summaryrefslogtreecommitdiffstats
path: root/third_party/rust/object/src/write/elf
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/object/src/write/elf
parentInitial commit. (diff)
downloadfirefox-esr-upstream.tar.xz
firefox-esr-upstream.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/object/src/write/elf')
-rw-r--r--third_party/rust/object/src/write/elf/mod.rs9
-rw-r--r--third_party/rust/object/src/write/elf/object.rs838
-rw-r--r--third_party/rust/object/src/write/elf/writer.rs1955
3 files changed, 2802 insertions, 0 deletions
diff --git a/third_party/rust/object/src/write/elf/mod.rs b/third_party/rust/object/src/write/elf/mod.rs
new file mode 100644
index 0000000000..3a4f3716e8
--- /dev/null
+++ b/third_party/rust/object/src/write/elf/mod.rs
@@ -0,0 +1,9 @@
+//! Support for writing ELF files.
+//!
+//! Provides [`Writer`] for low level writing of ELF files.
+//! This is also used to provide ELF support for [`write::Object`](crate::write::Object).
+
+mod object;
+
+mod writer;
+pub use writer::*;
diff --git a/third_party/rust/object/src/write/elf/object.rs b/third_party/rust/object/src/write/elf/object.rs
new file mode 100644
index 0000000000..305d522e66
--- /dev/null
+++ b/third_party/rust/object/src/write/elf/object.rs
@@ -0,0 +1,838 @@
+use alloc::vec::Vec;
+
+use crate::elf;
+use crate::write::elf::writer::*;
+use crate::write::string::StringId;
+use crate::write::*;
+use crate::AddressSize;
+
+#[derive(Clone, Copy)]
+struct ComdatOffsets {
+ offset: usize,
+ str_id: StringId,
+}
+
+#[derive(Clone, Copy)]
+struct SectionOffsets {
+ index: SectionIndex,
+ offset: usize,
+ str_id: StringId,
+ reloc_offset: usize,
+ reloc_str_id: Option<StringId>,
+}
+
+#[derive(Default, Clone, Copy)]
+struct SymbolOffsets {
+ index: SymbolIndex,
+ str_id: Option<StringId>,
+}
+
+impl<'a> Object<'a> {
+ pub(crate) fn elf_section_info(
+ &self,
+ section: StandardSection,
+ ) -> (&'static [u8], &'static [u8], SectionKind) {
+ match section {
+ StandardSection::Text => (&[], &b".text"[..], SectionKind::Text),
+ StandardSection::Data => (&[], &b".data"[..], SectionKind::Data),
+ StandardSection::ReadOnlyData | StandardSection::ReadOnlyString => {
+ (&[], &b".rodata"[..], SectionKind::ReadOnlyData)
+ }
+ StandardSection::ReadOnlyDataWithRel => {
+ (&[], b".data.rel.ro", SectionKind::ReadOnlyDataWithRel)
+ }
+ StandardSection::UninitializedData => {
+ (&[], &b".bss"[..], SectionKind::UninitializedData)
+ }
+ StandardSection::Tls => (&[], &b".tdata"[..], SectionKind::Tls),
+ StandardSection::UninitializedTls => {
+ (&[], &b".tbss"[..], SectionKind::UninitializedTls)
+ }
+ StandardSection::TlsVariables => {
+ // Unsupported section.
+ (&[], &[], SectionKind::TlsVariables)
+ }
+ StandardSection::Common => {
+ // Unsupported section.
+ (&[], &[], SectionKind::Common)
+ }
+ }
+ }
+
+ pub(crate) fn elf_subsection_name(&self, section: &[u8], value: &[u8]) -> Vec<u8> {
+ let mut name = section.to_vec();
+ name.push(b'.');
+ name.extend_from_slice(value);
+ name
+ }
+
+ fn elf_has_relocation_addend(&self) -> Result<bool> {
+ Ok(match self.architecture {
+ Architecture::Aarch64 => true,
+ Architecture::Aarch64_Ilp32 => true,
+ Architecture::Arm => false,
+ Architecture::Avr => true,
+ Architecture::Bpf => false,
+ Architecture::I386 => false,
+ Architecture::X86_64 => true,
+ Architecture::X86_64_X32 => true,
+ Architecture::Hexagon => true,
+ Architecture::LoongArch64 => true,
+ Architecture::Mips => false,
+ Architecture::Mips64 => true,
+ Architecture::Msp430 => true,
+ Architecture::PowerPc => true,
+ Architecture::PowerPc64 => true,
+ Architecture::Riscv64 => true,
+ Architecture::Riscv32 => true,
+ Architecture::S390x => true,
+ Architecture::Sbf => false,
+ Architecture::Sparc64 => true,
+ Architecture::Xtensa => true,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented architecture {:?}",
+ self.architecture
+ )));
+ }
+ })
+ }
+
+ pub(crate) fn elf_fixup_relocation(&mut self, mut relocation: &mut Relocation) -> Result<i64> {
+ // Return true if we should use a section symbol to avoid preemption.
+ fn want_section_symbol(relocation: &Relocation, symbol: &Symbol) -> bool {
+ if symbol.scope != SymbolScope::Dynamic {
+ // Only dynamic symbols can be preemptible.
+ return false;
+ }
+ match symbol.kind {
+ SymbolKind::Text | SymbolKind::Data => {}
+ _ => return false,
+ }
+ match relocation.kind {
+ // Anything using GOT or PLT is preemptible.
+ // We also require that `Other` relocations must already be correct.
+ RelocationKind::Got
+ | RelocationKind::GotRelative
+ | RelocationKind::GotBaseRelative
+ | RelocationKind::PltRelative
+ | RelocationKind::Elf(_) => return false,
+ // Absolute relocations are preemptible for non-local data.
+ // TODO: not sure if this rule is exactly correct
+ // This rule was added to handle global data references in debuginfo.
+ // Maybe this should be a new relocation kind so that the caller can decide.
+ RelocationKind::Absolute => {
+ if symbol.kind == SymbolKind::Data {
+ return false;
+ }
+ }
+ _ => {}
+ }
+ true
+ }
+
+ // Use section symbols for relocations where required to avoid preemption.
+ // Otherwise, the linker will fail with:
+ // relocation R_X86_64_PC32 against symbol `SomeSymbolName' can not be used when
+ // making a shared object; recompile with -fPIC
+ let symbol = &self.symbols[relocation.symbol.0];
+ if want_section_symbol(relocation, symbol) {
+ if let Some(section) = symbol.section.id() {
+ relocation.addend += symbol.value as i64;
+ relocation.symbol = self.section_symbol(section);
+ }
+ }
+
+ // Determine whether the addend is stored in the relocation or the data.
+ if self.elf_has_relocation_addend()? {
+ Ok(0)
+ } else {
+ let constant = relocation.addend;
+ relocation.addend = 0;
+ Ok(constant)
+ }
+ }
+
+ pub(crate) fn elf_write(&self, buffer: &mut dyn WritableBuffer) -> Result<()> {
+ // Create reloc section header names so we can reference them.
+ let is_rela = self.elf_has_relocation_addend()?;
+ let reloc_names: Vec<_> = self
+ .sections
+ .iter()
+ .map(|section| {
+ let mut reloc_name = Vec::with_capacity(
+ if is_rela { ".rela".len() } else { ".rel".len() } + section.name.len(),
+ );
+ if !section.relocations.is_empty() {
+ reloc_name.extend_from_slice(if is_rela {
+ &b".rela"[..]
+ } else {
+ &b".rel"[..]
+ });
+ reloc_name.extend_from_slice(&section.name);
+ }
+ reloc_name
+ })
+ .collect();
+
+ // Start calculating offsets of everything.
+ let is_64 = match self.architecture.address_size().unwrap() {
+ AddressSize::U8 | AddressSize::U16 | AddressSize::U32 => false,
+ AddressSize::U64 => true,
+ };
+ let mut writer = Writer::new(self.endian, is_64, buffer);
+ writer.reserve_file_header();
+
+ // Calculate size of section data.
+ let mut comdat_offsets = Vec::with_capacity(self.comdats.len());
+ for comdat in &self.comdats {
+ if comdat.kind != ComdatKind::Any {
+ return Err(Error(format!(
+ "unsupported COMDAT symbol `{}` kind {:?}",
+ self.symbols[comdat.symbol.0].name().unwrap_or(""),
+ comdat.kind
+ )));
+ }
+
+ writer.reserve_section_index();
+ let offset = writer.reserve_comdat(comdat.sections.len());
+ let str_id = writer.add_section_name(b".group");
+ comdat_offsets.push(ComdatOffsets { offset, str_id });
+ }
+ let mut section_offsets = Vec::with_capacity(self.sections.len());
+ for (section, reloc_name) in self.sections.iter().zip(reloc_names.iter()) {
+ let index = writer.reserve_section_index();
+ let offset = writer.reserve(section.data.len(), section.align as usize);
+ let str_id = writer.add_section_name(&section.name);
+ let mut reloc_str_id = None;
+ if !section.relocations.is_empty() {
+ writer.reserve_section_index();
+ reloc_str_id = Some(writer.add_section_name(reloc_name));
+ }
+ section_offsets.push(SectionOffsets {
+ index,
+ offset,
+ str_id,
+ // Relocation data is reserved later.
+ reloc_offset: 0,
+ reloc_str_id,
+ });
+ }
+
+ // Calculate index of symbols and add symbol strings to strtab.
+ let mut symbol_offsets = vec![SymbolOffsets::default(); self.symbols.len()];
+ writer.reserve_null_symbol_index();
+ // Local symbols must come before global.
+ for (index, symbol) in self.symbols.iter().enumerate() {
+ if symbol.is_local() {
+ let section_index = symbol.section.id().map(|s| section_offsets[s.0].index);
+ symbol_offsets[index].index = writer.reserve_symbol_index(section_index);
+ }
+ }
+ let symtab_num_local = writer.symbol_count();
+ for (index, symbol) in self.symbols.iter().enumerate() {
+ if !symbol.is_local() {
+ let section_index = symbol.section.id().map(|s| section_offsets[s.0].index);
+ symbol_offsets[index].index = writer.reserve_symbol_index(section_index);
+ }
+ }
+ for (index, symbol) in self.symbols.iter().enumerate() {
+ if symbol.kind != SymbolKind::Section && !symbol.name.is_empty() {
+ symbol_offsets[index].str_id = Some(writer.add_string(&symbol.name));
+ }
+ }
+
+ // Calculate size of symbols.
+ writer.reserve_symtab_section_index();
+ writer.reserve_symtab();
+ if writer.symtab_shndx_needed() {
+ writer.reserve_symtab_shndx_section_index();
+ }
+ writer.reserve_symtab_shndx();
+ writer.reserve_strtab_section_index();
+ writer.reserve_strtab();
+
+ // Calculate size of relocations.
+ for (index, section) in self.sections.iter().enumerate() {
+ let count = section.relocations.len();
+ if count != 0 {
+ section_offsets[index].reloc_offset = writer.reserve_relocations(count, is_rela);
+ }
+ }
+
+ // Calculate size of section headers.
+ writer.reserve_shstrtab_section_index();
+ writer.reserve_shstrtab();
+ writer.reserve_section_headers();
+
+ // Start writing.
+ let e_type = elf::ET_REL;
+ let e_machine = match self.architecture {
+ Architecture::Aarch64 => elf::EM_AARCH64,
+ Architecture::Aarch64_Ilp32 => elf::EM_AARCH64,
+ Architecture::Arm => elf::EM_ARM,
+ Architecture::Avr => elf::EM_AVR,
+ Architecture::Bpf => elf::EM_BPF,
+ Architecture::I386 => elf::EM_386,
+ Architecture::X86_64 => elf::EM_X86_64,
+ Architecture::X86_64_X32 => elf::EM_X86_64,
+ Architecture::Hexagon => elf::EM_HEXAGON,
+ Architecture::LoongArch64 => elf::EM_LOONGARCH,
+ Architecture::Mips => elf::EM_MIPS,
+ Architecture::Mips64 => elf::EM_MIPS,
+ Architecture::Msp430 => elf::EM_MSP430,
+ Architecture::PowerPc => elf::EM_PPC,
+ Architecture::PowerPc64 => elf::EM_PPC64,
+ Architecture::Riscv32 => elf::EM_RISCV,
+ Architecture::Riscv64 => elf::EM_RISCV,
+ Architecture::S390x => elf::EM_S390,
+ Architecture::Sbf => elf::EM_SBF,
+ Architecture::Sparc64 => elf::EM_SPARCV9,
+ Architecture::Xtensa => elf::EM_XTENSA,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented architecture {:?}",
+ self.architecture
+ )));
+ }
+ };
+ let (os_abi, abi_version, e_flags) = if let FileFlags::Elf {
+ os_abi,
+ abi_version,
+ e_flags,
+ } = self.flags
+ {
+ (os_abi, abi_version, e_flags)
+ } else {
+ (elf::ELFOSABI_NONE, 0, 0)
+ };
+ writer.write_file_header(&FileHeader {
+ os_abi,
+ abi_version,
+ e_type,
+ e_machine,
+ e_entry: 0,
+ e_flags,
+ })?;
+
+ // Write section data.
+ for comdat in &self.comdats {
+ writer.write_comdat_header();
+ for section in &comdat.sections {
+ writer.write_comdat_entry(section_offsets[section.0].index);
+ }
+ }
+ for (index, section) in self.sections.iter().enumerate() {
+ let len = section.data.len();
+ if len != 0 {
+ writer.write_align(section.align as usize);
+ debug_assert_eq!(section_offsets[index].offset, writer.len());
+ writer.write(&section.data);
+ }
+ }
+
+ // Write symbols.
+ writer.write_null_symbol();
+ let mut write_symbol = |index: usize, symbol: &Symbol| -> Result<()> {
+ let st_info = if let SymbolFlags::Elf { st_info, .. } = symbol.flags {
+ st_info
+ } else {
+ let st_type = match symbol.kind {
+ SymbolKind::Null => elf::STT_NOTYPE,
+ SymbolKind::Text => {
+ if symbol.is_undefined() {
+ elf::STT_NOTYPE
+ } else {
+ elf::STT_FUNC
+ }
+ }
+ SymbolKind::Data => {
+ if symbol.is_undefined() {
+ elf::STT_NOTYPE
+ } else if symbol.is_common() {
+ elf::STT_COMMON
+ } else {
+ elf::STT_OBJECT
+ }
+ }
+ SymbolKind::Section => elf::STT_SECTION,
+ SymbolKind::File => elf::STT_FILE,
+ SymbolKind::Tls => elf::STT_TLS,
+ SymbolKind::Label => elf::STT_NOTYPE,
+ SymbolKind::Unknown => {
+ if symbol.is_undefined() {
+ elf::STT_NOTYPE
+ } else {
+ return Err(Error(format!(
+ "unimplemented symbol `{}` kind {:?}",
+ symbol.name().unwrap_or(""),
+ symbol.kind
+ )));
+ }
+ }
+ };
+ let st_bind = if symbol.weak {
+ elf::STB_WEAK
+ } else if symbol.is_undefined() {
+ elf::STB_GLOBAL
+ } else if symbol.is_local() {
+ elf::STB_LOCAL
+ } else {
+ elf::STB_GLOBAL
+ };
+ (st_bind << 4) + st_type
+ };
+ let st_other = if let SymbolFlags::Elf { st_other, .. } = symbol.flags {
+ st_other
+ } else if symbol.scope == SymbolScope::Linkage {
+ elf::STV_HIDDEN
+ } else {
+ elf::STV_DEFAULT
+ };
+ let (st_shndx, section) = match symbol.section {
+ SymbolSection::None => {
+ debug_assert_eq!(symbol.kind, SymbolKind::File);
+ (elf::SHN_ABS, None)
+ }
+ SymbolSection::Undefined => (elf::SHN_UNDEF, None),
+ SymbolSection::Absolute => (elf::SHN_ABS, None),
+ SymbolSection::Common => (elf::SHN_COMMON, None),
+ SymbolSection::Section(id) => (0, Some(section_offsets[id.0].index)),
+ };
+ writer.write_symbol(&Sym {
+ name: symbol_offsets[index].str_id,
+ section,
+ st_info,
+ st_other,
+ st_shndx,
+ st_value: symbol.value,
+ st_size: symbol.size,
+ });
+ Ok(())
+ };
+ for (index, symbol) in self.symbols.iter().enumerate() {
+ if symbol.is_local() {
+ write_symbol(index, symbol)?;
+ }
+ }
+ for (index, symbol) in self.symbols.iter().enumerate() {
+ if !symbol.is_local() {
+ write_symbol(index, symbol)?;
+ }
+ }
+ writer.write_symtab_shndx();
+ writer.write_strtab();
+
+ // Write relocations.
+ for (index, section) in self.sections.iter().enumerate() {
+ if !section.relocations.is_empty() {
+ writer.write_align_relocation();
+ debug_assert_eq!(section_offsets[index].reloc_offset, writer.len());
+ for reloc in &section.relocations {
+ let r_type = match self.architecture {
+ Architecture::Aarch64 => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
+ elf::R_AARCH64_ABS64
+ }
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
+ elf::R_AARCH64_ABS32
+ }
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 16) => {
+ elf::R_AARCH64_ABS16
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 64) => {
+ elf::R_AARCH64_PREL64
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
+ elf::R_AARCH64_PREL32
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 16) => {
+ elf::R_AARCH64_PREL16
+ }
+ (RelocationKind::Relative, RelocationEncoding::AArch64Call, 26)
+ | (RelocationKind::PltRelative, RelocationEncoding::AArch64Call, 26) => {
+ elf::R_AARCH64_CALL26
+ }
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Aarch64_Ilp32 => {
+ match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
+ elf::R_AARCH64_P32_ABS32
+ }
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented relocation {:?}",
+ reloc
+ )));
+ }
+ }
+ }
+ Architecture::Arm => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_ARM_ABS32,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Avr => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_AVR_32,
+ (RelocationKind::Absolute, _, 16) => elf::R_AVR_16,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Bpf => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 64) => elf::R_BPF_64_64,
+ (RelocationKind::Absolute, _, 32) => elf::R_BPF_64_32,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::I386 => match (reloc.kind, reloc.size) {
+ (RelocationKind::Absolute, 32) => elf::R_386_32,
+ (RelocationKind::Relative, 32) => elf::R_386_PC32,
+ (RelocationKind::Got, 32) => elf::R_386_GOT32,
+ (RelocationKind::PltRelative, 32) => elf::R_386_PLT32,
+ (RelocationKind::GotBaseOffset, 32) => elf::R_386_GOTOFF,
+ (RelocationKind::GotBaseRelative, 32) => elf::R_386_GOTPC,
+ (RelocationKind::Absolute, 16) => elf::R_386_16,
+ (RelocationKind::Relative, 16) => elf::R_386_PC16,
+ (RelocationKind::Absolute, 8) => elf::R_386_8,
+ (RelocationKind::Relative, 8) => elf::R_386_PC8,
+ (RelocationKind::Elf(x), _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::X86_64 | Architecture::X86_64_X32 => {
+ match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
+ elf::R_X86_64_64
+ }
+ (RelocationKind::Relative, _, 32) => elf::R_X86_64_PC32,
+ (RelocationKind::Got, _, 32) => elf::R_X86_64_GOT32,
+ (RelocationKind::PltRelative, _, 32) => elf::R_X86_64_PLT32,
+ (RelocationKind::GotRelative, _, 32) => elf::R_X86_64_GOTPCREL,
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
+ elf::R_X86_64_32
+ }
+ (RelocationKind::Absolute, RelocationEncoding::X86Signed, 32) => {
+ elf::R_X86_64_32S
+ }
+ (RelocationKind::Absolute, _, 16) => elf::R_X86_64_16,
+ (RelocationKind::Relative, _, 16) => elf::R_X86_64_PC16,
+ (RelocationKind::Absolute, _, 8) => elf::R_X86_64_8,
+ (RelocationKind::Relative, _, 8) => elf::R_X86_64_PC8,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented relocation {:?}",
+ reloc
+ )));
+ }
+ }
+ }
+ Architecture::Hexagon => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_HEX_32,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::LoongArch64 => match (reloc.kind, reloc.encoding, reloc.size)
+ {
+ (RelocationKind::Absolute, _, 32) => elf::R_LARCH_32,
+ (RelocationKind::Absolute, _, 64) => elf::R_LARCH_64,
+ (RelocationKind::Relative, _, 32) => elf::R_LARCH_32_PCREL,
+ (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 16)
+ | (
+ RelocationKind::PltRelative,
+ RelocationEncoding::LoongArchBranch,
+ 16,
+ ) => elf::R_LARCH_B16,
+ (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 21)
+ | (
+ RelocationKind::PltRelative,
+ RelocationEncoding::LoongArchBranch,
+ 21,
+ ) => elf::R_LARCH_B21,
+ (RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 26)
+ | (
+ RelocationKind::PltRelative,
+ RelocationEncoding::LoongArchBranch,
+ 26,
+ ) => elf::R_LARCH_B26,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Mips | Architecture::Mips64 => {
+ match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 16) => elf::R_MIPS_16,
+ (RelocationKind::Absolute, _, 32) => elf::R_MIPS_32,
+ (RelocationKind::Absolute, _, 64) => elf::R_MIPS_64,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented relocation {:?}",
+ reloc
+ )));
+ }
+ }
+ }
+ Architecture::Msp430 => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_MSP430_32,
+ (RelocationKind::Absolute, _, 16) => elf::R_MSP430_16_BYTE,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::PowerPc => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_PPC_ADDR32,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::PowerPc64 => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_PPC64_ADDR32,
+ (RelocationKind::Absolute, _, 64) => elf::R_PPC64_ADDR64,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Riscv32 | Architecture::Riscv64 => {
+ match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_RISCV_32,
+ (RelocationKind::Absolute, _, 64) => elf::R_RISCV_64,
+ (RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
+ elf::R_RISCV_32_PCREL
+ }
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!(
+ "unimplemented relocation {:?}",
+ reloc
+ )));
+ }
+ }
+ }
+ Architecture::S390x => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 8) => {
+ elf::R_390_8
+ }
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 16) => {
+ elf::R_390_16
+ }
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
+ elf::R_390_32
+ }
+ (RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
+ elf::R_390_64
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 16) => {
+ elf::R_390_PC16
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
+ elf::R_390_PC32
+ }
+ (RelocationKind::Relative, RelocationEncoding::Generic, 64) => {
+ elf::R_390_PC64
+ }
+ (RelocationKind::Relative, RelocationEncoding::S390xDbl, 16) => {
+ elf::R_390_PC16DBL
+ }
+ (RelocationKind::Relative, RelocationEncoding::S390xDbl, 32) => {
+ elf::R_390_PC32DBL
+ }
+ (RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 16) => {
+ elf::R_390_PLT16DBL
+ }
+ (RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 32) => {
+ elf::R_390_PLT32DBL
+ }
+ (RelocationKind::Got, RelocationEncoding::Generic, 16) => {
+ elf::R_390_GOT16
+ }
+ (RelocationKind::Got, RelocationEncoding::Generic, 32) => {
+ elf::R_390_GOT32
+ }
+ (RelocationKind::Got, RelocationEncoding::Generic, 64) => {
+ elf::R_390_GOT64
+ }
+ (RelocationKind::GotRelative, RelocationEncoding::S390xDbl, 32) => {
+ elf::R_390_GOTENT
+ }
+ (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 16) => {
+ elf::R_390_GOTOFF16
+ }
+ (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 32) => {
+ elf::R_390_GOTOFF32
+ }
+ (RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 64) => {
+ elf::R_390_GOTOFF64
+ }
+ (RelocationKind::GotBaseRelative, RelocationEncoding::Generic, 64) => {
+ elf::R_390_GOTPC
+ }
+ (RelocationKind::GotBaseRelative, RelocationEncoding::S390xDbl, 32) => {
+ elf::R_390_GOTPCDBL
+ }
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Sbf => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 64) => elf::R_SBF_64_64,
+ (RelocationKind::Absolute, _, 32) => elf::R_SBF_64_32,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Sparc64 => match (reloc.kind, reloc.encoding, reloc.size) {
+ // TODO: use R_SPARC_32/R_SPARC_64 if aligned.
+ (RelocationKind::Absolute, _, 32) => elf::R_SPARC_UA32,
+ (RelocationKind::Absolute, _, 64) => elf::R_SPARC_UA64,
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ Architecture::Xtensa => match (reloc.kind, reloc.encoding, reloc.size) {
+ (RelocationKind::Absolute, _, 32) => elf::R_XTENSA_32,
+ (RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
+ elf::R_XTENSA_32_PCREL
+ }
+ (RelocationKind::Elf(x), _, _) => x,
+ _ => {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ },
+ _ => {
+ if let RelocationKind::Elf(x) = reloc.kind {
+ x
+ } else {
+ return Err(Error(format!("unimplemented relocation {:?}", reloc)));
+ }
+ }
+ };
+ let r_sym = symbol_offsets[reloc.symbol.0].index.0;
+ writer.write_relocation(
+ is_rela,
+ &Rel {
+ r_offset: reloc.offset,
+ r_sym,
+ r_type,
+ r_addend: reloc.addend,
+ },
+ );
+ }
+ }
+ }
+
+ writer.write_shstrtab();
+
+ // Write section headers.
+ writer.write_null_section_header();
+
+ let symtab_index = writer.symtab_index();
+ for (comdat, comdat_offset) in self.comdats.iter().zip(comdat_offsets.iter()) {
+ writer.write_comdat_section_header(
+ comdat_offset.str_id,
+ symtab_index,
+ symbol_offsets[comdat.symbol.0].index,
+ comdat_offset.offset,
+ comdat.sections.len(),
+ );
+ }
+ for (index, section) in self.sections.iter().enumerate() {
+ let sh_type = match section.kind {
+ SectionKind::UninitializedData | SectionKind::UninitializedTls => elf::SHT_NOBITS,
+ SectionKind::Note => elf::SHT_NOTE,
+ SectionKind::Elf(sh_type) => sh_type,
+ _ => elf::SHT_PROGBITS,
+ };
+ let sh_flags = if let SectionFlags::Elf { sh_flags } = section.flags {
+ sh_flags
+ } else {
+ match section.kind {
+ SectionKind::Text => elf::SHF_ALLOC | elf::SHF_EXECINSTR,
+ SectionKind::Data | SectionKind::ReadOnlyDataWithRel => {
+ elf::SHF_ALLOC | elf::SHF_WRITE
+ }
+ SectionKind::Tls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS,
+ SectionKind::UninitializedData => elf::SHF_ALLOC | elf::SHF_WRITE,
+ SectionKind::UninitializedTls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS,
+ SectionKind::ReadOnlyData => elf::SHF_ALLOC,
+ SectionKind::ReadOnlyString => {
+ elf::SHF_ALLOC | elf::SHF_STRINGS | elf::SHF_MERGE
+ }
+ SectionKind::OtherString => elf::SHF_STRINGS | elf::SHF_MERGE,
+ SectionKind::Other
+ | SectionKind::Debug
+ | SectionKind::Metadata
+ | SectionKind::Linker
+ | SectionKind::Note
+ | SectionKind::Elf(_) => 0,
+ SectionKind::Unknown | SectionKind::Common | SectionKind::TlsVariables => {
+ return Err(Error(format!(
+ "unimplemented section `{}` kind {:?}",
+ section.name().unwrap_or(""),
+ section.kind
+ )));
+ }
+ }
+ .into()
+ };
+ // TODO: not sure if this is correct, maybe user should determine this
+ let sh_entsize = match section.kind {
+ SectionKind::ReadOnlyString | SectionKind::OtherString => 1,
+ _ => 0,
+ };
+ writer.write_section_header(&SectionHeader {
+ name: Some(section_offsets[index].str_id),
+ sh_type,
+ sh_flags,
+ sh_addr: 0,
+ sh_offset: section_offsets[index].offset as u64,
+ sh_size: section.size,
+ sh_link: 0,
+ sh_info: 0,
+ sh_addralign: section.align,
+ sh_entsize,
+ });
+
+ if !section.relocations.is_empty() {
+ writer.write_relocation_section_header(
+ section_offsets[index].reloc_str_id.unwrap(),
+ section_offsets[index].index,
+ symtab_index,
+ section_offsets[index].reloc_offset,
+ section.relocations.len(),
+ is_rela,
+ );
+ }
+ }
+
+ writer.write_symtab_section_header(symtab_num_local);
+ writer.write_symtab_shndx_section_header();
+ writer.write_strtab_section_header();
+ writer.write_shstrtab_section_header();
+
+ debug_assert_eq!(writer.reserved_len(), writer.len());
+
+ Ok(())
+ }
+}
diff --git a/third_party/rust/object/src/write/elf/writer.rs b/third_party/rust/object/src/write/elf/writer.rs
new file mode 100644
index 0000000000..3c9d85a126
--- /dev/null
+++ b/third_party/rust/object/src/write/elf/writer.rs
@@ -0,0 +1,1955 @@
+//! Helper for writing ELF files.
+use alloc::string::String;
+use alloc::vec::Vec;
+use core::mem;
+
+use crate::elf;
+use crate::endian::*;
+use crate::write::string::{StringId, StringTable};
+use crate::write::util;
+use crate::write::{Error, Result, WritableBuffer};
+
+/// The index of an ELF section.
+#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct SectionIndex(pub u32);
+
+/// The index of an ELF symbol.
+#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
+pub struct SymbolIndex(pub u32);
+
+/// A helper for writing ELF files.
+///
+/// Writing uses a two phase approach. The first phase builds up all of the information
+/// that may need to be known ahead of time:
+/// - build string tables
+/// - reserve section indices
+/// - reserve symbol indices
+/// - reserve file ranges for headers and sections
+///
+/// Some of the information has ordering requirements. For example, strings must be added
+/// to string tables before reserving the file range for the string table. Symbol indices
+/// must be reserved after reserving the section indices they reference. There are debug
+/// asserts to check some of these requirements.
+///
+/// The second phase writes everything out in order. Thus the caller must ensure writing
+/// is in the same order that file ranges were reserved. There are debug asserts to assist
+/// with checking this.
+#[allow(missing_debug_implementations)]
+pub struct Writer<'a> {
+ endian: Endianness,
+ is_64: bool,
+ is_mips64el: bool,
+ elf_align: usize,
+
+ buffer: &'a mut dyn WritableBuffer,
+ len: usize,
+
+ segment_offset: usize,
+ segment_num: u32,
+
+ section_offset: usize,
+ section_num: u32,
+
+ shstrtab: StringTable<'a>,
+ shstrtab_str_id: Option<StringId>,
+ shstrtab_index: SectionIndex,
+ shstrtab_offset: usize,
+ shstrtab_data: Vec<u8>,
+
+ need_strtab: bool,
+ strtab: StringTable<'a>,
+ strtab_str_id: Option<StringId>,
+ strtab_index: SectionIndex,
+ strtab_offset: usize,
+ strtab_data: Vec<u8>,
+
+ symtab_str_id: Option<StringId>,
+ symtab_index: SectionIndex,
+ symtab_offset: usize,
+ symtab_num: u32,
+
+ need_symtab_shndx: bool,
+ symtab_shndx_str_id: Option<StringId>,
+ symtab_shndx_offset: usize,
+ symtab_shndx_data: Vec<u8>,
+
+ need_dynstr: bool,
+ dynstr: StringTable<'a>,
+ dynstr_str_id: Option<StringId>,
+ dynstr_index: SectionIndex,
+ dynstr_offset: usize,
+ dynstr_data: Vec<u8>,
+
+ dynsym_str_id: Option<StringId>,
+ dynsym_index: SectionIndex,
+ dynsym_offset: usize,
+ dynsym_num: u32,
+
+ dynamic_str_id: Option<StringId>,
+ dynamic_offset: usize,
+ dynamic_num: usize,
+
+ hash_str_id: Option<StringId>,
+ hash_offset: usize,
+ hash_size: usize,
+
+ gnu_hash_str_id: Option<StringId>,
+ gnu_hash_offset: usize,
+ gnu_hash_size: usize,
+
+ gnu_versym_str_id: Option<StringId>,
+ gnu_versym_offset: usize,
+
+ gnu_verdef_str_id: Option<StringId>,
+ gnu_verdef_offset: usize,
+ gnu_verdef_size: usize,
+ gnu_verdef_count: u16,
+ gnu_verdef_remaining: u16,
+ gnu_verdaux_remaining: u16,
+
+ gnu_verneed_str_id: Option<StringId>,
+ gnu_verneed_offset: usize,
+ gnu_verneed_size: usize,
+ gnu_verneed_count: u16,
+ gnu_verneed_remaining: u16,
+ gnu_vernaux_remaining: u16,
+}
+
+impl<'a> Writer<'a> {
+ /// Create a new `Writer` for the given endianness and ELF class.
+ pub fn new(endian: Endianness, is_64: bool, buffer: &'a mut dyn WritableBuffer) -> Self {
+ let elf_align = if is_64 { 8 } else { 4 };
+ Writer {
+ endian,
+ is_64,
+ // Determined later.
+ is_mips64el: false,
+ elf_align,
+
+ buffer,
+ len: 0,
+
+ segment_offset: 0,
+ segment_num: 0,
+
+ section_offset: 0,
+ section_num: 0,
+
+ shstrtab: StringTable::default(),
+ shstrtab_str_id: None,
+ shstrtab_index: SectionIndex(0),
+ shstrtab_offset: 0,
+ shstrtab_data: Vec::new(),
+
+ need_strtab: false,
+ strtab: StringTable::default(),
+ strtab_str_id: None,
+ strtab_index: SectionIndex(0),
+ strtab_offset: 0,
+ strtab_data: Vec::new(),
+
+ symtab_str_id: None,
+ symtab_index: SectionIndex(0),
+ symtab_offset: 0,
+ symtab_num: 0,
+
+ need_symtab_shndx: false,
+ symtab_shndx_str_id: None,
+ symtab_shndx_offset: 0,
+ symtab_shndx_data: Vec::new(),
+
+ need_dynstr: false,
+ dynstr: StringTable::default(),
+ dynstr_str_id: None,
+ dynstr_index: SectionIndex(0),
+ dynstr_offset: 0,
+ dynstr_data: Vec::new(),
+
+ dynsym_str_id: None,
+ dynsym_index: SectionIndex(0),
+ dynsym_offset: 0,
+ dynsym_num: 0,
+
+ dynamic_str_id: None,
+ dynamic_offset: 0,
+ dynamic_num: 0,
+
+ hash_str_id: None,
+ hash_offset: 0,
+ hash_size: 0,
+
+ gnu_hash_str_id: None,
+ gnu_hash_offset: 0,
+ gnu_hash_size: 0,
+
+ gnu_versym_str_id: None,
+ gnu_versym_offset: 0,
+
+ gnu_verdef_str_id: None,
+ gnu_verdef_offset: 0,
+ gnu_verdef_size: 0,
+ gnu_verdef_count: 0,
+ gnu_verdef_remaining: 0,
+ gnu_verdaux_remaining: 0,
+
+ gnu_verneed_str_id: None,
+ gnu_verneed_offset: 0,
+ gnu_verneed_size: 0,
+ gnu_verneed_count: 0,
+ gnu_verneed_remaining: 0,
+ gnu_vernaux_remaining: 0,
+ }
+ }
+
+ /// Return the current file length that has been reserved.
+ pub fn reserved_len(&self) -> usize {
+ self.len
+ }
+
+ /// Return the current file length that has been written.
+ #[allow(clippy::len_without_is_empty)]
+ pub fn len(&self) -> usize {
+ self.buffer.len()
+ }
+
+ /// Reserve a file range with the given size and starting alignment.
+ ///
+ /// Returns the aligned offset of the start of the range.
+ pub fn reserve(&mut self, len: usize, align_start: usize) -> usize {
+ if len == 0 {
+ return self.len;
+ }
+ self.len = util::align(self.len, align_start);
+ let offset = self.len;
+ self.len += len;
+ offset
+ }
+
+ /// Write alignment padding bytes.
+ pub fn write_align(&mut self, align_start: usize) {
+ util::write_align(self.buffer, align_start);
+ }
+
+ /// Write data.
+ ///
+ /// This is typically used to write section data.
+ pub fn write(&mut self, data: &[u8]) {
+ self.buffer.write_bytes(data);
+ }
+
+ /// Reserve the file range up to the given file offset.
+ pub fn reserve_until(&mut self, offset: usize) {
+ debug_assert!(self.len <= offset);
+ self.len = offset;
+ }
+
+ /// Write padding up to the given file offset.
+ pub fn pad_until(&mut self, offset: usize) {
+ debug_assert!(self.buffer.len() <= offset);
+ self.buffer.resize(offset);
+ }
+
+ fn file_header_size(&self) -> usize {
+ if self.is_64 {
+ mem::size_of::<elf::FileHeader64<Endianness>>()
+ } else {
+ mem::size_of::<elf::FileHeader32<Endianness>>()
+ }
+ }
+
+ /// Reserve the range for the file header.
+ ///
+ /// This must be at the start of the file.
+ pub fn reserve_file_header(&mut self) {
+ debug_assert_eq!(self.len, 0);
+ self.reserve(self.file_header_size(), 1);
+ }
+
+ /// Write the file header.
+ ///
+ /// This must be at the start of the file.
+ ///
+ /// Fields that can be derived from known information are automatically set by this function.
+ pub fn write_file_header(&mut self, header: &FileHeader) -> Result<()> {
+ debug_assert_eq!(self.buffer.len(), 0);
+
+ self.is_mips64el =
+ self.is_64 && self.endian.is_little_endian() && header.e_machine == elf::EM_MIPS;
+
+ // Start writing.
+ self.buffer
+ .reserve(self.len)
+ .map_err(|_| Error(String::from("Cannot allocate buffer")))?;
+
+ // Write file header.
+ let e_ident = elf::Ident {
+ magic: elf::ELFMAG,
+ class: if self.is_64 {
+ elf::ELFCLASS64
+ } else {
+ elf::ELFCLASS32
+ },
+ data: if self.endian.is_little_endian() {
+ elf::ELFDATA2LSB
+ } else {
+ elf::ELFDATA2MSB
+ },
+ version: elf::EV_CURRENT,
+ os_abi: header.os_abi,
+ abi_version: header.abi_version,
+ padding: [0; 7],
+ };
+
+ let e_ehsize = self.file_header_size() as u16;
+
+ let e_phoff = self.segment_offset as u64;
+ let e_phentsize = if self.segment_num == 0 {
+ 0
+ } else {
+ self.program_header_size() as u16
+ };
+ // TODO: overflow
+ let e_phnum = self.segment_num as u16;
+
+ let e_shoff = self.section_offset as u64;
+ let e_shentsize = if self.section_num == 0 {
+ 0
+ } else {
+ self.section_header_size() as u16
+ };
+ let e_shnum = if self.section_num >= elf::SHN_LORESERVE.into() {
+ 0
+ } else {
+ self.section_num as u16
+ };
+ let e_shstrndx = if self.shstrtab_index.0 >= elf::SHN_LORESERVE.into() {
+ elf::SHN_XINDEX
+ } else {
+ self.shstrtab_index.0 as u16
+ };
+
+ let endian = self.endian;
+ if self.is_64 {
+ let file = elf::FileHeader64 {
+ e_ident,
+ e_type: U16::new(endian, header.e_type),
+ e_machine: U16::new(endian, header.e_machine),
+ e_version: U32::new(endian, elf::EV_CURRENT.into()),
+ e_entry: U64::new(endian, header.e_entry),
+ e_phoff: U64::new(endian, e_phoff),
+ e_shoff: U64::new(endian, e_shoff),
+ e_flags: U32::new(endian, header.e_flags),
+ e_ehsize: U16::new(endian, e_ehsize),
+ e_phentsize: U16::new(endian, e_phentsize),
+ e_phnum: U16::new(endian, e_phnum),
+ e_shentsize: U16::new(endian, e_shentsize),
+ e_shnum: U16::new(endian, e_shnum),
+ e_shstrndx: U16::new(endian, e_shstrndx),
+ };
+ self.buffer.write(&file)
+ } else {
+ let file = elf::FileHeader32 {
+ e_ident,
+ e_type: U16::new(endian, header.e_type),
+ e_machine: U16::new(endian, header.e_machine),
+ e_version: U32::new(endian, elf::EV_CURRENT.into()),
+ e_entry: U32::new(endian, header.e_entry as u32),
+ e_phoff: U32::new(endian, e_phoff as u32),
+ e_shoff: U32::new(endian, e_shoff as u32),
+ e_flags: U32::new(endian, header.e_flags),
+ e_ehsize: U16::new(endian, e_ehsize),
+ e_phentsize: U16::new(endian, e_phentsize),
+ e_phnum: U16::new(endian, e_phnum),
+ e_shentsize: U16::new(endian, e_shentsize),
+ e_shnum: U16::new(endian, e_shnum),
+ e_shstrndx: U16::new(endian, e_shstrndx),
+ };
+ self.buffer.write(&file);
+ }
+
+ Ok(())
+ }
+
+ fn program_header_size(&self) -> usize {
+ if self.is_64 {
+ mem::size_of::<elf::ProgramHeader64<Endianness>>()
+ } else {
+ mem::size_of::<elf::ProgramHeader32<Endianness>>()
+ }
+ }
+
+ /// Reserve the range for the program headers.
+ pub fn reserve_program_headers(&mut self, num: u32) {
+ debug_assert_eq!(self.segment_offset, 0);
+ if num == 0 {
+ return;
+ }
+ self.segment_num = num;
+ self.segment_offset =
+ self.reserve(num as usize * self.program_header_size(), self.elf_align);
+ }
+
+ /// Write alignment padding bytes prior to the program headers.
+ pub fn write_align_program_headers(&mut self) {
+ if self.segment_offset == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.segment_offset, self.buffer.len());
+ }
+
+ /// Write a program header.
+ pub fn write_program_header(&mut self, header: &ProgramHeader) {
+ let endian = self.endian;
+ if self.is_64 {
+ let header = elf::ProgramHeader64 {
+ p_type: U32::new(endian, header.p_type),
+ p_flags: U32::new(endian, header.p_flags),
+ p_offset: U64::new(endian, header.p_offset),
+ p_vaddr: U64::new(endian, header.p_vaddr),
+ p_paddr: U64::new(endian, header.p_paddr),
+ p_filesz: U64::new(endian, header.p_filesz),
+ p_memsz: U64::new(endian, header.p_memsz),
+ p_align: U64::new(endian, header.p_align),
+ };
+ self.buffer.write(&header);
+ } else {
+ let header = elf::ProgramHeader32 {
+ p_type: U32::new(endian, header.p_type),
+ p_offset: U32::new(endian, header.p_offset as u32),
+ p_vaddr: U32::new(endian, header.p_vaddr as u32),
+ p_paddr: U32::new(endian, header.p_paddr as u32),
+ p_filesz: U32::new(endian, header.p_filesz as u32),
+ p_memsz: U32::new(endian, header.p_memsz as u32),
+ p_flags: U32::new(endian, header.p_flags),
+ p_align: U32::new(endian, header.p_align as u32),
+ };
+ self.buffer.write(&header);
+ }
+ }
+
+ /// Reserve the section index for the null section header.
+ ///
+ /// The null section header is usually automatically reserved,
+ /// but this can be used to force an empty section table.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_null_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.section_num, 0);
+ if self.section_num == 0 {
+ self.section_num = 1;
+ }
+ SectionIndex(0)
+ }
+
+ /// Reserve a section table index.
+ ///
+ /// Automatically also reserves the null section header if required.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.section_offset, 0);
+ if self.section_num == 0 {
+ self.section_num = 1;
+ }
+ let index = self.section_num;
+ self.section_num += 1;
+ SectionIndex(index)
+ }
+
+ fn section_header_size(&self) -> usize {
+ if self.is_64 {
+ mem::size_of::<elf::SectionHeader64<Endianness>>()
+ } else {
+ mem::size_of::<elf::SectionHeader32<Endianness>>()
+ }
+ }
+
+ /// Reserve the range for the section headers.
+ ///
+ /// This function does nothing if no sections were reserved.
+ /// This must be called after [`Self::reserve_section_index`]
+ /// and other functions that reserve section indices.
+ pub fn reserve_section_headers(&mut self) {
+ debug_assert_eq!(self.section_offset, 0);
+ if self.section_num == 0 {
+ return;
+ }
+ self.section_offset = self.reserve(
+ self.section_num as usize * self.section_header_size(),
+ self.elf_align,
+ );
+ }
+
+ /// Write the null section header.
+ ///
+ /// This must be the first section header that is written.
+ /// This function does nothing if no sections were reserved.
+ pub fn write_null_section_header(&mut self) {
+ if self.section_num == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.section_offset, self.buffer.len());
+ self.write_section_header(&SectionHeader {
+ name: None,
+ sh_type: 0,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: 0,
+ sh_size: if self.section_num >= elf::SHN_LORESERVE.into() {
+ self.section_num.into()
+ } else {
+ 0
+ },
+ sh_link: if self.shstrtab_index.0 >= elf::SHN_LORESERVE.into() {
+ self.shstrtab_index.0
+ } else {
+ 0
+ },
+ // TODO: e_phnum overflow
+ sh_info: 0,
+ sh_addralign: 0,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Write a section header.
+ pub fn write_section_header(&mut self, section: &SectionHeader) {
+ let sh_name = if let Some(name) = section.name {
+ self.shstrtab.get_offset(name) as u32
+ } else {
+ 0
+ };
+ let endian = self.endian;
+ if self.is_64 {
+ let section = elf::SectionHeader64 {
+ sh_name: U32::new(endian, sh_name),
+ sh_type: U32::new(endian, section.sh_type),
+ sh_flags: U64::new(endian, section.sh_flags),
+ sh_addr: U64::new(endian, section.sh_addr),
+ sh_offset: U64::new(endian, section.sh_offset),
+ sh_size: U64::new(endian, section.sh_size),
+ sh_link: U32::new(endian, section.sh_link),
+ sh_info: U32::new(endian, section.sh_info),
+ sh_addralign: U64::new(endian, section.sh_addralign),
+ sh_entsize: U64::new(endian, section.sh_entsize),
+ };
+ self.buffer.write(&section);
+ } else {
+ let section = elf::SectionHeader32 {
+ sh_name: U32::new(endian, sh_name),
+ sh_type: U32::new(endian, section.sh_type),
+ sh_flags: U32::new(endian, section.sh_flags as u32),
+ sh_addr: U32::new(endian, section.sh_addr as u32),
+ sh_offset: U32::new(endian, section.sh_offset as u32),
+ sh_size: U32::new(endian, section.sh_size as u32),
+ sh_link: U32::new(endian, section.sh_link),
+ sh_info: U32::new(endian, section.sh_info),
+ sh_addralign: U32::new(endian, section.sh_addralign as u32),
+ sh_entsize: U32::new(endian, section.sh_entsize as u32),
+ };
+ self.buffer.write(&section);
+ }
+ }
+
+ /// Add a section name to the section header string table.
+ ///
+ /// This will be stored in the `.shstrtab` section.
+ ///
+ /// This must be called before [`Self::reserve_shstrtab`].
+ pub fn add_section_name(&mut self, name: &'a [u8]) -> StringId {
+ debug_assert_eq!(self.shstrtab_offset, 0);
+ self.shstrtab.add(name)
+ }
+
+ /// Reserve the range for the section header string table.
+ ///
+ /// This range is used for a section named `.shstrtab`.
+ ///
+ /// This function does nothing if no sections were reserved.
+ /// This must be called after [`Self::add_section_name`].
+ /// and other functions that reserve section names and indices.
+ pub fn reserve_shstrtab(&mut self) {
+ debug_assert_eq!(self.shstrtab_offset, 0);
+ if self.section_num == 0 {
+ return;
+ }
+ // Start with null section name.
+ self.shstrtab_data = vec![0];
+ self.shstrtab.write(1, &mut self.shstrtab_data);
+ self.shstrtab_offset = self.reserve(self.shstrtab_data.len(), 1);
+ }
+
+ /// Write the section header string table.
+ ///
+ /// This function does nothing if the section was not reserved.
+ pub fn write_shstrtab(&mut self) {
+ if self.shstrtab_offset == 0 {
+ return;
+ }
+ debug_assert_eq!(self.shstrtab_offset, self.buffer.len());
+ self.buffer.write_bytes(&self.shstrtab_data);
+ }
+
+ /// Reserve the section index for the section header string table.
+ ///
+ /// This must be called before [`Self::reserve_shstrtab`]
+ /// and [`Self::reserve_section_headers`].
+ pub fn reserve_shstrtab_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.shstrtab_index, SectionIndex(0));
+ self.shstrtab_str_id = Some(self.add_section_name(&b".shstrtab"[..]));
+ self.shstrtab_index = self.reserve_section_index();
+ self.shstrtab_index
+ }
+
+ /// Write the section header for the section header string table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_shstrtab_section_header(&mut self) {
+ if self.shstrtab_index == SectionIndex(0) {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.shstrtab_str_id,
+ sh_type: elf::SHT_STRTAB,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: self.shstrtab_offset as u64,
+ sh_size: self.shstrtab_data.len() as u64,
+ sh_link: 0,
+ sh_info: 0,
+ sh_addralign: 1,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Add a string to the string table.
+ ///
+ /// This will be stored in the `.strtab` section.
+ ///
+ /// This must be called before [`Self::reserve_strtab`].
+ pub fn add_string(&mut self, name: &'a [u8]) -> StringId {
+ debug_assert_eq!(self.strtab_offset, 0);
+ self.need_strtab = true;
+ self.strtab.add(name)
+ }
+
+ /// Return true if `.strtab` is needed.
+ pub fn strtab_needed(&self) -> bool {
+ self.need_strtab
+ }
+
+ /// Reserve the range for the string table.
+ ///
+ /// This range is used for a section named `.strtab`.
+ ///
+ /// This function does nothing if no strings or symbols were defined.
+ /// This must be called after [`Self::add_string`].
+ pub fn reserve_strtab(&mut self) {
+ debug_assert_eq!(self.strtab_offset, 0);
+ if !self.need_strtab {
+ return;
+ }
+ // Start with null string.
+ self.strtab_data = vec![0];
+ self.strtab.write(1, &mut self.strtab_data);
+ self.strtab_offset = self.reserve(self.strtab_data.len(), 1);
+ }
+
+ /// Write the string table.
+ ///
+ /// This function does nothing if the section was not reserved.
+ pub fn write_strtab(&mut self) {
+ if self.strtab_offset == 0 {
+ return;
+ }
+ debug_assert_eq!(self.strtab_offset, self.buffer.len());
+ self.buffer.write_bytes(&self.strtab_data);
+ }
+
+ /// Reserve the section index for the string table.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_strtab_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.strtab_index, SectionIndex(0));
+ self.strtab_str_id = Some(self.add_section_name(&b".strtab"[..]));
+ self.strtab_index = self.reserve_section_index();
+ self.strtab_index
+ }
+
+ /// Write the section header for the string table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_strtab_section_header(&mut self) {
+ if self.strtab_index == SectionIndex(0) {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.strtab_str_id,
+ sh_type: elf::SHT_STRTAB,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: self.strtab_offset as u64,
+ sh_size: self.strtab_data.len() as u64,
+ sh_link: 0,
+ sh_info: 0,
+ sh_addralign: 1,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Reserve the null symbol table entry.
+ ///
+ /// This will be stored in the `.symtab` section.
+ ///
+ /// The null symbol table entry is usually automatically reserved,
+ /// but this can be used to force an empty symbol table.
+ ///
+ /// This must be called before [`Self::reserve_symtab`].
+ pub fn reserve_null_symbol_index(&mut self) -> SymbolIndex {
+ debug_assert_eq!(self.symtab_offset, 0);
+ debug_assert_eq!(self.symtab_num, 0);
+ self.symtab_num = 1;
+ // The symtab must link to a strtab.
+ self.need_strtab = true;
+ SymbolIndex(0)
+ }
+
+ /// Reserve a symbol table entry.
+ ///
+ /// This will be stored in the `.symtab` section.
+ ///
+ /// `section_index` is used to determine whether `.symtab_shndx` is required.
+ ///
+ /// Automatically also reserves the null symbol if required.
+ /// Callers may assume that the returned indices will be sequential
+ /// starting at 1.
+ ///
+ /// This must be called before [`Self::reserve_symtab`] and
+ /// [`Self::reserve_symtab_shndx`].
+ pub fn reserve_symbol_index(&mut self, section_index: Option<SectionIndex>) -> SymbolIndex {
+ debug_assert_eq!(self.symtab_offset, 0);
+ debug_assert_eq!(self.symtab_shndx_offset, 0);
+ if self.symtab_num == 0 {
+ self.symtab_num = 1;
+ // The symtab must link to a strtab.
+ self.need_strtab = true;
+ }
+ let index = self.symtab_num;
+ self.symtab_num += 1;
+ if let Some(section_index) = section_index {
+ if section_index.0 >= elf::SHN_LORESERVE.into() {
+ self.need_symtab_shndx = true;
+ }
+ }
+ SymbolIndex(index)
+ }
+
+ /// Return the number of reserved symbol table entries.
+ ///
+ /// Includes the null symbol.
+ pub fn symbol_count(&self) -> u32 {
+ self.symtab_num
+ }
+
+ fn symbol_size(&self) -> usize {
+ if self.is_64 {
+ mem::size_of::<elf::Sym64<Endianness>>()
+ } else {
+ mem::size_of::<elf::Sym32<Endianness>>()
+ }
+ }
+
+ /// Reserve the range for the symbol table.
+ ///
+ /// This range is used for a section named `.symtab`.
+ /// This function does nothing if no symbols were reserved.
+ /// This must be called after [`Self::reserve_symbol_index`].
+ pub fn reserve_symtab(&mut self) {
+ debug_assert_eq!(self.symtab_offset, 0);
+ if self.symtab_num == 0 {
+ return;
+ }
+ self.symtab_offset = self.reserve(
+ self.symtab_num as usize * self.symbol_size(),
+ self.elf_align,
+ );
+ }
+
+ /// Write the null symbol.
+ ///
+ /// This must be the first symbol that is written.
+ /// This function does nothing if no symbols were reserved.
+ pub fn write_null_symbol(&mut self) {
+ if self.symtab_num == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.symtab_offset, self.buffer.len());
+ if self.is_64 {
+ self.buffer.write(&elf::Sym64::<Endianness>::default());
+ } else {
+ self.buffer.write(&elf::Sym32::<Endianness>::default());
+ }
+
+ if self.need_symtab_shndx {
+ self.symtab_shndx_data.write_pod(&U32::new(self.endian, 0));
+ }
+ }
+
+ /// Write a symbol.
+ pub fn write_symbol(&mut self, sym: &Sym) {
+ let st_name = if let Some(name) = sym.name {
+ self.strtab.get_offset(name) as u32
+ } else {
+ 0
+ };
+ let st_shndx = if let Some(section) = sym.section {
+ if section.0 >= elf::SHN_LORESERVE as u32 {
+ elf::SHN_XINDEX
+ } else {
+ section.0 as u16
+ }
+ } else {
+ sym.st_shndx
+ };
+
+ let endian = self.endian;
+ if self.is_64 {
+ let sym = elf::Sym64 {
+ st_name: U32::new(endian, st_name),
+ st_info: sym.st_info,
+ st_other: sym.st_other,
+ st_shndx: U16::new(endian, st_shndx),
+ st_value: U64::new(endian, sym.st_value),
+ st_size: U64::new(endian, sym.st_size),
+ };
+ self.buffer.write(&sym);
+ } else {
+ let sym = elf::Sym32 {
+ st_name: U32::new(endian, st_name),
+ st_info: sym.st_info,
+ st_other: sym.st_other,
+ st_shndx: U16::new(endian, st_shndx),
+ st_value: U32::new(endian, sym.st_value as u32),
+ st_size: U32::new(endian, sym.st_size as u32),
+ };
+ self.buffer.write(&sym);
+ }
+
+ if self.need_symtab_shndx {
+ let section_index = sym.section.unwrap_or(SectionIndex(0));
+ self.symtab_shndx_data
+ .write_pod(&U32::new(self.endian, section_index.0));
+ }
+ }
+
+ /// Reserve the section index for the symbol table.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_symtab_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.symtab_index, SectionIndex(0));
+ self.symtab_str_id = Some(self.add_section_name(&b".symtab"[..]));
+ self.symtab_index = self.reserve_section_index();
+ self.symtab_index
+ }
+
+ /// Return the section index of the symbol table.
+ pub fn symtab_index(&mut self) -> SectionIndex {
+ self.symtab_index
+ }
+
+ /// Write the section header for the symbol table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_symtab_section_header(&mut self, num_local: u32) {
+ if self.symtab_index == SectionIndex(0) {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.symtab_str_id,
+ sh_type: elf::SHT_SYMTAB,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: self.symtab_offset as u64,
+ sh_size: self.symtab_num as u64 * self.symbol_size() as u64,
+ sh_link: self.strtab_index.0,
+ sh_info: num_local,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: self.symbol_size() as u64,
+ });
+ }
+
+ /// Return true if `.symtab_shndx` is needed.
+ pub fn symtab_shndx_needed(&self) -> bool {
+ self.need_symtab_shndx
+ }
+
+ /// Reserve the range for the extended section indices for the symbol table.
+ ///
+ /// This range is used for a section named `.symtab_shndx`.
+ /// This also reserves a section index.
+ ///
+ /// This function does nothing if extended section indices are not needed.
+ /// This must be called after [`Self::reserve_symbol_index`].
+ pub fn reserve_symtab_shndx(&mut self) {
+ debug_assert_eq!(self.symtab_shndx_offset, 0);
+ if !self.need_symtab_shndx {
+ return;
+ }
+ self.symtab_shndx_offset = self.reserve(self.symtab_num as usize * 4, 4);
+ self.symtab_shndx_data.reserve(self.symtab_num as usize * 4);
+ }
+
+ /// Write the extended section indices for the symbol table.
+ ///
+ /// This function does nothing if the section was not reserved.
+ pub fn write_symtab_shndx(&mut self) {
+ if self.symtab_shndx_offset == 0 {
+ return;
+ }
+ debug_assert_eq!(self.symtab_shndx_offset, self.buffer.len());
+ debug_assert_eq!(self.symtab_num as usize * 4, self.symtab_shndx_data.len());
+ self.buffer.write_bytes(&self.symtab_shndx_data);
+ }
+
+ /// Reserve the section index for the extended section indices symbol table.
+ ///
+ /// You should check [`Self::symtab_shndx_needed`] before calling this
+ /// unless you have other means of knowing if this section is needed.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_symtab_shndx_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.symtab_shndx_str_id.is_none());
+ self.symtab_shndx_str_id = Some(self.add_section_name(&b".symtab_shndx"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the extended section indices for the symbol table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_symtab_shndx_section_header(&mut self) {
+ if self.symtab_shndx_str_id.is_none() {
+ return;
+ }
+ let sh_size = if self.symtab_shndx_offset == 0 {
+ 0
+ } else {
+ (self.symtab_num * 4) as u64
+ };
+ self.write_section_header(&SectionHeader {
+ name: self.symtab_shndx_str_id,
+ sh_type: elf::SHT_SYMTAB_SHNDX,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: self.symtab_shndx_offset as u64,
+ sh_size,
+ sh_link: self.symtab_index.0,
+ sh_info: 0,
+ sh_addralign: 4,
+ sh_entsize: 4,
+ });
+ }
+
+ /// Add a string to the dynamic string table.
+ ///
+ /// This will be stored in the `.dynstr` section.
+ ///
+ /// This must be called before [`Self::reserve_dynstr`].
+ pub fn add_dynamic_string(&mut self, name: &'a [u8]) -> StringId {
+ debug_assert_eq!(self.dynstr_offset, 0);
+ self.need_dynstr = true;
+ self.dynstr.add(name)
+ }
+
+ /// Get a string that was previously added to the dynamic string table.
+ ///
+ /// Panics if the string was not added.
+ pub fn get_dynamic_string(&self, name: &'a [u8]) -> StringId {
+ self.dynstr.get_id(name)
+ }
+
+ /// Return true if `.dynstr` is needed.
+ pub fn dynstr_needed(&self) -> bool {
+ self.need_dynstr
+ }
+
+ /// Reserve the range for the dynamic string table.
+ ///
+ /// This range is used for a section named `.dynstr`.
+ ///
+ /// This function does nothing if no dynamic strings or symbols were defined.
+ /// This must be called after [`Self::add_dynamic_string`].
+ pub fn reserve_dynstr(&mut self) {
+ debug_assert_eq!(self.dynstr_offset, 0);
+ if !self.need_dynstr {
+ return;
+ }
+ // Start with null string.
+ self.dynstr_data = vec![0];
+ self.dynstr.write(1, &mut self.dynstr_data);
+ self.dynstr_offset = self.reserve(self.dynstr_data.len(), 1);
+ }
+
+ /// Write the dynamic string table.
+ ///
+ /// This function does nothing if the section was not reserved.
+ pub fn write_dynstr(&mut self) {
+ if self.dynstr_offset == 0 {
+ return;
+ }
+ debug_assert_eq!(self.dynstr_offset, self.buffer.len());
+ self.buffer.write_bytes(&self.dynstr_data);
+ }
+
+ /// Reserve the section index for the dynamic string table.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_dynstr_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.dynstr_index, SectionIndex(0));
+ self.dynstr_str_id = Some(self.add_section_name(&b".dynstr"[..]));
+ self.dynstr_index = self.reserve_section_index();
+ self.dynstr_index
+ }
+
+ /// Return the section index of the dynamic string table.
+ pub fn dynstr_index(&mut self) -> SectionIndex {
+ self.dynstr_index
+ }
+
+ /// Write the section header for the dynamic string table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_dynstr_section_header(&mut self, sh_addr: u64) {
+ if self.dynstr_index == SectionIndex(0) {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.dynstr_str_id,
+ sh_type: elf::SHT_STRTAB,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.dynstr_offset as u64,
+ sh_size: self.dynstr_data.len() as u64,
+ sh_link: 0,
+ sh_info: 0,
+ sh_addralign: 1,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Reserve the null dynamic symbol table entry.
+ ///
+ /// This will be stored in the `.dynsym` section.
+ ///
+ /// The null dynamic symbol table entry is usually automatically reserved,
+ /// but this can be used to force an empty dynamic symbol table.
+ ///
+ /// This must be called before [`Self::reserve_dynsym`].
+ pub fn reserve_null_dynamic_symbol_index(&mut self) -> SymbolIndex {
+ debug_assert_eq!(self.dynsym_offset, 0);
+ debug_assert_eq!(self.dynsym_num, 0);
+ self.dynsym_num = 1;
+ // The symtab must link to a strtab.
+ self.need_dynstr = true;
+ SymbolIndex(0)
+ }
+
+ /// Reserve a dynamic symbol table entry.
+ ///
+ /// This will be stored in the `.dynsym` section.
+ ///
+ /// Automatically also reserves the null symbol if required.
+ /// Callers may assume that the returned indices will be sequential
+ /// starting at 1.
+ ///
+ /// This must be called before [`Self::reserve_dynsym`].
+ pub fn reserve_dynamic_symbol_index(&mut self) -> SymbolIndex {
+ debug_assert_eq!(self.dynsym_offset, 0);
+ if self.dynsym_num == 0 {
+ self.dynsym_num = 1;
+ // The symtab must link to a strtab.
+ self.need_dynstr = true;
+ }
+ let index = self.dynsym_num;
+ self.dynsym_num += 1;
+ SymbolIndex(index)
+ }
+
+ /// Return the number of reserved dynamic symbols.
+ ///
+ /// Includes the null symbol.
+ pub fn dynamic_symbol_count(&mut self) -> u32 {
+ self.dynsym_num
+ }
+
+ /// Reserve the range for the dynamic symbol table.
+ ///
+ /// This range is used for a section named `.dynsym`.
+ ///
+ /// This function does nothing if no dynamic symbols were reserved.
+ /// This must be called after [`Self::reserve_dynamic_symbol_index`].
+ pub fn reserve_dynsym(&mut self) {
+ debug_assert_eq!(self.dynsym_offset, 0);
+ if self.dynsym_num == 0 {
+ return;
+ }
+ self.dynsym_offset = self.reserve(
+ self.dynsym_num as usize * self.symbol_size(),
+ self.elf_align,
+ );
+ }
+
+ /// Write the null dynamic symbol.
+ ///
+ /// This must be the first dynamic symbol that is written.
+ /// This function does nothing if no dynamic symbols were reserved.
+ pub fn write_null_dynamic_symbol(&mut self) {
+ if self.dynsym_num == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.dynsym_offset, self.buffer.len());
+ if self.is_64 {
+ self.buffer.write(&elf::Sym64::<Endianness>::default());
+ } else {
+ self.buffer.write(&elf::Sym32::<Endianness>::default());
+ }
+ }
+
+ /// Write a dynamic symbol.
+ pub fn write_dynamic_symbol(&mut self, sym: &Sym) {
+ let st_name = if let Some(name) = sym.name {
+ self.dynstr.get_offset(name) as u32
+ } else {
+ 0
+ };
+
+ let st_shndx = if let Some(section) = sym.section {
+ if section.0 >= elf::SHN_LORESERVE as u32 {
+ // TODO: we don't actually write out .dynsym_shndx yet.
+ // This is unlikely to be needed though.
+ elf::SHN_XINDEX
+ } else {
+ section.0 as u16
+ }
+ } else {
+ sym.st_shndx
+ };
+
+ let endian = self.endian;
+ if self.is_64 {
+ let sym = elf::Sym64 {
+ st_name: U32::new(endian, st_name),
+ st_info: sym.st_info,
+ st_other: sym.st_other,
+ st_shndx: U16::new(endian, st_shndx),
+ st_value: U64::new(endian, sym.st_value),
+ st_size: U64::new(endian, sym.st_size),
+ };
+ self.buffer.write(&sym);
+ } else {
+ let sym = elf::Sym32 {
+ st_name: U32::new(endian, st_name),
+ st_info: sym.st_info,
+ st_other: sym.st_other,
+ st_shndx: U16::new(endian, st_shndx),
+ st_value: U32::new(endian, sym.st_value as u32),
+ st_size: U32::new(endian, sym.st_size as u32),
+ };
+ self.buffer.write(&sym);
+ }
+ }
+
+ /// Reserve the section index for the dynamic symbol table.
+ ///
+ /// This must be called before [`Self::reserve_section_headers`].
+ pub fn reserve_dynsym_section_index(&mut self) -> SectionIndex {
+ debug_assert_eq!(self.dynsym_index, SectionIndex(0));
+ self.dynsym_str_id = Some(self.add_section_name(&b".dynsym"[..]));
+ self.dynsym_index = self.reserve_section_index();
+ self.dynsym_index
+ }
+
+ /// Return the section index of the dynamic symbol table.
+ pub fn dynsym_index(&mut self) -> SectionIndex {
+ self.dynsym_index
+ }
+
+ /// Write the section header for the dynamic symbol table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_dynsym_section_header(&mut self, sh_addr: u64, num_local: u32) {
+ if self.dynsym_index == SectionIndex(0) {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.dynsym_str_id,
+ sh_type: elf::SHT_DYNSYM,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.dynsym_offset as u64,
+ sh_size: self.dynsym_num as u64 * self.symbol_size() as u64,
+ sh_link: self.dynstr_index.0,
+ sh_info: num_local,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: self.symbol_size() as u64,
+ });
+ }
+
+ fn dyn_size(&self) -> usize {
+ if self.is_64 {
+ mem::size_of::<elf::Dyn64<Endianness>>()
+ } else {
+ mem::size_of::<elf::Dyn32<Endianness>>()
+ }
+ }
+
+ /// Reserve the range for the `.dynamic` section.
+ ///
+ /// This function does nothing if `dynamic_num` is zero.
+ pub fn reserve_dynamic(&mut self, dynamic_num: usize) {
+ debug_assert_eq!(self.dynamic_offset, 0);
+ if dynamic_num == 0 {
+ return;
+ }
+ self.dynamic_num = dynamic_num;
+ self.dynamic_offset = self.reserve(dynamic_num * self.dyn_size(), self.elf_align);
+ }
+
+ /// Write alignment padding bytes prior to the `.dynamic` section.
+ ///
+ /// This function does nothing if the section was not reserved.
+ pub fn write_align_dynamic(&mut self) {
+ if self.dynamic_offset == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.dynamic_offset, self.buffer.len());
+ }
+
+ /// Write a dynamic string entry.
+ pub fn write_dynamic_string(&mut self, tag: u32, id: StringId) {
+ self.write_dynamic(tag, self.dynstr.get_offset(id) as u64);
+ }
+
+ /// Write a dynamic value entry.
+ pub fn write_dynamic(&mut self, d_tag: u32, d_val: u64) {
+ debug_assert!(self.dynamic_offset <= self.buffer.len());
+ let endian = self.endian;
+ if self.is_64 {
+ let d = elf::Dyn64 {
+ d_tag: U64::new(endian, d_tag.into()),
+ d_val: U64::new(endian, d_val),
+ };
+ self.buffer.write(&d);
+ } else {
+ let d = elf::Dyn32 {
+ d_tag: U32::new(endian, d_tag),
+ d_val: U32::new(endian, d_val as u32),
+ };
+ self.buffer.write(&d);
+ }
+ debug_assert!(
+ self.dynamic_offset + self.dynamic_num * self.dyn_size() >= self.buffer.len()
+ );
+ }
+
+ /// Reserve the section index for the dynamic table.
+ pub fn reserve_dynamic_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.dynamic_str_id.is_none());
+ self.dynamic_str_id = Some(self.add_section_name(&b".dynamic"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the dynamic table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_dynamic_section_header(&mut self, sh_addr: u64) {
+ if self.dynamic_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.dynamic_str_id,
+ sh_type: elf::SHT_DYNAMIC,
+ sh_flags: (elf::SHF_WRITE | elf::SHF_ALLOC).into(),
+ sh_addr,
+ sh_offset: self.dynamic_offset as u64,
+ sh_size: (self.dynamic_num * self.dyn_size()) as u64,
+ sh_link: self.dynstr_index.0,
+ sh_info: 0,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: self.dyn_size() as u64,
+ });
+ }
+
+ fn rel_size(&self, is_rela: bool) -> usize {
+ if self.is_64 {
+ if is_rela {
+ mem::size_of::<elf::Rela64<Endianness>>()
+ } else {
+ mem::size_of::<elf::Rel64<Endianness>>()
+ }
+ } else {
+ if is_rela {
+ mem::size_of::<elf::Rela32<Endianness>>()
+ } else {
+ mem::size_of::<elf::Rel32<Endianness>>()
+ }
+ }
+ }
+
+ /// Reserve a file range for a SysV hash section.
+ ///
+ /// `symbol_count` is the number of symbols in the hash,
+ /// not the total number of symbols.
+ pub fn reserve_hash(&mut self, bucket_count: u32, chain_count: u32) {
+ self.hash_size = mem::size_of::<elf::HashHeader<Endianness>>()
+ + bucket_count as usize * 4
+ + chain_count as usize * 4;
+ self.hash_offset = self.reserve(self.hash_size, self.elf_align);
+ }
+
+ /// Write a SysV hash section.
+ ///
+ /// `chain_count` is the number of symbols in the hash.
+ /// The argument to `hash` will be in the range `0..chain_count`.
+ pub fn write_hash<F>(&mut self, bucket_count: u32, chain_count: u32, hash: F)
+ where
+ F: Fn(u32) -> Option<u32>,
+ {
+ let mut buckets = vec![U32::new(self.endian, 0); bucket_count as usize];
+ let mut chains = vec![U32::new(self.endian, 0); chain_count as usize];
+ for i in 0..chain_count {
+ if let Some(hash) = hash(i) {
+ let bucket = hash % bucket_count;
+ chains[i as usize] = buckets[bucket as usize];
+ buckets[bucket as usize] = U32::new(self.endian, i);
+ }
+ }
+
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.hash_offset, self.buffer.len());
+ self.buffer.write(&elf::HashHeader {
+ bucket_count: U32::new(self.endian, bucket_count),
+ chain_count: U32::new(self.endian, chain_count),
+ });
+ self.buffer.write_slice(&buckets);
+ self.buffer.write_slice(&chains);
+ }
+
+ /// Reserve the section index for the SysV hash table.
+ pub fn reserve_hash_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.hash_str_id.is_none());
+ self.hash_str_id = Some(self.add_section_name(&b".hash"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the SysV hash table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_hash_section_header(&mut self, sh_addr: u64) {
+ if self.hash_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.hash_str_id,
+ sh_type: elf::SHT_HASH,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.hash_offset as u64,
+ sh_size: self.hash_size as u64,
+ sh_link: self.dynsym_index.0,
+ sh_info: 0,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: 4,
+ });
+ }
+
+ /// Reserve a file range for a GNU hash section.
+ ///
+ /// `symbol_count` is the number of symbols in the hash,
+ /// not the total number of symbols.
+ pub fn reserve_gnu_hash(&mut self, bloom_count: u32, bucket_count: u32, symbol_count: u32) {
+ self.gnu_hash_size = mem::size_of::<elf::GnuHashHeader<Endianness>>()
+ + bloom_count as usize * self.elf_align
+ + bucket_count as usize * 4
+ + symbol_count as usize * 4;
+ self.gnu_hash_offset = self.reserve(self.gnu_hash_size, self.elf_align);
+ }
+
+ /// Write a GNU hash section.
+ ///
+ /// `symbol_count` is the number of symbols in the hash.
+ /// The argument to `hash` will be in the range `0..symbol_count`.
+ ///
+ /// This requires that symbols are already sorted by bucket.
+ pub fn write_gnu_hash<F>(
+ &mut self,
+ symbol_base: u32,
+ bloom_shift: u32,
+ bloom_count: u32,
+ bucket_count: u32,
+ symbol_count: u32,
+ hash: F,
+ ) where
+ F: Fn(u32) -> u32,
+ {
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.gnu_hash_offset, self.buffer.len());
+ self.buffer.write(&elf::GnuHashHeader {
+ bucket_count: U32::new(self.endian, bucket_count),
+ symbol_base: U32::new(self.endian, symbol_base),
+ bloom_count: U32::new(self.endian, bloom_count),
+ bloom_shift: U32::new(self.endian, bloom_shift),
+ });
+
+ // Calculate and write bloom filter.
+ if self.is_64 {
+ let mut bloom_filters = vec![0; bloom_count as usize];
+ for i in 0..symbol_count {
+ let h = hash(i);
+ bloom_filters[((h / 64) & (bloom_count - 1)) as usize] |=
+ 1 << (h % 64) | 1 << ((h >> bloom_shift) % 64);
+ }
+ for bloom_filter in bloom_filters {
+ self.buffer.write(&U64::new(self.endian, bloom_filter));
+ }
+ } else {
+ let mut bloom_filters = vec![0; bloom_count as usize];
+ for i in 0..symbol_count {
+ let h = hash(i);
+ bloom_filters[((h / 32) & (bloom_count - 1)) as usize] |=
+ 1 << (h % 32) | 1 << ((h >> bloom_shift) % 32);
+ }
+ for bloom_filter in bloom_filters {
+ self.buffer.write(&U32::new(self.endian, bloom_filter));
+ }
+ }
+
+ // Write buckets.
+ //
+ // This requires that symbols are already sorted by bucket.
+ let mut bucket = 0;
+ for i in 0..symbol_count {
+ let symbol_bucket = hash(i) % bucket_count;
+ while bucket < symbol_bucket {
+ self.buffer.write(&U32::new(self.endian, 0));
+ bucket += 1;
+ }
+ if bucket == symbol_bucket {
+ self.buffer.write(&U32::new(self.endian, symbol_base + i));
+ bucket += 1;
+ }
+ }
+ while bucket < bucket_count {
+ self.buffer.write(&U32::new(self.endian, 0));
+ bucket += 1;
+ }
+
+ // Write hash values.
+ for i in 0..symbol_count {
+ let mut h = hash(i);
+ if i == symbol_count - 1 || h % bucket_count != hash(i + 1) % bucket_count {
+ h |= 1;
+ } else {
+ h &= !1;
+ }
+ self.buffer.write(&U32::new(self.endian, h));
+ }
+ }
+
+ /// Reserve the section index for the GNU hash table.
+ pub fn reserve_gnu_hash_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.gnu_hash_str_id.is_none());
+ self.gnu_hash_str_id = Some(self.add_section_name(&b".gnu.hash"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the GNU hash table.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_gnu_hash_section_header(&mut self, sh_addr: u64) {
+ if self.gnu_hash_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.gnu_hash_str_id,
+ sh_type: elf::SHT_GNU_HASH,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.gnu_hash_offset as u64,
+ sh_size: self.gnu_hash_size as u64,
+ sh_link: self.dynsym_index.0,
+ sh_info: 0,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Reserve the range for the `.gnu.version` section.
+ ///
+ /// This function does nothing if no dynamic symbols were reserved.
+ pub fn reserve_gnu_versym(&mut self) {
+ debug_assert_eq!(self.gnu_versym_offset, 0);
+ if self.dynsym_num == 0 {
+ return;
+ }
+ self.gnu_versym_offset = self.reserve(self.dynsym_num as usize * 2, 2);
+ }
+
+ /// Write the null symbol version entry.
+ ///
+ /// This must be the first symbol version that is written.
+ /// This function does nothing if no dynamic symbols were reserved.
+ pub fn write_null_gnu_versym(&mut self) {
+ if self.dynsym_num == 0 {
+ return;
+ }
+ util::write_align(self.buffer, 2);
+ debug_assert_eq!(self.gnu_versym_offset, self.buffer.len());
+ self.write_gnu_versym(0);
+ }
+
+ /// Write a symbol version entry.
+ pub fn write_gnu_versym(&mut self, versym: u16) {
+ self.buffer.write(&U16::new(self.endian, versym));
+ }
+
+ /// Reserve the section index for the `.gnu.version` section.
+ pub fn reserve_gnu_versym_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.gnu_versym_str_id.is_none());
+ self.gnu_versym_str_id = Some(self.add_section_name(&b".gnu.version"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the `.gnu.version` section.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_gnu_versym_section_header(&mut self, sh_addr: u64) {
+ if self.gnu_versym_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.gnu_versym_str_id,
+ sh_type: elf::SHT_GNU_VERSYM,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.gnu_versym_offset as u64,
+ sh_size: self.dynsym_num as u64 * 2,
+ sh_link: self.dynsym_index.0,
+ sh_info: 0,
+ sh_addralign: 2,
+ sh_entsize: 2,
+ });
+ }
+
+ /// Reserve the range for the `.gnu.version_d` section.
+ pub fn reserve_gnu_verdef(&mut self, verdef_count: usize, verdaux_count: usize) {
+ debug_assert_eq!(self.gnu_verdef_offset, 0);
+ if verdef_count == 0 {
+ return;
+ }
+ self.gnu_verdef_size = verdef_count * mem::size_of::<elf::Verdef<Endianness>>()
+ + verdaux_count * mem::size_of::<elf::Verdaux<Endianness>>();
+ self.gnu_verdef_offset = self.reserve(self.gnu_verdef_size, self.elf_align);
+ self.gnu_verdef_count = verdef_count as u16;
+ self.gnu_verdef_remaining = self.gnu_verdef_count;
+ }
+
+ /// Write alignment padding bytes prior to a `.gnu.version_d` section.
+ pub fn write_align_gnu_verdef(&mut self) {
+ if self.gnu_verdef_offset == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.gnu_verdef_offset, self.buffer.len());
+ }
+
+ /// Write a version definition entry.
+ pub fn write_gnu_verdef(&mut self, verdef: &Verdef) {
+ debug_assert_ne!(self.gnu_verdef_remaining, 0);
+ self.gnu_verdef_remaining -= 1;
+ let vd_next = if self.gnu_verdef_remaining == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Verdef<Endianness>>() as u32
+ + verdef.aux_count as u32 * mem::size_of::<elf::Verdaux<Endianness>>() as u32
+ };
+
+ self.gnu_verdaux_remaining = verdef.aux_count;
+ let vd_aux = if verdef.aux_count == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Verdef<Endianness>>() as u32
+ };
+
+ self.buffer.write(&elf::Verdef {
+ vd_version: U16::new(self.endian, verdef.version),
+ vd_flags: U16::new(self.endian, verdef.flags),
+ vd_ndx: U16::new(self.endian, verdef.index),
+ vd_cnt: U16::new(self.endian, verdef.aux_count),
+ vd_hash: U32::new(self.endian, elf::hash(self.dynstr.get_string(verdef.name))),
+ vd_aux: U32::new(self.endian, vd_aux),
+ vd_next: U32::new(self.endian, vd_next),
+ });
+ self.write_gnu_verdaux(verdef.name);
+ }
+
+ /// Write a version definition auxiliary entry.
+ pub fn write_gnu_verdaux(&mut self, name: StringId) {
+ debug_assert_ne!(self.gnu_verdaux_remaining, 0);
+ self.gnu_verdaux_remaining -= 1;
+ let vda_next = if self.gnu_verdaux_remaining == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Verdaux<Endianness>>() as u32
+ };
+ self.buffer.write(&elf::Verdaux {
+ vda_name: U32::new(self.endian, self.dynstr.get_offset(name) as u32),
+ vda_next: U32::new(self.endian, vda_next),
+ });
+ }
+
+ /// Reserve the section index for the `.gnu.version_d` section.
+ pub fn reserve_gnu_verdef_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.gnu_verdef_str_id.is_none());
+ self.gnu_verdef_str_id = Some(self.add_section_name(&b".gnu.version_d"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the `.gnu.version_d` section.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_gnu_verdef_section_header(&mut self, sh_addr: u64) {
+ if self.gnu_verdef_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.gnu_verdef_str_id,
+ sh_type: elf::SHT_GNU_VERDEF,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.gnu_verdef_offset as u64,
+ sh_size: self.gnu_verdef_size as u64,
+ sh_link: self.dynstr_index.0,
+ sh_info: self.gnu_verdef_count.into(),
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Reserve the range for the `.gnu.version_r` section.
+ pub fn reserve_gnu_verneed(&mut self, verneed_count: usize, vernaux_count: usize) {
+ debug_assert_eq!(self.gnu_verneed_offset, 0);
+ if verneed_count == 0 {
+ return;
+ }
+ self.gnu_verneed_size = verneed_count * mem::size_of::<elf::Verneed<Endianness>>()
+ + vernaux_count * mem::size_of::<elf::Vernaux<Endianness>>();
+ self.gnu_verneed_offset = self.reserve(self.gnu_verneed_size, self.elf_align);
+ self.gnu_verneed_count = verneed_count as u16;
+ self.gnu_verneed_remaining = self.gnu_verneed_count;
+ }
+
+ /// Write alignment padding bytes prior to a `.gnu.version_r` section.
+ pub fn write_align_gnu_verneed(&mut self) {
+ if self.gnu_verneed_offset == 0 {
+ return;
+ }
+ util::write_align(self.buffer, self.elf_align);
+ debug_assert_eq!(self.gnu_verneed_offset, self.buffer.len());
+ }
+
+ /// Write a version need entry.
+ pub fn write_gnu_verneed(&mut self, verneed: &Verneed) {
+ debug_assert_ne!(self.gnu_verneed_remaining, 0);
+ self.gnu_verneed_remaining -= 1;
+ let vn_next = if self.gnu_verneed_remaining == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Verneed<Endianness>>() as u32
+ + verneed.aux_count as u32 * mem::size_of::<elf::Vernaux<Endianness>>() as u32
+ };
+
+ self.gnu_vernaux_remaining = verneed.aux_count;
+ let vn_aux = if verneed.aux_count == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Verneed<Endianness>>() as u32
+ };
+
+ self.buffer.write(&elf::Verneed {
+ vn_version: U16::new(self.endian, verneed.version),
+ vn_cnt: U16::new(self.endian, verneed.aux_count),
+ vn_file: U32::new(self.endian, self.dynstr.get_offset(verneed.file) as u32),
+ vn_aux: U32::new(self.endian, vn_aux),
+ vn_next: U32::new(self.endian, vn_next),
+ });
+ }
+
+ /// Write a version need auxiliary entry.
+ pub fn write_gnu_vernaux(&mut self, vernaux: &Vernaux) {
+ debug_assert_ne!(self.gnu_vernaux_remaining, 0);
+ self.gnu_vernaux_remaining -= 1;
+ let vna_next = if self.gnu_vernaux_remaining == 0 {
+ 0
+ } else {
+ mem::size_of::<elf::Vernaux<Endianness>>() as u32
+ };
+ self.buffer.write(&elf::Vernaux {
+ vna_hash: U32::new(self.endian, elf::hash(self.dynstr.get_string(vernaux.name))),
+ vna_flags: U16::new(self.endian, vernaux.flags),
+ vna_other: U16::new(self.endian, vernaux.index),
+ vna_name: U32::new(self.endian, self.dynstr.get_offset(vernaux.name) as u32),
+ vna_next: U32::new(self.endian, vna_next),
+ });
+ }
+
+ /// Reserve the section index for the `.gnu.version_r` section.
+ pub fn reserve_gnu_verneed_section_index(&mut self) -> SectionIndex {
+ debug_assert!(self.gnu_verneed_str_id.is_none());
+ self.gnu_verneed_str_id = Some(self.add_section_name(&b".gnu.version_r"[..]));
+ self.reserve_section_index()
+ }
+
+ /// Write the section header for the `.gnu.version_r` section.
+ ///
+ /// This function does nothing if the section index was not reserved.
+ pub fn write_gnu_verneed_section_header(&mut self, sh_addr: u64) {
+ if self.gnu_verneed_str_id.is_none() {
+ return;
+ }
+ self.write_section_header(&SectionHeader {
+ name: self.gnu_verneed_str_id,
+ sh_type: elf::SHT_GNU_VERNEED,
+ sh_flags: elf::SHF_ALLOC.into(),
+ sh_addr,
+ sh_offset: self.gnu_verneed_offset as u64,
+ sh_size: self.gnu_verneed_size as u64,
+ sh_link: self.dynstr_index.0,
+ sh_info: self.gnu_verneed_count.into(),
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: 0,
+ });
+ }
+
+ /// Reserve a file range for the given number of relocations.
+ ///
+ /// Returns the offset of the range.
+ pub fn reserve_relocations(&mut self, count: usize, is_rela: bool) -> usize {
+ self.reserve(count * self.rel_size(is_rela), self.elf_align)
+ }
+
+ /// Write alignment padding bytes prior to a relocation section.
+ pub fn write_align_relocation(&mut self) {
+ util::write_align(self.buffer, self.elf_align);
+ }
+
+ /// Write a relocation.
+ pub fn write_relocation(&mut self, is_rela: bool, rel: &Rel) {
+ let endian = self.endian;
+ if self.is_64 {
+ if is_rela {
+ let rel = elf::Rela64 {
+ r_offset: U64::new(endian, rel.r_offset),
+ r_info: elf::Rela64::r_info(endian, self.is_mips64el, rel.r_sym, rel.r_type),
+ r_addend: I64::new(endian, rel.r_addend),
+ };
+ self.buffer.write(&rel);
+ } else {
+ let rel = elf::Rel64 {
+ r_offset: U64::new(endian, rel.r_offset),
+ r_info: elf::Rel64::r_info(endian, rel.r_sym, rel.r_type),
+ };
+ self.buffer.write(&rel);
+ }
+ } else {
+ if is_rela {
+ let rel = elf::Rela32 {
+ r_offset: U32::new(endian, rel.r_offset as u32),
+ r_info: elf::Rel32::r_info(endian, rel.r_sym, rel.r_type as u8),
+ r_addend: I32::new(endian, rel.r_addend as i32),
+ };
+ self.buffer.write(&rel);
+ } else {
+ let rel = elf::Rel32 {
+ r_offset: U32::new(endian, rel.r_offset as u32),
+ r_info: elf::Rel32::r_info(endian, rel.r_sym, rel.r_type as u8),
+ };
+ self.buffer.write(&rel);
+ }
+ }
+ }
+
+ /// Write the section header for a relocation section.
+ ///
+ /// `section` is the index of the section the relocations apply to,
+ /// or 0 if none.
+ ///
+ /// `symtab` is the index of the symbol table the relocations refer to,
+ /// or 0 if none.
+ ///
+ /// `offset` is the file offset of the relocations.
+ pub fn write_relocation_section_header(
+ &mut self,
+ name: StringId,
+ section: SectionIndex,
+ symtab: SectionIndex,
+ offset: usize,
+ count: usize,
+ is_rela: bool,
+ ) {
+ self.write_section_header(&SectionHeader {
+ name: Some(name),
+ sh_type: if is_rela { elf::SHT_RELA } else { elf::SHT_REL },
+ sh_flags: elf::SHF_INFO_LINK.into(),
+ sh_addr: 0,
+ sh_offset: offset as u64,
+ sh_size: (count * self.rel_size(is_rela)) as u64,
+ sh_link: symtab.0,
+ sh_info: section.0,
+ sh_addralign: self.elf_align as u64,
+ sh_entsize: self.rel_size(is_rela) as u64,
+ });
+ }
+
+ /// Reserve a file range for a COMDAT section.
+ ///
+ /// `count` is the number of sections in the COMDAT group.
+ ///
+ /// Returns the offset of the range.
+ pub fn reserve_comdat(&mut self, count: usize) -> usize {
+ self.reserve((count + 1) * 4, 4)
+ }
+
+ /// Write `GRP_COMDAT` at the start of the COMDAT section.
+ pub fn write_comdat_header(&mut self) {
+ util::write_align(self.buffer, 4);
+ self.buffer.write(&U32::new(self.endian, elf::GRP_COMDAT));
+ }
+
+ /// Write an entry in a COMDAT section.
+ pub fn write_comdat_entry(&mut self, entry: SectionIndex) {
+ self.buffer.write(&U32::new(self.endian, entry.0));
+ }
+
+ /// Write the section header for a COMDAT section.
+ pub fn write_comdat_section_header(
+ &mut self,
+ name: StringId,
+ symtab: SectionIndex,
+ symbol: SymbolIndex,
+ offset: usize,
+ count: usize,
+ ) {
+ self.write_section_header(&SectionHeader {
+ name: Some(name),
+ sh_type: elf::SHT_GROUP,
+ sh_flags: 0,
+ sh_addr: 0,
+ sh_offset: offset as u64,
+ sh_size: ((count + 1) * 4) as u64,
+ sh_link: symtab.0,
+ sh_info: symbol.0,
+ sh_addralign: 4,
+ sh_entsize: 4,
+ });
+ }
+}
+
+/// Native endian version of [`elf::FileHeader64`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct FileHeader {
+ pub os_abi: u8,
+ pub abi_version: u8,
+ pub e_type: u16,
+ pub e_machine: u16,
+ pub e_entry: u64,
+ pub e_flags: u32,
+}
+
+/// Native endian version of [`elf::ProgramHeader64`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct ProgramHeader {
+ pub p_type: u32,
+ pub p_flags: u32,
+ pub p_offset: u64,
+ pub p_vaddr: u64,
+ pub p_paddr: u64,
+ pub p_filesz: u64,
+ pub p_memsz: u64,
+ pub p_align: u64,
+}
+
+/// Native endian version of [`elf::SectionHeader64`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct SectionHeader {
+ pub name: Option<StringId>,
+ pub sh_type: u32,
+ pub sh_flags: u64,
+ pub sh_addr: u64,
+ pub sh_offset: u64,
+ pub sh_size: u64,
+ pub sh_link: u32,
+ pub sh_info: u32,
+ pub sh_addralign: u64,
+ pub sh_entsize: u64,
+}
+
+/// Native endian version of [`elf::Sym64`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct Sym {
+ pub name: Option<StringId>,
+ pub section: Option<SectionIndex>,
+ pub st_info: u8,
+ pub st_other: u8,
+ pub st_shndx: u16,
+ pub st_value: u64,
+ pub st_size: u64,
+}
+
+/// Unified native endian version of [`elf::Rel64`] and [`elf::Rela64`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct Rel {
+ pub r_offset: u64,
+ pub r_sym: u32,
+ pub r_type: u32,
+ pub r_addend: i64,
+}
+
+/// Information required for writing [`elf::Verdef`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct Verdef {
+ pub version: u16,
+ pub flags: u16,
+ pub index: u16,
+ pub aux_count: u16,
+ /// The name for the first [`elf::Verdaux`] entry.
+ pub name: StringId,
+}
+
+/// Information required for writing [`elf::Verneed`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct Verneed {
+ pub version: u16,
+ pub aux_count: u16,
+ pub file: StringId,
+}
+
+/// Information required for writing [`elf::Vernaux`].
+#[allow(missing_docs)]
+#[derive(Debug, Clone)]
+pub struct Vernaux {
+ pub flags: u16,
+ pub index: u16,
+ pub name: StringId,
+}