3, 0], 10);
+
+ check_multinomial!(u16, &[2, 1, 2], 30);
+ check_multinomial!(u16, &[2, 3, 0], 10);
+
+ check_multinomial!(i16, &[2, 1, 2], 30);
+ check_multinomial!(i16, &[2, 3, 0], 10);
+
+ check_multinomial!(u32, &[2, 1, 2], 30);
+ check_multinomial!(u32, &[2, 3, 0], 10);
+
+ check_multinomial!(i32, &[2, 1, 2], 30);
+ check_multinomial!(i32, &[2, 3, 0], 10);
+
+ check_multinomial!(u64, &[2, 1, 2], 30);
+ check_multinomial!(u64, &[2, 3, 0], 10);
+
+ check_multinomial!(i64, &[2, 1, 2], 30);
+ check_multinomial!(i64, &[2, 3, 0], 10);
+
+ check_multinomial!(u64, &[], 1);
+ check_multinomial!(u64, &[0], 1);
+ check_multinomial!(u64, &[12345], 1);
+}
diff --git a/third_party/rust/num-integer/src/roots.rs b/third_party/rust/num-integer/src/roots.rs
new file mode 100644
index 0000000000..a9eec1a93c
--- /dev/null
+++ b/third_party/rust/num-integer/src/roots.rs
@@ -0,0 +1,391 @@
+use core;
+use core::mem;
+use traits::checked_pow;
+use traits::PrimInt;
+use Integer;
+
+/// Provides methods to compute an integer's square root, cube root,
+/// and arbitrary `n`th root.
+pub trait Roots: Integer {
+ /// Returns the truncated principal `n`th root of an integer
+ /// -- `if x >= 0 { ⌊ⁿ√x⌋ } else { ⌈ⁿ√x⌉ }`
+ ///
+ /// This is solving for `r` in `rⁿ = x`, rounding toward zero.
+ /// If `x` is positive, the result will satisfy `rⁿ ≤ x < (r+1)ⁿ`.
+ /// If `x` is negative and `n` is odd, then `(r-1)ⁿ < x ≤ rⁿ`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `n` is zero:
+ ///
+ /// ```should_panic
+ /// # use num_integer::Roots;
+ /// println!("can't compute ⁰√x : {}", 123.nth_root(0));
+ /// ```
+ ///
+ /// or if `n` is even and `self` is negative:
+ ///
+ /// ```should_panic
+ /// # use num_integer::Roots;
+ /// println!("no imaginary numbers... {}", (-1).nth_root(10));
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_integer::Roots;
+ ///
+ /// let x: i32 = 12345;
+ /// assert_eq!(x.nth_root(1), x);
+ /// assert_eq!(x.nth_root(2), x.sqrt());
+ /// assert_eq!(x.nth_root(3), x.cbrt());
+ /// assert_eq!(x.nth_root(4), 10);
+ /// assert_eq!(x.nth_root(13), 2);
+ /// assert_eq!(x.nth_root(14), 1);
+ /// assert_eq!(x.nth_root(std::u32::MAX), 1);
+ ///
+ /// assert_eq!(std::i32::MAX.nth_root(30), 2);
+ /// assert_eq!(std::i32::MAX.nth_root(31), 1);
+ /// assert_eq!(std::i32::MIN.nth_root(31), -2);
+ /// assert_eq!((std::i32::MIN + 1).nth_root(31), -1);
+ ///
+ /// assert_eq!(std::u32::MAX.nth_root(31), 2);
+ /// assert_eq!(std::u32::MAX.nth_root(32), 1);
+ /// ```
+ fn nth_root(&self, n: u32) -> Self;
+
+ /// Returns the truncated principal square root of an integer -- `⌊√x⌋`
+ ///
+ /// This is solving for `r` in `r² = x`, rounding toward zero.
+ /// The result will satisfy `r² ≤ x < (r+1)²`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `self` is less than zero:
+ ///
+ /// ```should_panic
+ /// # use num_integer::Roots;
+ /// println!("no imaginary numbers... {}", (-1).sqrt());
+ /// ```
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_integer::Roots;
+ ///
+ /// let x: i32 = 12345;
+ /// assert_eq!((x * x).sqrt(), x);
+ /// assert_eq!((x * x + 1).sqrt(), x);
+ /// assert_eq!((x * x - 1).sqrt(), x - 1);
+ /// ```
+ #[inline]
+ fn sqrt(&self) -> Self {
+ self.nth_root(2)
+ }
+
+ /// Returns the truncated principal cube root of an integer --
+ /// `if x >= 0 { ⌊∛x⌋ } else { ⌈∛x⌉ }`
+ ///
+ /// This is solving for `r` in `r³ = x`, rounding toward zero.
+ /// If `x` is positive, the result will satisfy `r³ ≤ x < (r+1)³`.
+ /// If `x` is negative, then `(r-1)³ < x ≤ r³`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_integer::Roots;
+ ///
+ /// let x: i32 = 1234;
+ /// assert_eq!((x * x * x).cbrt(), x);
+ /// assert_eq!((x * x * x + 1).cbrt(), x);
+ /// assert_eq!((x * x * x - 1).cbrt(), x - 1);
+ ///
+ /// assert_eq!((-(x * x * x)).cbrt(), -x);
+ /// assert_eq!((-(x * x * x + 1)).cbrt(), -x);
+ /// assert_eq!((-(x * x * x - 1)).cbrt(), -(x - 1));
+ /// ```
+ #[inline]
+ fn cbrt(&self) -> Self {
+ self.nth_root(3)
+ }
+}
+
+/// Returns the truncated principal square root of an integer --
+/// see [Roots::sqrt](trait.Roots.html#method.sqrt).
+#[inline]
+pub fn sqrt<T: Roots>(x: T) -> T {
+ x.sqrt()
+}
+
+/// Returns the truncated principal cube root of an integer --
+/// see [Roots::cbrt](trait.Roots.html#method.cbrt).
+#[inline]
+pub fn cbrt<T: Roots>(x: T) -> T {
+ x.cbrt()
+}
+
+/// Returns the truncated principal `n`th root of an integer --
+/// see [Roots::nth_root](trait.Roots.html#tymethod.nth_root).
+#[inline]
+pub fn nth_root<T: Roots>(x: T, n: u32) -> T {
+ x.nth_root(n)
+}
+
+macro_rules! signed_roots {
+ ($T:ty, $U:ty) => {
+ impl Roots for $T {
+ #[inline]
+ fn nth_root(&self, n: u32) -> Self {
+ if *self >= 0 {
+ (*self as $U).nth_root(n) as Self
+ } else {
+ assert!(n.is_odd(), "even roots of a negative are imaginary");
+ -((self.wrapping_neg() as $U).nth_root(n) as Self)
+ }
+ }
+
+ #[inline]
+ fn sqrt(&self) -> Self {
+ assert!(*self >= 0, "the square root of a negative is imaginary");
+ (*self as $U).sqrt() as Self
+ }
+
+ #[inline]
+ fn cbrt(&self) -> Self {
+ if *self >= 0 {
+ (*self as $U).cbrt() as Self
+ } else {
+ -((self.wrapping_neg() as $U).cbrt() as Self)
+ }
+ }
+ }
+ };
+}
+
+signed_roots!(i8, u8);
+signed_roots!(i16, u16);
+signed_roots!(i32, u32);
+signed_roots!(i64, u64);
+#[cfg(has_i128)]
+signed_roots!(i128, u128);
+signed_roots!(isize, usize);
+
+#[inline]
+fn fixpoint<T, F>(mut x: T, f: F) -> T
+where
+ T: Integer + Copy,
+ F: Fn(T) -> T,
+{
+ let mut xn = f(x);
+ while x < xn {
+ x = xn;
+ xn = f(x);
+ }
+ while x > xn {
+ x = xn;
+ xn = f(x);
+ }
+ x
+}
+
+#[inline]
+fn bits<T>() -> u32 {
+ 8 * mem::size_of::<T>() as u32
+}
+
+#[inline]
+fn log2<T: PrimInt>(x: T) -> u32 {
+ debug_assert!(x > T::zero());
+ bits::<T>() - 1 - x.leading_zeros()
+}
+
+macro_rules! unsigned_roots {
+ ($T:ident) => {
+ impl Roots for $T {
+ #[inline]
+ fn nth_root(&self, n: u32) -> Self {
+ fn go(a: $T, n: u32) -> $T {
+ // Specialize small roots
+ match n {
+ 0 => panic!("can't find a root of degree 0!"),
+ 1 => return a,
+ 2 => return a.sqrt(),
+ 3 => return a.cbrt(),
+ _ => (),
+ }
+
+ // The root of values less than 2ⁿ can only be 0 or 1.
+ if bits::<$T>() <= n || a < (1 << n) {
+ return (a > 0) as $T;
+ }
+
+ if bits::<$T>() > 64 {
+ // 128-bit division is slow, so do a bitwise `nth_root` until it's small enough.
+ return if a <= core::u64::MAX as $T {
+ (a as u64).nth_root(n) as $T
+ } else {
+ let lo = (a >> n).nth_root(n) << 1;
+ let hi = lo + 1;
+ // 128-bit `checked_mul` also involves division, but we can't always
+ // compute `hiⁿ` without risking overflow. Try to avoid it though...
+ if hi.next_power_of_two().trailing_zeros() * n >= bits::<$T>() {
+ match checked_pow(hi, n as usize) {
+ Some(x) if x <= a => hi,
+ _ => lo,
+ }
+ } else {
+ if hi.pow(n) <= a {
+ hi
+ } else {
+ lo
+ }
+ }
+ };
+ }
+
+ #[cfg(feature = "std")]
+ #[inline]
+ fn guess(x: $T, n: u32) -> $T {
+ // for smaller inputs, `f64` doesn't justify its cost.
+ if bits::<$T>() <= 32 || x <= core::u32::MAX as $T {
+ 1 << ((log2(x) + n - 1) / n)
+ } else {
+ ((x as f64).ln() / f64::from(n)).exp() as $T
+ }
+ }
+
+ #[cfg(not(feature = "std"))]
+ #[inline]
+ fn guess(x: $T, n: u32) -> $T {
+ 1 << ((log2(x) + n - 1) / n)
+ }
+
+ // https://en.wikipedia.org/wiki/Nth_root_algorithm
+ let n1 = n - 1;
+ let next = |x: $T| {
+ let y = match checked_pow(x, n1 as usize) {
+ Some(ax) => a / ax,
+ None => 0,
+ };
+ (y + x * n1 as $T) / n as $T
+ };
+ fixpoint(guess(a, n), next)
+ }
+ go(*self, n)
+ }
+
+ #[inline]
+ fn sqrt(&self) -> Self {
+ fn go(a: $T) -> $T {
+ if bits::<$T>() > 64 {
+ // 128-bit division is slow, so do a bitwise `sqrt` until it's small enough.
+ return if a <= core::u64::MAX as $T {
+ (a as u64).sqrt() as $T
+ } else {
+ let lo = (a >> 2u32).sqrt() << 1;
+ let hi = lo + 1;
+ if hi * hi <= a {
+ hi
+ } else {
+ lo
+ }
+ };
+ }
+
+ if a < 4 {
+ return (a > 0) as $T;
+ }
+
+ #[cfg(feature = "std")]
+ #[inline]
+ fn guess(x: $T) -> $T {
+ (x as f64).sqrt() as $T
+ }
+
+ #[cfg(not(feature = "std"))]
+ #[inline]
+ fn guess(x: $T) -> $T {
+ 1 << ((log2(x) + 1) / 2)
+ }
+
+ // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
+ let next = |x: $T| (a / x + x) >> 1;
+ fixpoint(guess(a), next)
+ }
+ go(*self)
+ }
+
+ #[inline]
+ fn cbrt(&self) -> Self {
+ fn go(a: $T) -> $T {
+ if bits::<$T>() > 64 {
+ // 128-bit division is slow, so do a bitwise `cbrt` until it's small enough.
+ return if a <= core::u64::MAX as $T {
+ (a as u64).cbrt() as $T
+ } else {
+ let lo = (a >> 3u32).cbrt() << 1;
+ let hi = lo + 1;
+ if hi * hi * hi <= a {
+ hi
+ } else {
+ lo
+ }
+ };
+ }
+
+ if bits::<$T>() <= 32 {
+ // Implementation based on Hacker's Delight `icbrt2`
+ let mut x = a;
+ let mut y2 = 0;
+ let mut y = 0;
+ let smax = bits::<$T>() / 3;
+ for s in (0..smax + 1).rev() {
+ let s = s * 3;
+ y2 *= 4;
+ y *= 2;
+ let b = 3 * (y2 + y) + 1;
+ if x >> s >= b {
+ x -= b << s;
+ y2 += 2 * y + 1;
+ y += 1;
+ }
+ }
+ return y;
+ }
+
+ if a < 8 {
+ return (a > 0) as $T;
+ }
+ if a <= core::u32::MAX as $T {
+ return (a as u32).cbrt() as $T;
+ }
+
+ #[cfg(feature = "std")]
+ #[inline]
+ fn guess(x: $T) -> $T {
+ (x as f64).cbrt() as $T
+ }
+
+ #[cfg(not(feature = "std"))]
+ #[inline]
+ fn guess(x: $T) -> $T {
+ 1 << ((log2(x) + 2) / 3)
+ }
+
+ // https://en.wikipedia.org/wiki/Cube_root#Numerical_methods
+ let next = |x: $T| (a / (x * x) + x * 2) / 3;
+ fixpoint(guess(a), next)
+ }
+ go(*self)
+ }
+ }
+ };
+}
+
+unsigned_roots!(u8);
+unsigned_roots!(u16);
+unsigned_roots!(u32);
+unsigned_roots!(u64);
+#[cfg(has_i128)]
+unsigned_roots!(u128);
+unsigned_roots!(usize);
diff --git a/third_party/rust/num-integer/tests/average.rs b/third_party/rust/num-integer/tests/average.rs
new file mode 100644
index 0000000000..9fd8cf18f4
--- /dev/null
+++ b/third_party/rust/num-integer/tests/average.rs
@@ -0,0 +1,100 @@
+extern crate num_integer;
+extern crate num_traits;
+
+macro_rules! test_average {
+ ($I:ident, $U:ident) => {
+ mod $I {
+ mod ceil {
+ use num_integer::Average;
+
+ #[test]
+ fn same_sign() {
+ assert_eq!((14 as $I).average_ceil(&16), 15 as $I);
+ assert_eq!((14 as $I).average_ceil(&17), 16 as $I);
+
+ let max = $crate::std::$I::MAX;
+ assert_eq!((max - 3).average_ceil(&(max - 1)), max - 2);
+ assert_eq!((max - 3).average_ceil(&(max - 2)), max - 2);
+ }
+
+ #[test]
+ fn different_sign() {
+ assert_eq!((14 as $I).average_ceil(&-4), 5 as $I);
+ assert_eq!((14 as $I).average_ceil(&-5), 5 as $I);
+
+ let min = $crate::std::$I::MIN;
+ let max = $crate::std::$I::MAX;
+ assert_eq!(min.average_ceil(&max), 0 as $I);
+ }
+ }
+
+ mod floor {
+ use num_integer::Average;
+
+ #[test]
+ fn same_sign() {
+ assert_eq!((14 as $I).average_floor(&16), 15 as $I);
+ assert_eq!((14 as $I).average_floor(&17), 15 as $I);
+
+ let max = $crate::std::$I::MAX;
+ assert_eq!((max - 3).average_floor(&(max - 1)), max - 2);
+ assert_eq!((max - 3).average_floor(&(max - 2)), max - 3);
+ }
+
+ #[test]
+ fn different_sign() {
+ assert_eq!((14 as $I).average_floor(&-4), 5 as $I);
+ assert_eq!((14 as $I).average_floor(&-5), 4 as $I);
+
+ let min = $crate::std::$I::MIN;
+ let max = $crate::std::$I::MAX;
+ assert_eq!(min.average_floor(&max), -1 as $I);
+ }
+ }
+ }
+
+ mod $U {
+ mod ceil {
+ use num_integer::Average;
+
+ #[test]
+ fn bounded() {
+ assert_eq!((14 as $U).average_ceil(&16), 15 as $U);
+ assert_eq!((14 as $U).average_ceil(&17), 16 as $U);
+ }
+
+ #[test]
+ fn overflow() {
+ let max = $crate::std::$U::MAX;
+ assert_eq!((max - 3).average_ceil(&(max - 1)), max - 2);
+ assert_eq!((max - 3).average_ceil(&(max - 2)), max - 2);
+ }
+ }
+
+ mod floor {
+ use num_integer::Average;
+
+ #[test]
+ fn bounded() {
+ assert_eq!((14 as $U).average_floor(&16), 15 as $U);
+ assert_eq!((14 as $U).average_floor(&17), 15 as $U);
+ }
+
+ #[test]
+ fn overflow() {
+ let max = $crate::std::$U::MAX;
+ assert_eq!((max - 3).average_floor(&(max - 1)), max - 2);
+ assert_eq!((max - 3).average_floor(&(max - 2)), max - 3);
+ }
+ }
+ }
+ };
+}
+
+test_average!(i8, u8);
+test_average!(i16, u16);
+test_average!(i32, u32);
+test_average!(i64, u64);
+#[cfg(has_i128)]
+test_average!(i128, u128);
+test_average!(isize, usize);
diff --git a/third_party/rust/num-integer/tests/roots.rs b/third_party/rust/num-integer/tests/roots.rs
new file mode 100644
index 0000000000..f85f9e0211
--- /dev/null
+++ b/third_party/rust/num-integer/tests/roots.rs
@@ -0,0 +1,272 @@
+extern crate num_integer;
+extern crate num_traits;
+
+use num_integer::Roots;
+use num_traits::checked_pow;
+use num_traits::{AsPrimitive, PrimInt, Signed};
+use std::f64::MANTISSA_DIGITS;
+use std::fmt::Debug;
+use std::mem;
+
+trait TestInteger: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static {}
+
+impl<T> TestInteger for T where T: Roots + PrimInt + Debug + AsPrimitive<f64> + 'static {}
+
+/// Check that each root is correct
+///
+/// If `x` is positive, check `rⁿ ≤ x < (r+1)ⁿ`.
+/// If `x` is negative, check `(r-1)ⁿ < x ≤ rⁿ`.
+fn check<T>(v: &[T], n: u32)
+where
+ T: TestInteger,
+{
+ for i in v {
+ let rt = i.nth_root(n);
+ // println!("nth_root({:?}, {}) = {:?}", i, n, rt);
+ if n == 2 {
+ assert_eq!(rt, i.sqrt());
+ } else if n == 3 {
+ assert_eq!(rt, i.cbrt());
+ }
+ if *i >= T::zero() {
+ let rt1 = rt + T::one();
+ assert!(rt.pow(n) <= *i);
+ if let Some(x) = checked_pow(rt1, n as usize) {
+ assert!(*i < x);
+ }
+ } else {
+ let rt1 = rt - T::one();
+ assert!(rt < T::zero());
+ assert!(*i <= rt.pow(n));
+ if let Some(x) = checked_pow(rt1, n as usize) {
+ assert!(x < *i);
+ }
+ };
+ }
+}
+
+/// Get the maximum value that will round down as `f64` (if any),
+/// and its successor that will round up.
+///
+/// Important because the `std` implementations cast to `f64` to
+/// get a close approximation of the roots.
+fn mantissa_max<T>() -> Option<(T, T)>
+where
+ T: TestInteger,
+{
+ let bits = if T::min_value().is_zero() {
+ 8 * mem::size_of::<T>()
+ } else {
+ 8 * mem::size_of::<T>() - 1
+ };
+ if bits > MANTISSA_DIGITS as usize {
+ let rounding_bit = T::one() << (bits - MANTISSA_DIGITS as usize - 1);
+ let x = T::max_value() - rounding_bit;
+
+ let x1 = x + T::one();
+ let x2 = x1 + T::one();
+ assert!(x.as_() < x1.as_());
+ assert_eq!(x1.as_(), x2.as_());
+
+ Some((x, x1))
+ } else {
+ None
+ }
+}
+
+fn extend<T>(v: &mut Vec<T>, start: T, end: T)
+where
+ T: TestInteger,
+{
+ let mut i = start;
+ while i < end {
+ v.push(i);
+ i = i + T::one();
+ }
+ v.push(i);
+}
+
+fn extend_shl<T>(v: &mut Vec<T>, start: T, end: T, mask: T)
+where
+ T: TestInteger,
+{
+ let mut i = start;
+ while i != end {
+ v.push(i);
+ i = (i << 1) & mask;
+ }
+}
+
+fn extend_shr<T>(v: &mut Vec<T>, start: T, end: T)
+where
+ T: TestInteger,
+{
+ let mut i = start;
+ while i != end {
+ v.push(i);
+ i = i >> 1;
+ }
+}
+
+fn pos<T>() -> Vec<T>
+where
+ T: TestInteger,
+ i8: AsPrimitive<T>,
+{
+ let mut v: Vec<T> = vec![];
+ if mem::size_of::<T>() == 1 {
+ extend(&mut v, T::zero(), T::max_value());
+ } else {
+ extend(&mut v, T::zero(), i8::max_value().as_());
+ extend(
+ &mut v,
+ T::max_value() - i8::max_value().as_(),
+ T::max_value(),
+ );
+ if let Some((i, j)) = mantissa_max::<T>() {
+ v.push(i);
+ v.push(j);
+ }
+ extend_shl(&mut v, T::max_value(), T::zero(), !T::min_value());
+ extend_shr(&mut v, T::max_value(), T::zero());
+ }
+ v
+}
+
+fn neg<T>() -> Vec<T>
+where
+ T: TestInteger + Signed,
+ i8: AsPrimitive<T>,
+{
+ let mut v: Vec<T> = vec![];
+ if mem::size_of::<T>() <= 1 {
+ extend(&mut v, T::min_value(), T::zero());
+ } else {
+ extend(&mut v, i8::min_value().as_(), T::zero());
+ extend(
+ &mut v,
+ T::min_value(),
+ T::min_value() - i8::min_value().as_(),
+ );
+ if let Some((i, j)) = mantissa_max::<T>() {
+ v.push(-i);
+ v.push(-j);
+ }
+ extend_shl(&mut v, -T::one(), T::min_value(), !T::zero());
+ extend_shr(&mut v, T::min_value(), -T::one());
+ }
+ v
+}
+
+macro_rules! test_roots {
+ ($I:ident, $U:ident) => {
+ mod $I {
+ use check;
+ use neg;
+ use num_integer::Roots;
+ use pos;
+ use std::mem;
+
+ #[test]
+ #[should_panic]
+ fn zeroth_root() {
+ (123 as $I).nth_root(0);
+ }
+
+ #[test]
+ fn sqrt() {
+ check(&pos::<$I>(), 2);
+ }
+
+ #[test]
+ #[should_panic]
+ fn sqrt_neg() {
+ (-123 as $I).sqrt();
+ }
+
+ #[test]
+ fn cbrt() {
+ check(&pos::<$I>(), 3);
+ }
+
+ #[test]
+ fn cbrt_neg() {
+ check(&neg::<$I>(), 3);
+ }
+
+ #[test]
+ fn nth_root() {
+ let bits = 8 * mem::size_of::<$I>() as u32 - 1;
+ let pos = pos::<$I>();
+ for n in 4..bits {
+ check(&pos, n);
+ }
+ }
+
+ #[test]
+ fn nth_root_neg() {
+ let bits = 8 * mem::size_of::<$I>() as u32 - 1;
+ let neg = neg::<$I>();
+ for n in 2..bits / 2 {
+ check(&neg, 2 * n + 1);
+ }
+ }
+
+ #[test]
+ fn bit_size() {
+ let bits = 8 * mem::size_of::<$I>() as u32 - 1;
+ assert_eq!($I::max_value().nth_root(bits - 1), 2);
+ assert_eq!($I::max_value().nth_root(bits), 1);
+ assert_eq!($I::min_value().nth_root(bits), -2);
+ assert_eq!(($I::min_value() + 1).nth_root(bits), -1);
+ }
+ }
+
+ mod $U {
+ use check;
+ use num_integer::Roots;
+ use pos;
+ use std::mem;
+
+ #[test]
+ #[should_panic]
+ fn zeroth_root() {
+ (123 as $U).nth_root(0);
+ }
+
+ #[test]
+ fn sqrt() {
+ check(&pos::<$U>(), 2);
+ }
+
+ #[test]
+ fn cbrt() {
+ check(&pos::<$U>(), 3);
+ }
+
+ #[test]
+ fn nth_root() {
+ let bits = 8 * mem::size_of::<$I>() as u32 - 1;
+ let pos = pos::<$I>();
+ for n in 4..bits {
+ check(&pos, n);
+ }
+ }
+
+ #[test]
+ fn bit_size() {
+ let bits = 8 * mem::size_of::<$U>() as u32;
+ assert_eq!($U::max_value().nth_root(bits - 1), 2);
+ assert_eq!($U::max_value().nth_root(bits), 1);
+ }
+ }
+ };
+}
+
+test_roots!(i8, u8);
+test_roots!(i16, u16);
+test_roots!(i32, u32);
+test_roots!(i64, u64);
+#[cfg(has_i128)]
+test_roots!(i128, u128);
+test_roots!(isize, usize);