diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/prio/src/flp/gadgets.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/prio/src/flp/gadgets.rs')
-rw-r--r-- | third_party/rust/prio/src/flp/gadgets.rs | 715 |
1 files changed, 715 insertions, 0 deletions
diff --git a/third_party/rust/prio/src/flp/gadgets.rs b/third_party/rust/prio/src/flp/gadgets.rs new file mode 100644 index 0000000000..fd2be84eaa --- /dev/null +++ b/third_party/rust/prio/src/flp/gadgets.rs @@ -0,0 +1,715 @@ +// SPDX-License-Identifier: MPL-2.0 + +//! A collection of gadgets. + +use crate::fft::{discrete_fourier_transform, discrete_fourier_transform_inv_finish}; +use crate::field::FieldElement; +use crate::flp::{gadget_poly_len, wire_poly_len, FlpError, Gadget}; +use crate::polynomial::{poly_deg, poly_eval, poly_mul}; + +#[cfg(feature = "multithreaded")] +use rayon::prelude::*; + +use std::any::Any; +use std::convert::TryFrom; +use std::fmt::Debug; +use std::marker::PhantomData; + +/// For input polynomials larger than or equal to this threshold, gadgets will use FFT for +/// polynomial multiplication. Otherwise, the gadget uses direct multiplication. +const FFT_THRESHOLD: usize = 60; + +/// An arity-2 gadget that multiples its inputs. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct Mul<F: FieldElement> { + /// Size of buffer for FFT operations. + n: usize, + /// Inverse of `n` in `F`. + n_inv: F, + /// The number of times this gadget will be called. + num_calls: usize, +} + +impl<F: FieldElement> Mul<F> { + /// Return a new multiplier gadget. `num_calls` is the number of times this gadget will be + /// called by the validity circuit. + pub fn new(num_calls: usize) -> Self { + let n = gadget_poly_fft_mem_len(2, num_calls); + let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv(); + Self { + n, + n_inv, + num_calls, + } + } + + // Multiply input polynomials directly. + pub(crate) fn call_poly_direct( + &mut self, + outp: &mut [F], + inp: &[Vec<F>], + ) -> Result<(), FlpError> { + let v = poly_mul(&inp[0], &inp[1]); + outp[..v.len()].clone_from_slice(&v); + Ok(()) + } + + // Multiply input polynomials using FFT. + pub(crate) fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + let n = self.n; + let mut buf = vec![F::zero(); n]; + + discrete_fourier_transform(&mut buf, &inp[0], n)?; + discrete_fourier_transform(outp, &inp[1], n)?; + + for i in 0..n { + buf[i] *= outp[i]; + } + + discrete_fourier_transform(outp, &buf, n)?; + discrete_fourier_transform_inv_finish(outp, n, self.n_inv); + Ok(()) + } +} + +impl<F: FieldElement> Gadget<F> for Mul<F> { + fn call(&mut self, inp: &[F]) -> Result<F, FlpError> { + gadget_call_check(self, inp.len())?; + Ok(inp[0] * inp[1]) + } + + fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + gadget_call_poly_check(self, outp, inp)?; + if inp[0].len() >= FFT_THRESHOLD { + self.call_poly_fft(outp, inp) + } else { + self.call_poly_direct(outp, inp) + } + } + + fn arity(&self) -> usize { + 2 + } + + fn degree(&self) -> usize { + 2 + } + + fn calls(&self) -> usize { + self.num_calls + } + + fn as_any(&mut self) -> &mut dyn Any { + self + } +} + +/// An arity-1 gadget that evaluates its input on some polynomial. +// +// TODO Make `poly` an array of length determined by a const generic. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct PolyEval<F: FieldElement> { + poly: Vec<F>, + /// Size of buffer for FFT operations. + n: usize, + /// Inverse of `n` in `F`. + n_inv: F, + /// The number of times this gadget will be called. + num_calls: usize, +} + +impl<F: FieldElement> PolyEval<F> { + /// Returns a gadget that evaluates its input on `poly`. `num_calls` is the number of times + /// this gadget is called by the validity circuit. + pub fn new(poly: Vec<F>, num_calls: usize) -> Self { + let n = gadget_poly_fft_mem_len(poly_deg(&poly), num_calls); + let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv(); + Self { + poly, + n, + n_inv, + num_calls, + } + } +} + +impl<F: FieldElement> PolyEval<F> { + // Multiply input polynomials directly. + fn call_poly_direct(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + outp[0] = self.poly[0]; + let mut x = inp[0].to_vec(); + for i in 1..self.poly.len() { + for j in 0..x.len() { + outp[j] += self.poly[i] * x[j]; + } + + if i < self.poly.len() - 1 { + x = poly_mul(&x, &inp[0]); + } + } + Ok(()) + } + + // Multiply input polynomials using FFT. + fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + let n = self.n; + let inp = &inp[0]; + + let mut inp_vals = vec![F::zero(); n]; + discrete_fourier_transform(&mut inp_vals, inp, n)?; + + let mut x_vals = inp_vals.clone(); + let mut x = vec![F::zero(); n]; + x[..inp.len()].clone_from_slice(inp); + + outp[0] = self.poly[0]; + for i in 1..self.poly.len() { + for j in 0..n { + outp[j] += self.poly[i] * x[j]; + } + + if i < self.poly.len() - 1 { + for j in 0..n { + x_vals[j] *= inp_vals[j]; + } + + discrete_fourier_transform(&mut x, &x_vals, n)?; + discrete_fourier_transform_inv_finish(&mut x, n, self.n_inv); + } + } + Ok(()) + } +} + +impl<F: FieldElement> Gadget<F> for PolyEval<F> { + fn call(&mut self, inp: &[F]) -> Result<F, FlpError> { + gadget_call_check(self, inp.len())?; + Ok(poly_eval(&self.poly, inp[0])) + } + + fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + gadget_call_poly_check(self, outp, inp)?; + + for item in outp.iter_mut() { + *item = F::zero(); + } + + if inp[0].len() >= FFT_THRESHOLD { + self.call_poly_fft(outp, inp) + } else { + self.call_poly_direct(outp, inp) + } + } + + fn arity(&self) -> usize { + 1 + } + + fn degree(&self) -> usize { + poly_deg(&self.poly) + } + + fn calls(&self) -> usize { + self.num_calls + } + + fn as_any(&mut self) -> &mut dyn Any { + self + } +} + +/// An arity-2 gadget that returns `poly(in[0]) * in[1]` for some polynomial `poly`. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct BlindPolyEval<F: FieldElement> { + poly: Vec<F>, + /// Size of buffer for the outer FFT multiplication. + n: usize, + /// Inverse of `n` in `F`. + n_inv: F, + /// The number of times this gadget will be called. + num_calls: usize, +} + +impl<F: FieldElement> BlindPolyEval<F> { + /// Returns a `BlindPolyEval` gadget for polynomial `poly`. + pub fn new(poly: Vec<F>, num_calls: usize) -> Self { + let n = gadget_poly_fft_mem_len(poly_deg(&poly) + 1, num_calls); + let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv(); + Self { + poly, + n, + n_inv, + num_calls, + } + } + + fn call_poly_direct(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + let x = &inp[0]; + let y = &inp[1]; + + let mut z = y.to_vec(); + for i in 0..self.poly.len() { + for j in 0..z.len() { + outp[j] += self.poly[i] * z[j]; + } + + if i < self.poly.len() - 1 { + z = poly_mul(&z, x); + } + } + Ok(()) + } + + fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + let n = self.n; + let x = &inp[0]; + let y = &inp[1]; + + let mut x_vals = vec![F::zero(); n]; + discrete_fourier_transform(&mut x_vals, x, n)?; + + let mut z_vals = vec![F::zero(); n]; + discrete_fourier_transform(&mut z_vals, y, n)?; + + let mut z = vec![F::zero(); n]; + let mut z_len = y.len(); + z[..y.len()].clone_from_slice(y); + + for i in 0..self.poly.len() { + for j in 0..z_len { + outp[j] += self.poly[i] * z[j]; + } + + if i < self.poly.len() - 1 { + for j in 0..n { + z_vals[j] *= x_vals[j]; + } + + discrete_fourier_transform(&mut z, &z_vals, n)?; + discrete_fourier_transform_inv_finish(&mut z, n, self.n_inv); + z_len += x.len(); + } + } + Ok(()) + } +} + +impl<F: FieldElement> Gadget<F> for BlindPolyEval<F> { + fn call(&mut self, inp: &[F]) -> Result<F, FlpError> { + gadget_call_check(self, inp.len())?; + Ok(inp[1] * poly_eval(&self.poly, inp[0])) + } + + fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + gadget_call_poly_check(self, outp, inp)?; + + for x in outp.iter_mut() { + *x = F::zero(); + } + + if inp[0].len() >= FFT_THRESHOLD { + self.call_poly_fft(outp, inp) + } else { + self.call_poly_direct(outp, inp) + } + } + + fn arity(&self) -> usize { + 2 + } + + fn degree(&self) -> usize { + poly_deg(&self.poly) + 1 + } + + fn calls(&self) -> usize { + self.num_calls + } + + fn as_any(&mut self) -> &mut dyn Any { + self + } +} + +/// Marker trait for abstracting over [`ParallelSum`]. +pub trait ParallelSumGadget<F: FieldElement, G>: Gadget<F> + Debug { + /// Wraps `inner` into a sum gadget with `chunks` chunks + fn new(inner: G, chunks: usize) -> Self; +} + +/// A wrapper gadget that applies the inner gadget to chunks of input and returns the sum of the +/// outputs. The arity is equal to the arity of the inner gadget times the number of chunks. +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ParallelSum<F: FieldElement, G: Gadget<F>> { + inner: G, + chunks: usize, + phantom: PhantomData<F>, +} + +impl<F: FieldElement, G: 'static + Gadget<F>> ParallelSumGadget<F, G> for ParallelSum<F, G> { + fn new(inner: G, chunks: usize) -> Self { + Self { + inner, + chunks, + phantom: PhantomData, + } + } +} + +impl<F: FieldElement, G: 'static + Gadget<F>> Gadget<F> for ParallelSum<F, G> { + fn call(&mut self, inp: &[F]) -> Result<F, FlpError> { + gadget_call_check(self, inp.len())?; + let mut outp = F::zero(); + for chunk in inp.chunks(self.inner.arity()) { + outp += self.inner.call(chunk)?; + } + Ok(outp) + } + + fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + gadget_call_poly_check(self, outp, inp)?; + + for x in outp.iter_mut() { + *x = F::zero(); + } + + let mut partial_outp = vec![F::zero(); outp.len()]; + + for chunk in inp.chunks(self.inner.arity()) { + self.inner.call_poly(&mut partial_outp, chunk)?; + for i in 0..outp.len() { + outp[i] += partial_outp[i] + } + } + + Ok(()) + } + + fn arity(&self) -> usize { + self.chunks * self.inner.arity() + } + + fn degree(&self) -> usize { + self.inner.degree() + } + + fn calls(&self) -> usize { + self.inner.calls() + } + + fn as_any(&mut self) -> &mut dyn Any { + self + } +} + +/// A wrapper gadget that applies the inner gadget to chunks of input and returns the sum of the +/// outputs. The arity is equal to the arity of the inner gadget times the number of chunks. The sum +/// evaluation is multithreaded. +#[cfg(feature = "multithreaded")] +#[cfg_attr(docsrs, doc(cfg(feature = "multithreaded")))] +#[derive(Clone, Debug, Eq, PartialEq)] +pub struct ParallelSumMultithreaded<F: FieldElement, G: Gadget<F>> { + serial_sum: ParallelSum<F, G>, +} + +#[cfg(feature = "multithreaded")] +impl<F, G> ParallelSumGadget<F, G> for ParallelSumMultithreaded<F, G> +where + F: FieldElement + Sync + Send, + G: 'static + Gadget<F> + Clone + Sync + Send, +{ + fn new(inner: G, chunks: usize) -> Self { + Self { + serial_sum: ParallelSum::new(inner, chunks), + } + } +} + +/// Data structures passed between fold operations in [`ParallelSumMultithreaded`]. +#[cfg(feature = "multithreaded")] +struct ParallelSumFoldState<F, G> { + /// Inner gadget. + inner: G, + /// Output buffer for `call_poly()`. + partial_output: Vec<F>, + /// Sum accumulator. + partial_sum: Vec<F>, +} + +#[cfg(feature = "multithreaded")] +impl<F, G> ParallelSumFoldState<F, G> { + fn new(gadget: &G, length: usize) -> ParallelSumFoldState<F, G> + where + G: Clone, + F: FieldElement, + { + ParallelSumFoldState { + inner: gadget.clone(), + partial_output: vec![F::zero(); length], + partial_sum: vec![F::zero(); length], + } + } +} + +#[cfg(feature = "multithreaded")] +impl<F, G> Gadget<F> for ParallelSumMultithreaded<F, G> +where + F: FieldElement + Sync + Send, + G: 'static + Gadget<F> + Clone + Sync + Send, +{ + fn call(&mut self, inp: &[F]) -> Result<F, FlpError> { + self.serial_sum.call(inp) + } + + fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> { + gadget_call_poly_check(self, outp, inp)?; + + // Create a copy of the inner gadget and two working buffers on each thread. Evaluate the + // gadget on each input polynomial, using the first temporary buffer as an output buffer. + // Then accumulate that result into the second temporary buffer, which acts as a running + // sum. Then, discard everything but the partial sums, add them, and finally copy the sum + // to the output parameter. This is equivalent to the single threaded calculation in + // ParallelSum, since we only rearrange additions, and field addition is associative. + let res = inp + .par_chunks(self.serial_sum.inner.arity()) + .fold( + || ParallelSumFoldState::new(&self.serial_sum.inner, outp.len()), + |mut state, chunk| { + state + .inner + .call_poly(&mut state.partial_output, chunk) + .unwrap(); + for (sum_elem, output_elem) in state + .partial_sum + .iter_mut() + .zip(state.partial_output.iter()) + { + *sum_elem += *output_elem; + } + state + }, + ) + .map(|state| state.partial_sum) + .reduce( + || vec![F::zero(); outp.len()], + |mut x, y| { + for (xi, yi) in x.iter_mut().zip(y.iter()) { + *xi += *yi; + } + x + }, + ); + + outp.copy_from_slice(&res[..]); + Ok(()) + } + + fn arity(&self) -> usize { + self.serial_sum.arity() + } + + fn degree(&self) -> usize { + self.serial_sum.degree() + } + + fn calls(&self) -> usize { + self.serial_sum.calls() + } + + fn as_any(&mut self) -> &mut dyn Any { + self + } +} + +// Check that the input parameters of g.call() are well-formed. +fn gadget_call_check<F: FieldElement, G: Gadget<F>>( + gadget: &G, + in_len: usize, +) -> Result<(), FlpError> { + if in_len != gadget.arity() { + return Err(FlpError::Gadget(format!( + "unexpected number of inputs: got {}; want {}", + in_len, + gadget.arity() + ))); + } + + if in_len == 0 { + return Err(FlpError::Gadget("can't call an arity-0 gadget".to_string())); + } + + Ok(()) +} + +// Check that the input parameters of g.call_poly() are well-formed. +fn gadget_call_poly_check<F: FieldElement, G: Gadget<F>>( + gadget: &G, + outp: &[F], + inp: &[Vec<F>], +) -> Result<(), FlpError> +where + G: Gadget<F>, +{ + gadget_call_check(gadget, inp.len())?; + + for i in 1..inp.len() { + if inp[i].len() != inp[0].len() { + return Err(FlpError::Gadget( + "gadget called on wire polynomials with different lengths".to_string(), + )); + } + } + + let expected = gadget_poly_len(gadget.degree(), inp[0].len()).next_power_of_two(); + if outp.len() != expected { + return Err(FlpError::Gadget(format!( + "incorrect output length: got {}; want {}", + outp.len(), + expected + ))); + } + + Ok(()) +} + +#[inline] +fn gadget_poly_fft_mem_len(degree: usize, num_calls: usize) -> usize { + gadget_poly_len(degree, wire_poly_len(num_calls)).next_power_of_two() +} + +#[cfg(test)] +mod tests { + use super::*; + + use crate::field::{random_vector, Field96 as TestField}; + use crate::prng::Prng; + + #[test] + fn test_mul() { + // Test the gadget with input polynomials shorter than `FFT_THRESHOLD`. This exercises the + // naive multiplication code path. + let num_calls = FFT_THRESHOLD / 2; + let mut g: Mul<TestField> = Mul::new(num_calls); + gadget_test(&mut g, num_calls); + + // Test the gadget with input polynomials longer than `FFT_THRESHOLD`. This exercises + // FFT-based polynomial multiplication. + let num_calls = FFT_THRESHOLD; + let mut g: Mul<TestField> = Mul::new(num_calls); + gadget_test(&mut g, num_calls); + } + + #[test] + fn test_poly_eval() { + let poly: Vec<TestField> = random_vector(10).unwrap(); + + let num_calls = FFT_THRESHOLD / 2; + let mut g: PolyEval<TestField> = PolyEval::new(poly.clone(), num_calls); + gadget_test(&mut g, num_calls); + + let num_calls = FFT_THRESHOLD; + let mut g: PolyEval<TestField> = PolyEval::new(poly, num_calls); + gadget_test(&mut g, num_calls); + } + + #[test] + fn test_blind_poly_eval() { + let poly: Vec<TestField> = random_vector(10).unwrap(); + + let num_calls = FFT_THRESHOLD / 2; + let mut g: BlindPolyEval<TestField> = BlindPolyEval::new(poly.clone(), num_calls); + gadget_test(&mut g, num_calls); + + let num_calls = FFT_THRESHOLD; + let mut g: BlindPolyEval<TestField> = BlindPolyEval::new(poly, num_calls); + gadget_test(&mut g, num_calls); + } + + #[test] + fn test_parallel_sum() { + let poly: Vec<TestField> = random_vector(10).unwrap(); + let num_calls = 10; + let chunks = 23; + + let mut g = ParallelSum::new(BlindPolyEval::new(poly, num_calls), chunks); + gadget_test(&mut g, num_calls); + } + + #[test] + #[cfg(feature = "multithreaded")] + fn test_parallel_sum_multithreaded() { + use std::iter; + + for num_calls in [1, 10, 100] { + let poly: Vec<TestField> = random_vector(10).unwrap(); + let chunks = 23; + + let mut g = + ParallelSumMultithreaded::new(BlindPolyEval::new(poly.clone(), num_calls), chunks); + gadget_test(&mut g, num_calls); + + // Test that the multithreaded version has the same output as the normal version. + let mut g_serial = ParallelSum::new(BlindPolyEval::new(poly, num_calls), chunks); + assert_eq!(g.arity(), g_serial.arity()); + assert_eq!(g.degree(), g_serial.degree()); + assert_eq!(g.calls(), g_serial.calls()); + + let arity = g.arity(); + let degree = g.degree(); + + // Test that both gadgets evaluate to the same value when run on scalar inputs. + let inp: Vec<TestField> = random_vector(arity).unwrap(); + let result = g.call(&inp).unwrap(); + let result_serial = g_serial.call(&inp).unwrap(); + assert_eq!(result, result_serial); + + // Test that both gadgets evaluate to the same value when run on polynomial inputs. + let mut poly_outp = + vec![TestField::zero(); (degree * num_calls + 1).next_power_of_two()]; + let mut poly_outp_serial = + vec![TestField::zero(); (degree * num_calls + 1).next_power_of_two()]; + let mut prng: Prng<TestField, _> = Prng::new().unwrap(); + let poly_inp: Vec<_> = iter::repeat_with(|| { + iter::repeat_with(|| prng.get()) + .take(1 + num_calls) + .collect::<Vec<_>>() + }) + .take(arity) + .collect(); + + g.call_poly(&mut poly_outp, &poly_inp).unwrap(); + g_serial + .call_poly(&mut poly_outp_serial, &poly_inp) + .unwrap(); + assert_eq!(poly_outp, poly_outp_serial); + } + } + + // Test that calling g.call_poly() and evaluating the output at a given point is equivalent + // to evaluating each of the inputs at the same point and applying g.call() on the results. + fn gadget_test<F: FieldElement, G: Gadget<F>>(g: &mut G, num_calls: usize) { + let wire_poly_len = (1 + num_calls).next_power_of_two(); + let mut prng = Prng::new().unwrap(); + let mut inp = vec![F::zero(); g.arity()]; + let mut gadget_poly = vec![F::zero(); gadget_poly_fft_mem_len(g.degree(), num_calls)]; + let mut wire_polys = vec![vec![F::zero(); wire_poly_len]; g.arity()]; + + let r = prng.get(); + for i in 0..g.arity() { + for j in 0..wire_poly_len { + wire_polys[i][j] = prng.get(); + } + inp[i] = poly_eval(&wire_polys[i], r); + } + + g.call_poly(&mut gadget_poly, &wire_polys).unwrap(); + let got = poly_eval(&gadget_poly, r); + let want = g.call(&inp).unwrap(); + assert_eq!(got, want); + + // Repeat the call to make sure that the gadget's memory is reset properly between calls. + g.call_poly(&mut gadget_poly, &wire_polys).unwrap(); + let got = poly_eval(&gadget_poly, r); + assert_eq!(got, want); + } +} |