diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/rand/src/distributions/uniform.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/rand/src/distributions/uniform.rs')
-rw-r--r-- | third_party/rust/rand/src/distributions/uniform.rs | 1658 |
1 files changed, 1658 insertions, 0 deletions
diff --git a/third_party/rust/rand/src/distributions/uniform.rs b/third_party/rust/rand/src/distributions/uniform.rs new file mode 100644 index 0000000000..261357b245 --- /dev/null +++ b/third_party/rust/rand/src/distributions/uniform.rs @@ -0,0 +1,1658 @@ +// Copyright 2018-2020 Developers of the Rand project. +// Copyright 2017 The Rust Project Developers. +// +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or +// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license +// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! A distribution uniformly sampling numbers within a given range. +//! +//! [`Uniform`] is the standard distribution to sample uniformly from a range; +//! e.g. `Uniform::new_inclusive(1, 6)` can sample integers from 1 to 6, like a +//! standard die. [`Rng::gen_range`] supports any type supported by +//! [`Uniform`]. +//! +//! This distribution is provided with support for several primitive types +//! (all integer and floating-point types) as well as [`std::time::Duration`], +//! and supports extension to user-defined types via a type-specific *back-end* +//! implementation. +//! +//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the +//! back-ends supporting sampling from primitive integer and floating-point +//! ranges as well as from [`std::time::Duration`]; these types do not normally +//! need to be used directly (unless implementing a derived back-end). +//! +//! # Example usage +//! +//! ``` +//! use rand::{Rng, thread_rng}; +//! use rand::distributions::Uniform; +//! +//! let mut rng = thread_rng(); +//! let side = Uniform::new(-10.0, 10.0); +//! +//! // sample between 1 and 10 points +//! for _ in 0..rng.gen_range(1..=10) { +//! // sample a point from the square with sides -10 - 10 in two dimensions +//! let (x, y) = (rng.sample(side), rng.sample(side)); +//! println!("Point: {}, {}", x, y); +//! } +//! ``` +//! +//! # Extending `Uniform` to support a custom type +//! +//! To extend [`Uniform`] to support your own types, write a back-end which +//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`] +//! helper trait to "register" your back-end. See the `MyF32` example below. +//! +//! At a minimum, the back-end needs to store any parameters needed for sampling +//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`. +//! Those methods should include an assert to check the range is valid (i.e. +//! `low < high`). The example below merely wraps another back-end. +//! +//! The `new`, `new_inclusive` and `sample_single` functions use arguments of +//! type SampleBorrow<X> in order to support passing in values by reference or +//! by value. In the implementation of these functions, you can choose to +//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose +//! to copy or clone the value, whatever is appropriate for your type. +//! +//! ``` +//! use rand::prelude::*; +//! use rand::distributions::uniform::{Uniform, SampleUniform, +//! UniformSampler, UniformFloat, SampleBorrow}; +//! +//! struct MyF32(f32); +//! +//! #[derive(Clone, Copy, Debug)] +//! struct UniformMyF32(UniformFloat<f32>); +//! +//! impl UniformSampler for UniformMyF32 { +//! type X = MyF32; +//! fn new<B1, B2>(low: B1, high: B2) -> Self +//! where B1: SampleBorrow<Self::X> + Sized, +//! B2: SampleBorrow<Self::X> + Sized +//! { +//! UniformMyF32(UniformFloat::<f32>::new(low.borrow().0, high.borrow().0)) +//! } +//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self +//! where B1: SampleBorrow<Self::X> + Sized, +//! B2: SampleBorrow<Self::X> + Sized +//! { +//! UniformMyF32(UniformFloat::<f32>::new_inclusive( +//! low.borrow().0, +//! high.borrow().0, +//! )) +//! } +//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { +//! MyF32(self.0.sample(rng)) +//! } +//! } +//! +//! impl SampleUniform for MyF32 { +//! type Sampler = UniformMyF32; +//! } +//! +//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32)); +//! let uniform = Uniform::new(low, high); +//! let x = uniform.sample(&mut thread_rng()); +//! ``` +//! +//! [`SampleUniform`]: crate::distributions::uniform::SampleUniform +//! [`UniformSampler`]: crate::distributions::uniform::UniformSampler +//! [`UniformInt`]: crate::distributions::uniform::UniformInt +//! [`UniformFloat`]: crate::distributions::uniform::UniformFloat +//! [`UniformDuration`]: crate::distributions::uniform::UniformDuration +//! [`SampleBorrow::borrow`]: crate::distributions::uniform::SampleBorrow::borrow + +use core::time::Duration; +use core::ops::{Range, RangeInclusive}; + +use crate::distributions::float::IntoFloat; +use crate::distributions::utils::{BoolAsSIMD, FloatAsSIMD, FloatSIMDUtils, WideningMultiply}; +use crate::distributions::Distribution; +use crate::{Rng, RngCore}; + +#[cfg(not(feature = "std"))] +#[allow(unused_imports)] // rustc doesn't detect that this is actually used +use crate::distributions::utils::Float; + +#[cfg(feature = "simd_support")] use packed_simd::*; + +#[cfg(feature = "serde1")] +use serde::{Serialize, Deserialize}; + +/// Sample values uniformly between two bounds. +/// +/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform +/// distribution sampling from the given range; these functions may do extra +/// work up front to make sampling of multiple values faster. If only one sample +/// from the range is required, [`Rng::gen_range`] can be more efficient. +/// +/// When sampling from a constant range, many calculations can happen at +/// compile-time and all methods should be fast; for floating-point ranges and +/// the full range of integer types this should have comparable performance to +/// the `Standard` distribution. +/// +/// Steps are taken to avoid bias which might be present in naive +/// implementations; for example `rng.gen::<u8>() % 170` samples from the range +/// `[0, 169]` but is twice as likely to select numbers less than 85 than other +/// values. Further, the implementations here give more weight to the high-bits +/// generated by the RNG than the low bits, since with some RNGs the low-bits +/// are of lower quality than the high bits. +/// +/// Implementations must sample in `[low, high)` range for +/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must +/// be taken to ensure that rounding never results values `< low` or `>= high`. +/// +/// # Example +/// +/// ``` +/// use rand::distributions::{Distribution, Uniform}; +/// +/// let between = Uniform::from(10..10000); +/// let mut rng = rand::thread_rng(); +/// let mut sum = 0; +/// for _ in 0..1000 { +/// sum += between.sample(&mut rng); +/// } +/// println!("{}", sum); +/// ``` +/// +/// For a single sample, [`Rng::gen_range`] may be preferred: +/// +/// ``` +/// use rand::Rng; +/// +/// let mut rng = rand::thread_rng(); +/// println!("{}", rng.gen_range(0..10)); +/// ``` +/// +/// [`new`]: Uniform::new +/// [`new_inclusive`]: Uniform::new_inclusive +/// [`Rng::gen_range`]: Rng::gen_range +#[derive(Clone, Copy, Debug, PartialEq)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +#[cfg_attr(feature = "serde1", serde(bound(serialize = "X::Sampler: Serialize")))] +#[cfg_attr(feature = "serde1", serde(bound(deserialize = "X::Sampler: Deserialize<'de>")))] +pub struct Uniform<X: SampleUniform>(X::Sampler); + +impl<X: SampleUniform> Uniform<X> { + /// Create a new `Uniform` instance which samples uniformly from the half + /// open range `[low, high)` (excluding `high`). Panics if `low >= high`. + pub fn new<B1, B2>(low: B1, high: B2) -> Uniform<X> + where + B1: SampleBorrow<X> + Sized, + B2: SampleBorrow<X> + Sized, + { + Uniform(X::Sampler::new(low, high)) + } + + /// Create a new `Uniform` instance which samples uniformly from the closed + /// range `[low, high]` (inclusive). Panics if `low > high`. + pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Uniform<X> + where + B1: SampleBorrow<X> + Sized, + B2: SampleBorrow<X> + Sized, + { + Uniform(X::Sampler::new_inclusive(low, high)) + } +} + +impl<X: SampleUniform> Distribution<X> for Uniform<X> { + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X { + self.0.sample(rng) + } +} + +/// Helper trait for creating objects using the correct implementation of +/// [`UniformSampler`] for the sampling type. +/// +/// See the [module documentation] on how to implement [`Uniform`] range +/// sampling for a custom type. +/// +/// [module documentation]: crate::distributions::uniform +pub trait SampleUniform: Sized { + /// The `UniformSampler` implementation supporting type `X`. + type Sampler: UniformSampler<X = Self>; +} + +/// Helper trait handling actual uniform sampling. +/// +/// See the [module documentation] on how to implement [`Uniform`] range +/// sampling for a custom type. +/// +/// Implementation of [`sample_single`] is optional, and is only useful when +/// the implementation can be faster than `Self::new(low, high).sample(rng)`. +/// +/// [module documentation]: crate::distributions::uniform +/// [`sample_single`]: UniformSampler::sample_single +pub trait UniformSampler: Sized { + /// The type sampled by this implementation. + type X; + + /// Construct self, with inclusive lower bound and exclusive upper bound + /// `[low, high)`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new`, which asserts that `low < high` before calling this. + fn new<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized; + + /// Construct self, with inclusive bounds `[low, high]`. + /// + /// Usually users should not call this directly but instead use + /// `Uniform::new_inclusive`, which asserts that `low <= high` before + /// calling this. + fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized; + + /// Sample a value. + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X; + + /// Sample a single value uniformly from a range with inclusive lower bound + /// and exclusive upper bound `[low, high)`. + /// + /// By default this is implemented using + /// `UniformSampler::new(low, high).sample(rng)`. However, for some types + /// more optimal implementations for single usage may be provided via this + /// method (which is the case for integers and floats). + /// Results may not be identical. + /// + /// Note that to use this method in a generic context, the type needs to be + /// retrieved via `SampleUniform::Sampler` as follows: + /// ``` + /// use rand::{thread_rng, distributions::uniform::{SampleUniform, UniformSampler}}; + /// # #[allow(unused)] + /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T { + /// let mut rng = thread_rng(); + /// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng) + /// } + /// ``` + fn sample_single<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let uniform: Self = UniformSampler::new(low, high); + uniform.sample(rng) + } + + /// Sample a single value uniformly from a range with inclusive lower bound + /// and inclusive upper bound `[low, high]`. + /// + /// By default this is implemented using + /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for + /// some types more optimal implementations for single usage may be provided + /// via this method. + /// Results may not be identical. + fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low: B1, high: B2, rng: &mut R) + -> Self::X + where B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized + { + let uniform: Self = UniformSampler::new_inclusive(low, high); + uniform.sample(rng) + } +} + +impl<X: SampleUniform> From<Range<X>> for Uniform<X> { + fn from(r: ::core::ops::Range<X>) -> Uniform<X> { + Uniform::new(r.start, r.end) + } +} + +impl<X: SampleUniform> From<RangeInclusive<X>> for Uniform<X> { + fn from(r: ::core::ops::RangeInclusive<X>) -> Uniform<X> { + Uniform::new_inclusive(r.start(), r.end()) + } +} + + +/// Helper trait similar to [`Borrow`] but implemented +/// only for SampleUniform and references to SampleUniform in +/// order to resolve ambiguity issues. +/// +/// [`Borrow`]: std::borrow::Borrow +pub trait SampleBorrow<Borrowed> { + /// Immutably borrows from an owned value. See [`Borrow::borrow`] + /// + /// [`Borrow::borrow`]: std::borrow::Borrow::borrow + fn borrow(&self) -> &Borrowed; +} +impl<Borrowed> SampleBorrow<Borrowed> for Borrowed +where Borrowed: SampleUniform +{ + #[inline(always)] + fn borrow(&self) -> &Borrowed { + self + } +} +impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed +where Borrowed: SampleUniform +{ + #[inline(always)] + fn borrow(&self) -> &Borrowed { + *self + } +} + +/// Range that supports generating a single sample efficiently. +/// +/// Any type implementing this trait can be used to specify the sampled range +/// for `Rng::gen_range`. +pub trait SampleRange<T> { + /// Generate a sample from the given range. + fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T; + + /// Check whether the range is empty. + fn is_empty(&self) -> bool; +} + +impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> { + #[inline] + fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { + T::Sampler::sample_single(self.start, self.end, rng) + } + + #[inline] + fn is_empty(&self) -> bool { + !(self.start < self.end) + } +} + +impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> { + #[inline] + fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> T { + T::Sampler::sample_single_inclusive(self.start(), self.end(), rng) + } + + #[inline] + fn is_empty(&self) -> bool { + !(self.start() <= self.end()) + } +} + + +//////////////////////////////////////////////////////////////////////////////// + +// What follows are all back-ends. + + +/// The back-end implementing [`UniformSampler`] for integer types. +/// +/// Unless you are implementing [`UniformSampler`] for your own type, this type +/// should not be used directly, use [`Uniform`] instead. +/// +/// # Implementation notes +/// +/// For simplicity, we use the same generic struct `UniformInt<X>` for all +/// integer types `X`. This gives us only one field type, `X`; to store unsigned +/// values of this size, we take use the fact that these conversions are no-ops. +/// +/// For a closed range, the number of possible numbers we should generate is +/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of +/// our sample space, `zone`, is a multiple of `range`; other values must be +/// rejected (by replacing with a new random sample). +/// +/// As a special case, we use `range = 0` to represent the full range of the +/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`). +/// +/// The optimum `zone` is the largest product of `range` which fits in our +/// (unsigned) target type. We calculate this by calculating how many numbers we +/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large) +/// product of `range` will suffice, thus in `sample_single` we multiply by a +/// power of 2 via bit-shifting (faster but may cause more rejections). +/// +/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we +/// use `u32` for our `zone` and samples (because it's not slower and because +/// it reduces the chance of having to reject a sample). In this case we cannot +/// store `zone` in the target type since it is too large, however we know +/// `ints_to_reject < range <= $unsigned::MAX`. +/// +/// An alternative to using a modulus is widening multiply: After a widening +/// multiply by `range`, the result is in the high word. Then comparing the low +/// word against `zone` makes sure our distribution is uniform. +#[derive(Clone, Copy, Debug, PartialEq)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +pub struct UniformInt<X> { + low: X, + range: X, + z: X, // either ints_to_reject or zone depending on implementation +} + +macro_rules! uniform_int_impl { + ($ty:ty, $unsigned:ident, $u_large:ident) => { + impl SampleUniform for $ty { + type Sampler = UniformInt<$ty>; + } + + impl UniformSampler for UniformInt<$ty> { + // We play free and fast with unsigned vs signed here + // (when $ty is signed), but that's fine, since the + // contract of this macro is for $ty and $unsigned to be + // "bit-equal", so casting between them is a no-op. + + type X = $ty; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "Uniform::new called with `low >= high`"); + UniformSampler::new_inclusive(low, high - 1) + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low <= high, + "Uniform::new_inclusive called with `low > high`" + ); + let unsigned_max = ::core::$u_large::MAX; + + let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned; + let ints_to_reject = if range > 0 { + let range = $u_large::from(range); + (unsigned_max - range + 1) % range + } else { + 0 + }; + + UniformInt { + low, + // These are really $unsigned values, but store as $ty: + range: range as $ty, + z: ints_to_reject as $unsigned as $ty, + } + } + + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let range = self.range as $unsigned as $u_large; + if range > 0 { + let unsigned_max = ::core::$u_large::MAX; + let zone = unsigned_max - (self.z as $unsigned as $u_large); + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return self.low.wrapping_add(hi as $ty); + } + } + } else { + // Sample from the entire integer range. + rng.gen() + } + } + + #[inline] + fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "UniformSampler::sample_single: low >= high"); + Self::sample_single_inclusive(low, high - 1, rng) + } + + #[inline] + fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low <= high, "UniformSampler::sample_single_inclusive: low > high"); + let range = high.wrapping_sub(low).wrapping_add(1) as $unsigned as $u_large; + // If the above resulted in wrap-around to 0, the range is $ty::MIN..=$ty::MAX, + // and any integer will do. + if range == 0 { + return rng.gen(); + } + + let zone = if ::core::$unsigned::MAX <= ::core::u16::MAX as $unsigned { + // Using a modulus is faster than the approximation for + // i8 and i16. I suppose we trade the cost of one + // modulus for near-perfect branch prediction. + let unsigned_max: $u_large = ::core::$u_large::MAX; + let ints_to_reject = (unsigned_max - range + 1) % range; + unsigned_max - ints_to_reject + } else { + // conservative but fast approximation. `- 1` is necessary to allow the + // same comparison without bias. + (range << range.leading_zeros()).wrapping_sub(1) + }; + + loop { + let v: $u_large = rng.gen(); + let (hi, lo) = v.wmul(range); + if lo <= zone { + return low.wrapping_add(hi as $ty); + } + } + } + } + }; +} + +uniform_int_impl! { i8, u8, u32 } +uniform_int_impl! { i16, u16, u32 } +uniform_int_impl! { i32, u32, u32 } +uniform_int_impl! { i64, u64, u64 } +uniform_int_impl! { i128, u128, u128 } +uniform_int_impl! { isize, usize, usize } +uniform_int_impl! { u8, u8, u32 } +uniform_int_impl! { u16, u16, u32 } +uniform_int_impl! { u32, u32, u32 } +uniform_int_impl! { u64, u64, u64 } +uniform_int_impl! { usize, usize, usize } +uniform_int_impl! { u128, u128, u128 } + +#[cfg(feature = "simd_support")] +macro_rules! uniform_simd_int_impl { + ($ty:ident, $unsigned:ident, $u_scalar:ident) => { + // The "pick the largest zone that can fit in an `u32`" optimization + // is less useful here. Multiple lanes complicate things, we don't + // know the PRNG's minimal output size, and casting to a larger vector + // is generally a bad idea for SIMD performance. The user can still + // implement it manually. + + // TODO: look into `Uniform::<u32x4>::new(0u32, 100)` functionality + // perhaps `impl SampleUniform for $u_scalar`? + impl SampleUniform for $ty { + type Sampler = UniformInt<$ty>; + } + + impl UniformSampler for UniformInt<$ty> { + type X = $ty; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low.lt(high).all(), "Uniform::new called with `low >= high`"); + UniformSampler::new_inclusive(low, high - 1) + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low.le(high).all(), + "Uniform::new_inclusive called with `low > high`"); + let unsigned_max = ::core::$u_scalar::MAX; + + // NOTE: these may need to be replaced with explicitly + // wrapping operations if `packed_simd` changes + let range: $unsigned = ((high - low) + 1).cast(); + // `% 0` will panic at runtime. + let not_full_range = range.gt($unsigned::splat(0)); + // replacing 0 with `unsigned_max` allows a faster `select` + // with bitwise OR + let modulo = not_full_range.select(range, $unsigned::splat(unsigned_max)); + // wrapping addition + let ints_to_reject = (unsigned_max - range + 1) % modulo; + // When `range` is 0, `lo` of `v.wmul(range)` will always be + // zero which means only one sample is needed. + let zone = unsigned_max - ints_to_reject; + + UniformInt { + low, + // These are really $unsigned values, but store as $ty: + range: range.cast(), + z: zone.cast(), + } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let range: $unsigned = self.range.cast(); + let zone: $unsigned = self.z.cast(); + + // This might seem very slow, generating a whole new + // SIMD vector for every sample rejection. For most uses + // though, the chance of rejection is small and provides good + // general performance. With multiple lanes, that chance is + // multiplied. To mitigate this, we replace only the lanes of + // the vector which fail, iteratively reducing the chance of + // rejection. The replacement method does however add a little + // overhead. Benchmarking or calculating probabilities might + // reveal contexts where this replacement method is slower. + let mut v: $unsigned = rng.gen(); + loop { + let (hi, lo) = v.wmul(range); + let mask = lo.le(zone); + if mask.all() { + let hi: $ty = hi.cast(); + // wrapping addition + let result = self.low + hi; + // `select` here compiles to a blend operation + // When `range.eq(0).none()` the compare and blend + // operations are avoided. + let v: $ty = v.cast(); + return range.gt($unsigned::splat(0)).select(result, v); + } + // Replace only the failing lanes + v = mask.select(v, rng.gen()); + } + } + } + }; + + // bulk implementation + ($(($unsigned:ident, $signed:ident),)+ $u_scalar:ident) => { + $( + uniform_simd_int_impl!($unsigned, $unsigned, $u_scalar); + uniform_simd_int_impl!($signed, $unsigned, $u_scalar); + )+ + }; +} + +#[cfg(feature = "simd_support")] +uniform_simd_int_impl! { + (u64x2, i64x2), + (u64x4, i64x4), + (u64x8, i64x8), + u64 +} + +#[cfg(feature = "simd_support")] +uniform_simd_int_impl! { + (u32x2, i32x2), + (u32x4, i32x4), + (u32x8, i32x8), + (u32x16, i32x16), + u32 +} + +#[cfg(feature = "simd_support")] +uniform_simd_int_impl! { + (u16x2, i16x2), + (u16x4, i16x4), + (u16x8, i16x8), + (u16x16, i16x16), + (u16x32, i16x32), + u16 +} + +#[cfg(feature = "simd_support")] +uniform_simd_int_impl! { + (u8x2, i8x2), + (u8x4, i8x4), + (u8x8, i8x8), + (u8x16, i8x16), + (u8x32, i8x32), + (u8x64, i8x64), + u8 +} + +impl SampleUniform for char { + type Sampler = UniformChar; +} + +/// The back-end implementing [`UniformSampler`] for `char`. +/// +/// Unless you are implementing [`UniformSampler`] for your own type, this type +/// should not be used directly, use [`Uniform`] instead. +/// +/// This differs from integer range sampling since the range `0xD800..=0xDFFF` +/// are used for surrogate pairs in UCS and UTF-16, and consequently are not +/// valid Unicode code points. We must therefore avoid sampling values in this +/// range. +#[derive(Clone, Copy, Debug)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +pub struct UniformChar { + sampler: UniformInt<u32>, +} + +/// UTF-16 surrogate range start +const CHAR_SURROGATE_START: u32 = 0xD800; +/// UTF-16 surrogate range size +const CHAR_SURROGATE_LEN: u32 = 0xE000 - CHAR_SURROGATE_START; + +/// Convert `char` to compressed `u32` +fn char_to_comp_u32(c: char) -> u32 { + match c as u32 { + c if c >= CHAR_SURROGATE_START => c - CHAR_SURROGATE_LEN, + c => c, + } +} + +impl UniformSampler for UniformChar { + type X = char; + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = char_to_comp_u32(*low_b.borrow()); + let high = char_to_comp_u32(*high_b.borrow()); + let sampler = UniformInt::<u32>::new(low, high); + UniformChar { sampler } + } + + #[inline] // if the range is constant, this helps LLVM to do the + // calculations at compile-time. + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = char_to_comp_u32(*low_b.borrow()); + let high = char_to_comp_u32(*high_b.borrow()); + let sampler = UniformInt::<u32>::new_inclusive(low, high); + UniformChar { sampler } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + let mut x = self.sampler.sample(rng); + if x >= CHAR_SURROGATE_START { + x += CHAR_SURROGATE_LEN; + } + // SAFETY: x must not be in surrogate range or greater than char::MAX. + // This relies on range constructors which accept char arguments. + // Validity of input char values is assumed. + unsafe { core::char::from_u32_unchecked(x) } + } +} + +/// The back-end implementing [`UniformSampler`] for floating-point types. +/// +/// Unless you are implementing [`UniformSampler`] for your own type, this type +/// should not be used directly, use [`Uniform`] instead. +/// +/// # Implementation notes +/// +/// Instead of generating a float in the `[0, 1)` range using [`Standard`], the +/// `UniformFloat` implementation converts the output of an PRNG itself. This +/// way one or two steps can be optimized out. +/// +/// The floats are first converted to a value in the `[1, 2)` interval using a +/// transmute-based method, and then mapped to the expected range with a +/// multiply and addition. Values produced this way have what equals 23 bits of +/// random digits for an `f32`, and 52 for an `f64`. +/// +/// [`new`]: UniformSampler::new +/// [`new_inclusive`]: UniformSampler::new_inclusive +/// [`Standard`]: crate::distributions::Standard +#[derive(Clone, Copy, Debug, PartialEq)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +pub struct UniformFloat<X> { + low: X, + scale: X, +} + +macro_rules! uniform_float_impl { + ($ty:ty, $uty:ident, $f_scalar:ident, $u_scalar:ident, $bits_to_discard:expr) => { + impl SampleUniform for $ty { + type Sampler = UniformFloat<$ty>; + } + + impl UniformSampler for UniformFloat<$ty> { + type X = $ty; + + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + debug_assert!( + low.all_finite(), + "Uniform::new called with `low` non-finite." + ); + debug_assert!( + high.all_finite(), + "Uniform::new called with `high` non-finite." + ); + assert!(low.all_lt(high), "Uniform::new called with `low >= high`"); + let max_rand = <$ty>::splat( + (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, + ); + + let mut scale = high - low; + assert!(scale.all_finite(), "Uniform::new: range overflow"); + + loop { + let mask = (scale * max_rand + low).ge_mask(high); + if mask.none() { + break; + } + scale = scale.decrease_masked(mask); + } + + debug_assert!(<$ty>::splat(0.0).all_le(scale)); + + UniformFloat { low, scale } + } + + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + debug_assert!( + low.all_finite(), + "Uniform::new_inclusive called with `low` non-finite." + ); + debug_assert!( + high.all_finite(), + "Uniform::new_inclusive called with `high` non-finite." + ); + assert!( + low.all_le(high), + "Uniform::new_inclusive called with `low > high`" + ); + let max_rand = <$ty>::splat( + (::core::$u_scalar::MAX >> $bits_to_discard).into_float_with_exponent(0) - 1.0, + ); + + let mut scale = (high - low) / max_rand; + assert!(scale.all_finite(), "Uniform::new_inclusive: range overflow"); + + loop { + let mask = (scale * max_rand + low).gt_mask(high); + if mask.none() { + break; + } + scale = scale.decrease_masked(mask); + } + + debug_assert!(<$ty>::splat(0.0).all_le(scale)); + + UniformFloat { low, scale } + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + // Generate a value in the range [1, 2) + let value1_2 = (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); + + // Get a value in the range [0, 1) in order to avoid + // overflowing into infinity when multiplying with scale + let value0_1 = value1_2 - 1.0; + + // We don't use `f64::mul_add`, because it is not available with + // `no_std`. Furthermore, it is slower for some targets (but + // faster for others). However, the order of multiplication and + // addition is important, because on some platforms (e.g. ARM) + // it will be optimized to a single (non-FMA) instruction. + value0_1 * self.scale + self.low + } + + #[inline] + fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + debug_assert!( + low.all_finite(), + "UniformSampler::sample_single called with `low` non-finite." + ); + debug_assert!( + high.all_finite(), + "UniformSampler::sample_single called with `high` non-finite." + ); + assert!( + low.all_lt(high), + "UniformSampler::sample_single: low >= high" + ); + let mut scale = high - low; + assert!(scale.all_finite(), "UniformSampler::sample_single: range overflow"); + + loop { + // Generate a value in the range [1, 2) + let value1_2 = + (rng.gen::<$uty>() >> $bits_to_discard).into_float_with_exponent(0); + + // Get a value in the range [0, 1) in order to avoid + // overflowing into infinity when multiplying with scale + let value0_1 = value1_2 - 1.0; + + // Doing multiply before addition allows some architectures + // to use a single instruction. + let res = value0_1 * scale + low; + + debug_assert!(low.all_le(res) || !scale.all_finite()); + if res.all_lt(high) { + return res; + } + + // This handles a number of edge cases. + // * `low` or `high` is NaN. In this case `scale` and + // `res` are going to end up as NaN. + // * `low` is negative infinity and `high` is finite. + // `scale` is going to be infinite and `res` will be + // NaN. + // * `high` is positive infinity and `low` is finite. + // `scale` is going to be infinite and `res` will + // be infinite or NaN (if value0_1 is 0). + // * `low` is negative infinity and `high` is positive + // infinity. `scale` will be infinite and `res` will + // be NaN. + // * `low` and `high` are finite, but `high - low` + // overflows to infinite. `scale` will be infinite + // and `res` will be infinite or NaN (if value0_1 is 0). + // So if `high` or `low` are non-finite, we are guaranteed + // to fail the `res < high` check above and end up here. + // + // While we technically should check for non-finite `low` + // and `high` before entering the loop, by doing the checks + // here instead, we allow the common case to avoid these + // checks. But we are still guaranteed that if `low` or + // `high` are non-finite we'll end up here and can do the + // appropriate checks. + // + // Likewise `high - low` overflowing to infinity is also + // rare, so handle it here after the common case. + let mask = !scale.finite_mask(); + if mask.any() { + assert!( + low.all_finite() && high.all_finite(), + "Uniform::sample_single: low and high must be finite" + ); + scale = scale.decrease_masked(mask); + } + } + } + } + }; +} + +uniform_float_impl! { f32, u32, f32, u32, 32 - 23 } +uniform_float_impl! { f64, u64, f64, u64, 64 - 52 } + +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x2, u32x2, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x4, u32x4, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x8, u32x8, f32, u32, 32 - 23 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f32x16, u32x16, f32, u32, 32 - 23 } + +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x2, u64x2, f64, u64, 64 - 52 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x4, u64x4, f64, u64, 64 - 52 } +#[cfg(feature = "simd_support")] +uniform_float_impl! { f64x8, u64x8, f64, u64, 64 - 52 } + + +/// The back-end implementing [`UniformSampler`] for `Duration`. +/// +/// Unless you are implementing [`UniformSampler`] for your own types, this type +/// should not be used directly, use [`Uniform`] instead. +#[derive(Clone, Copy, Debug)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +pub struct UniformDuration { + mode: UniformDurationMode, + offset: u32, +} + +#[derive(Debug, Copy, Clone)] +#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] +enum UniformDurationMode { + Small { + secs: u64, + nanos: Uniform<u32>, + }, + Medium { + nanos: Uniform<u64>, + }, + Large { + max_secs: u64, + max_nanos: u32, + secs: Uniform<u64>, + }, +} + +impl SampleUniform for Duration { + type Sampler = UniformDuration; +} + +impl UniformSampler for UniformDuration { + type X = Duration; + + #[inline] + fn new<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!(low < high, "Uniform::new called with `low >= high`"); + UniformDuration::new_inclusive(low, high - Duration::new(0, 1)) + } + + #[inline] + fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + let low = *low_b.borrow(); + let high = *high_b.borrow(); + assert!( + low <= high, + "Uniform::new_inclusive called with `low > high`" + ); + + let low_s = low.as_secs(); + let low_n = low.subsec_nanos(); + let mut high_s = high.as_secs(); + let mut high_n = high.subsec_nanos(); + + if high_n < low_n { + high_s -= 1; + high_n += 1_000_000_000; + } + + let mode = if low_s == high_s { + UniformDurationMode::Small { + secs: low_s, + nanos: Uniform::new_inclusive(low_n, high_n), + } + } else { + let max = high_s + .checked_mul(1_000_000_000) + .and_then(|n| n.checked_add(u64::from(high_n))); + + if let Some(higher_bound) = max { + let lower_bound = low_s * 1_000_000_000 + u64::from(low_n); + UniformDurationMode::Medium { + nanos: Uniform::new_inclusive(lower_bound, higher_bound), + } + } else { + // An offset is applied to simplify generation of nanoseconds + let max_nanos = high_n - low_n; + UniformDurationMode::Large { + max_secs: high_s, + max_nanos, + secs: Uniform::new_inclusive(low_s, high_s), + } + } + }; + UniformDuration { + mode, + offset: low_n, + } + } + + #[inline] + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Duration { + match self.mode { + UniformDurationMode::Small { secs, nanos } => { + let n = nanos.sample(rng); + Duration::new(secs, n) + } + UniformDurationMode::Medium { nanos } => { + let nanos = nanos.sample(rng); + Duration::new(nanos / 1_000_000_000, (nanos % 1_000_000_000) as u32) + } + UniformDurationMode::Large { + max_secs, + max_nanos, + secs, + } => { + // constant folding means this is at least as fast as `Rng::sample(Range)` + let nano_range = Uniform::new(0, 1_000_000_000); + loop { + let s = secs.sample(rng); + let n = nano_range.sample(rng); + if !(s == max_secs && n > max_nanos) { + let sum = n + self.offset; + break Duration::new(s, sum); + } + } + } + } + } +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::rngs::mock::StepRng; + + #[test] + #[cfg(feature = "serde1")] + fn test_serialization_uniform_duration() { + let distr = UniformDuration::new(Duration::from_secs(10), Duration::from_secs(60)); + let de_distr: UniformDuration = bincode::deserialize(&bincode::serialize(&distr).unwrap()).unwrap(); + assert_eq!( + distr.offset, de_distr.offset + ); + match (distr.mode, de_distr.mode) { + (UniformDurationMode::Small {secs: a_secs, nanos: a_nanos}, UniformDurationMode::Small {secs, nanos}) => { + assert_eq!(a_secs, secs); + + assert_eq!(a_nanos.0.low, nanos.0.low); + assert_eq!(a_nanos.0.range, nanos.0.range); + assert_eq!(a_nanos.0.z, nanos.0.z); + } + (UniformDurationMode::Medium {nanos: a_nanos} , UniformDurationMode::Medium {nanos}) => { + assert_eq!(a_nanos.0.low, nanos.0.low); + assert_eq!(a_nanos.0.range, nanos.0.range); + assert_eq!(a_nanos.0.z, nanos.0.z); + } + (UniformDurationMode::Large {max_secs:a_max_secs, max_nanos:a_max_nanos, secs:a_secs}, UniformDurationMode::Large {max_secs, max_nanos, secs} ) => { + assert_eq!(a_max_secs, max_secs); + assert_eq!(a_max_nanos, max_nanos); + + assert_eq!(a_secs.0.low, secs.0.low); + assert_eq!(a_secs.0.range, secs.0.range); + assert_eq!(a_secs.0.z, secs.0.z); + } + _ => panic!("`UniformDurationMode` was not serialized/deserialized correctly") + } + } + + #[test] + #[cfg(feature = "serde1")] + fn test_uniform_serialization() { + let unit_box: Uniform<i32> = Uniform::new(-1, 1); + let de_unit_box: Uniform<i32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); + + assert_eq!(unit_box.0.low, de_unit_box.0.low); + assert_eq!(unit_box.0.range, de_unit_box.0.range); + assert_eq!(unit_box.0.z, de_unit_box.0.z); + + let unit_box: Uniform<f32> = Uniform::new(-1., 1.); + let de_unit_box: Uniform<f32> = bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap(); + + assert_eq!(unit_box.0.low, de_unit_box.0.low); + assert_eq!(unit_box.0.scale, de_unit_box.0.scale); + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_equal_int() { + Uniform::new(10, 10); + } + + #[test] + fn test_uniform_good_limits_equal_int() { + let mut rng = crate::test::rng(804); + let dist = Uniform::new_inclusive(10, 10); + for _ in 0..20 { + assert_eq!(rng.sample(dist), 10); + } + } + + #[should_panic] + #[test] + fn test_uniform_bad_limits_flipped_int() { + Uniform::new(10, 5); + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_integers() { + use core::{i128, u128}; + use core::{i16, i32, i64, i8, isize}; + use core::{u16, u32, u64, u8, usize}; + + let mut rng = crate::test::rng(251); + macro_rules! t { + ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{ + for &(low, high) in $v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $lt(v, high)); + } + + let my_uniform = Uniform::new_inclusive(low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $le(v, high)); + } + + let my_uniform = Uniform::new(&low, high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $lt(v, high)); + } + + let my_uniform = Uniform::new_inclusive(&low, &high); + for _ in 0..1000 { + let v: $ty = rng.sample(my_uniform); + assert!($le(low, v) && $le(v, high)); + } + + for _ in 0..1000 { + let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng); + assert!($le(low, v) && $lt(v, high)); + } + + for _ in 0..1000 { + let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng); + assert!($le(low, v) && $le(v, high)); + } + } + }}; + + // scalar bulk + ($($ty:ident),*) => {{ + $(t!( + $ty, + [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)], + |x, y| x <= y, + |x, y| x < y + );)* + }}; + + // simd bulk + ($($ty:ident),* => $scalar:ident) => {{ + $(t!( + $ty, + [ + ($ty::splat(0), $ty::splat(10)), + ($ty::splat(10), $ty::splat(127)), + ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)), + ], + |x: $ty, y| x.le(y).all(), + |x: $ty, y| x.lt(y).all() + );)* + }}; + } + t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize, i128, u128); + + #[cfg(feature = "simd_support")] + { + t!(u8x2, u8x4, u8x8, u8x16, u8x32, u8x64 => u8); + t!(i8x2, i8x4, i8x8, i8x16, i8x32, i8x64 => i8); + t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16); + t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16); + t!(u32x2, u32x4, u32x8, u32x16 => u32); + t!(i32x2, i32x4, i32x8, i32x16 => i32); + t!(u64x2, u64x4, u64x8 => u64); + t!(i64x2, i64x4, i64x8 => i64); + } + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_char() { + let mut rng = crate::test::rng(891); + let mut max = core::char::from_u32(0).unwrap(); + for _ in 0..100 { + let c = rng.gen_range('A'..='Z'); + assert!(('A'..='Z').contains(&c)); + max = max.max(c); + } + assert_eq!(max, 'Z'); + let d = Uniform::new( + core::char::from_u32(0xD7F0).unwrap(), + core::char::from_u32(0xE010).unwrap(), + ); + for _ in 0..100 { + let c = d.sample(&mut rng); + assert!((c as u32) < 0xD800 || (c as u32) > 0xDFFF); + } + } + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_floats() { + let mut rng = crate::test::rng(252); + let mut zero_rng = StepRng::new(0, 0); + let mut max_rng = StepRng::new(0xffff_ffff_ffff_ffff, 0); + macro_rules! t { + ($ty:ty, $f_scalar:ident, $bits_shifted:expr) => {{ + let v: &[($f_scalar, $f_scalar)] = &[ + (0.0, 100.0), + (-1e35, -1e25), + (1e-35, 1e-25), + (-1e35, 1e35), + (<$f_scalar>::from_bits(0), <$f_scalar>::from_bits(3)), + (-<$f_scalar>::from_bits(10), -<$f_scalar>::from_bits(1)), + (-<$f_scalar>::from_bits(5), 0.0), + (-<$f_scalar>::from_bits(7), -0.0), + (0.1 * ::core::$f_scalar::MAX, ::core::$f_scalar::MAX), + (-::core::$f_scalar::MAX * 0.2, ::core::$f_scalar::MAX * 0.7), + ]; + for &(low_scalar, high_scalar) in v.iter() { + for lane in 0..<$ty>::lanes() { + let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); + let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); + let my_uniform = Uniform::new(low, high); + let my_incl_uniform = Uniform::new_inclusive(low, high); + for _ in 0..100 { + let v = rng.sample(my_uniform).extract(lane); + assert!(low_scalar <= v && v < high_scalar); + let v = rng.sample(my_incl_uniform).extract(lane); + assert!(low_scalar <= v && v <= high_scalar); + let v = <$ty as SampleUniform>::Sampler + ::sample_single(low, high, &mut rng).extract(lane); + assert!(low_scalar <= v && v < high_scalar); + } + + assert_eq!( + rng.sample(Uniform::new_inclusive(low, low)).extract(lane), + low_scalar + ); + + assert_eq!(zero_rng.sample(my_uniform).extract(lane), low_scalar); + assert_eq!(zero_rng.sample(my_incl_uniform).extract(lane), low_scalar); + assert_eq!(<$ty as SampleUniform>::Sampler + ::sample_single(low, high, &mut zero_rng) + .extract(lane), low_scalar); + assert!(max_rng.sample(my_uniform).extract(lane) < high_scalar); + assert!(max_rng.sample(my_incl_uniform).extract(lane) <= high_scalar); + + // Don't run this test for really tiny differences between high and low + // since for those rounding might result in selecting high for a very + // long time. + if (high_scalar - low_scalar) > 0.0001 { + let mut lowering_max_rng = StepRng::new( + 0xffff_ffff_ffff_ffff, + (-1i64 << $bits_shifted) as u64, + ); + assert!( + <$ty as SampleUniform>::Sampler + ::sample_single(low, high, &mut lowering_max_rng) + .extract(lane) < high_scalar + ); + } + } + } + + assert_eq!( + rng.sample(Uniform::new_inclusive( + ::core::$f_scalar::MAX, + ::core::$f_scalar::MAX + )), + ::core::$f_scalar::MAX + ); + assert_eq!( + rng.sample(Uniform::new_inclusive( + -::core::$f_scalar::MAX, + -::core::$f_scalar::MAX + )), + -::core::$f_scalar::MAX + ); + }}; + } + + t!(f32, f32, 32 - 23); + t!(f64, f64, 64 - 52); + #[cfg(feature = "simd_support")] + { + t!(f32x2, f32, 32 - 23); + t!(f32x4, f32, 32 - 23); + t!(f32x8, f32, 32 - 23); + t!(f32x16, f32, 32 - 23); + t!(f64x2, f64, 64 - 52); + t!(f64x4, f64, 64 - 52); + t!(f64x8, f64, 64 - 52); + } + } + + #[test] + #[should_panic] + fn test_float_overflow() { + let _ = Uniform::from(::core::f64::MIN..::core::f64::MAX); + } + + #[test] + #[should_panic] + fn test_float_overflow_single() { + let mut rng = crate::test::rng(252); + rng.gen_range(::core::f64::MIN..::core::f64::MAX); + } + + #[test] + #[cfg(all( + feature = "std", + not(target_arch = "wasm32"), + not(target_arch = "asmjs") + ))] + fn test_float_assertions() { + use super::SampleUniform; + use std::panic::catch_unwind; + fn range<T: SampleUniform>(low: T, high: T) { + let mut rng = crate::test::rng(253); + T::Sampler::sample_single(low, high, &mut rng); + } + + macro_rules! t { + ($ty:ident, $f_scalar:ident) => {{ + let v: &[($f_scalar, $f_scalar)] = &[ + (::std::$f_scalar::NAN, 0.0), + (1.0, ::std::$f_scalar::NAN), + (::std::$f_scalar::NAN, ::std::$f_scalar::NAN), + (1.0, 0.5), + (::std::$f_scalar::MAX, -::std::$f_scalar::MAX), + (::std::$f_scalar::INFINITY, ::std::$f_scalar::INFINITY), + ( + ::std::$f_scalar::NEG_INFINITY, + ::std::$f_scalar::NEG_INFINITY, + ), + (::std::$f_scalar::NEG_INFINITY, 5.0), + (5.0, ::std::$f_scalar::INFINITY), + (::std::$f_scalar::NAN, ::std::$f_scalar::INFINITY), + (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::NAN), + (::std::$f_scalar::NEG_INFINITY, ::std::$f_scalar::INFINITY), + ]; + for &(low_scalar, high_scalar) in v.iter() { + for lane in 0..<$ty>::lanes() { + let low = <$ty>::splat(0.0 as $f_scalar).replace(lane, low_scalar); + let high = <$ty>::splat(1.0 as $f_scalar).replace(lane, high_scalar); + assert!(catch_unwind(|| range(low, high)).is_err()); + assert!(catch_unwind(|| Uniform::new(low, high)).is_err()); + assert!(catch_unwind(|| Uniform::new_inclusive(low, high)).is_err()); + assert!(catch_unwind(|| range(low, low)).is_err()); + assert!(catch_unwind(|| Uniform::new(low, low)).is_err()); + } + } + }}; + } + + t!(f32, f32); + t!(f64, f64); + #[cfg(feature = "simd_support")] + { + t!(f32x2, f32); + t!(f32x4, f32); + t!(f32x8, f32); + t!(f32x16, f32); + t!(f64x2, f64); + t!(f64x4, f64); + t!(f64x8, f64); + } + } + + + #[test] + #[cfg_attr(miri, ignore)] // Miri is too slow + fn test_durations() { + let mut rng = crate::test::rng(253); + + let v = &[ + (Duration::new(10, 50000), Duration::new(100, 1234)), + (Duration::new(0, 100), Duration::new(1, 50)), + ( + Duration::new(0, 0), + Duration::new(u64::max_value(), 999_999_999), + ), + ]; + for &(low, high) in v.iter() { + let my_uniform = Uniform::new(low, high); + for _ in 0..1000 { + let v = rng.sample(my_uniform); + assert!(low <= v && v < high); + } + } + } + + #[test] + fn test_custom_uniform() { + use crate::distributions::uniform::{ + SampleBorrow, SampleUniform, UniformFloat, UniformSampler, + }; + #[derive(Clone, Copy, PartialEq, PartialOrd)] + struct MyF32 { + x: f32, + } + #[derive(Clone, Copy, Debug)] + struct UniformMyF32(UniformFloat<f32>); + impl UniformSampler for UniformMyF32 { + type X = MyF32; + + fn new<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + UniformMyF32(UniformFloat::<f32>::new(low.borrow().x, high.borrow().x)) + } + + fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self + where + B1: SampleBorrow<Self::X> + Sized, + B2: SampleBorrow<Self::X> + Sized, + { + UniformSampler::new(low, high) + } + + fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X { + MyF32 { + x: self.0.sample(rng), + } + } + } + impl SampleUniform for MyF32 { + type Sampler = UniformMyF32; + } + + let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 }); + let uniform = Uniform::new(low, high); + let mut rng = crate::test::rng(804); + for _ in 0..100 { + let x: MyF32 = rng.sample(uniform); + assert!(low <= x && x < high); + } + } + + #[test] + fn test_uniform_from_std_range() { + let r = Uniform::from(2u32..7); + assert_eq!(r.0.low, 2); + assert_eq!(r.0.range, 5); + let r = Uniform::from(2.0f64..7.0); + assert_eq!(r.0.low, 2.0); + assert_eq!(r.0.scale, 5.0); + } + + #[test] + fn test_uniform_from_std_range_inclusive() { + let r = Uniform::from(2u32..=6); + assert_eq!(r.0.low, 2); + assert_eq!(r.0.range, 5); + let r = Uniform::from(2.0f64..=7.0); + assert_eq!(r.0.low, 2.0); + assert!(r.0.scale > 5.0); + assert!(r.0.scale < 5.0 + 1e-14); + } + + #[test] + fn value_stability() { + fn test_samples<T: SampleUniform + Copy + core::fmt::Debug + PartialEq>( + lb: T, ub: T, expected_single: &[T], expected_multiple: &[T], + ) where Uniform<T>: Distribution<T> { + let mut rng = crate::test::rng(897); + let mut buf = [lb; 3]; + + for x in &mut buf { + *x = T::Sampler::sample_single(lb, ub, &mut rng); + } + assert_eq!(&buf, expected_single); + + let distr = Uniform::new(lb, ub); + for x in &mut buf { + *x = rng.sample(&distr); + } + assert_eq!(&buf, expected_multiple); + } + + // We test on a sub-set of types; possibly we should do more. + // TODO: SIMD types + + test_samples(11u8, 219, &[17, 66, 214], &[181, 93, 165]); + test_samples(11u32, 219, &[17, 66, 214], &[181, 93, 165]); + + test_samples(0f32, 1e-2f32, &[0.0003070104, 0.0026630748, 0.00979833], &[ + 0.008194133, + 0.00398172, + 0.007428536, + ]); + test_samples( + -1e10f64, + 1e10f64, + &[-4673848682.871551, 6388267422.932352, 4857075081.198343], + &[1173375212.1808167, 1917642852.109581, 2365076174.3153973], + ); + + test_samples( + Duration::new(2, 0), + Duration::new(4, 0), + &[ + Duration::new(2, 532615131), + Duration::new(3, 638826742), + Duration::new(3, 485707508), + ], + &[ + Duration::new(3, 117337521), + Duration::new(3, 191764285), + Duration::new(3, 236507617), + ], + ); + } + + #[test] + fn uniform_distributions_can_be_compared() { + assert_eq!(Uniform::new(1.0, 2.0), Uniform::new(1.0, 2.0)); + + // To cover UniformInt + assert_eq!(Uniform::new(1 as u32, 2 as u32), Uniform::new(1 as u32, 2 as u32)); + } +} |