summaryrefslogtreecommitdiffstats
path: root/dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts
diff options
context:
space:
mode:
Diffstat (limited to 'dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts')
-rw-r--r--dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts290
1 files changed, 290 insertions, 0 deletions
diff --git a/dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts b/dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts
new file mode 100644
index 0000000000..184b4e8170
--- /dev/null
+++ b/dom/webgpu/tests/cts/checkout/src/stress/adapter/device_allocation.spec.ts
@@ -0,0 +1,290 @@
+export const description = `
+Stress tests for GPUAdapter.requestDevice.
+`;
+
+import { Fixture } from '../../common/framework/fixture.js';
+import { makeTestGroup } from '../../common/framework/test_group.js';
+import { attemptGarbageCollection } from '../../common/util/collect_garbage.js';
+import { keysOf } from '../../common/util/data_tables.js';
+import { getGPU } from '../../common/util/navigator_gpu.js';
+import { assert, iterRange } from '../../common/util/util.js';
+import { kLimitInfo } from '../../webgpu/capability_info.js';
+
+export const g = makeTestGroup(Fixture);
+
+/** Adapter preference identifier to option. */
+const kAdapterTypeOptions: {
+ readonly [k in GPUPowerPreference | 'fallback']: GPURequestAdapterOptions;
+} = /* prettier-ignore */ {
+ 'low-power': { powerPreference: 'low-power', forceFallbackAdapter: false },
+ 'high-performance': { powerPreference: 'high-performance', forceFallbackAdapter: false },
+ 'fallback': { powerPreference: undefined, forceFallbackAdapter: true },
+};
+/** List of all adapter hint types. */
+const kAdapterTypes = keysOf(kAdapterTypeOptions);
+
+/**
+ * Creates a device, a valid compute pipeline, valid resources for the pipeline, and
+ * ties them together into a set of compute commands ready to be submitted to the GPU
+ * queue. Does not submit the commands in order to make sure that all resources are
+ * kept alive until the device is destroyed.
+ */
+async function createDeviceAndComputeCommands(adapter: GPUAdapter) {
+ // Constants are computed such that per run, this function should allocate roughly 2G
+ // worth of data. This should be sufficient as we run these creation functions many
+ // times. If the data backing the created objects is not recycled we should OOM.
+ const kNumPipelines = 64;
+ const kNumBindgroups = 128;
+ const kNumBufferElements =
+ kLimitInfo.maxComputeWorkgroupSizeX.default * kLimitInfo.maxComputeWorkgroupSizeY.default;
+ const kBufferSize = kNumBufferElements * 4;
+ const kBufferData = new Uint32Array([...iterRange(kNumBufferElements, x => x)]);
+
+ const device: GPUDevice = await adapter.requestDevice();
+ const commands = [];
+
+ for (let pipelineIndex = 0; pipelineIndex < kNumPipelines; ++pipelineIndex) {
+ const pipeline = device.createComputePipeline({
+ layout: 'auto',
+ compute: {
+ module: device.createShaderModule({
+ code: `
+ struct Buffer { data: array<u32>, };
+
+ @group(0) @binding(0) var<storage, read_write> buffer: Buffer;
+ @compute @workgroup_size(1) fn main(
+ @builtin(global_invocation_id) id: vec3<u32>) {
+ buffer.data[id.x * ${kLimitInfo.maxComputeWorkgroupSizeX.default}u + id.y] =
+ buffer.data[id.x * ${kLimitInfo.maxComputeWorkgroupSizeX.default}u + id.y] +
+ ${pipelineIndex}u;
+ }
+ `,
+ }),
+ entryPoint: 'main',
+ },
+ });
+ for (let bindgroupIndex = 0; bindgroupIndex < kNumBindgroups; ++bindgroupIndex) {
+ const buffer = device.createBuffer({
+ size: kBufferSize,
+ usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST | GPUBufferUsage.COPY_SRC,
+ });
+ device.queue.writeBuffer(buffer, 0, kBufferData, 0, kBufferData.length);
+ const bindgroup = device.createBindGroup({
+ layout: pipeline.getBindGroupLayout(0),
+ entries: [{ binding: 0, resource: { buffer } }],
+ });
+
+ const encoder = device.createCommandEncoder();
+ const pass = encoder.beginComputePass();
+ pass.setPipeline(pipeline);
+ pass.setBindGroup(0, bindgroup);
+ pass.dispatchWorkgroups(
+ kLimitInfo.maxComputeWorkgroupSizeX.default,
+ kLimitInfo.maxComputeWorkgroupSizeY.default
+ );
+ pass.end();
+ commands.push(encoder.finish());
+ }
+ }
+ return { device, objects: commands };
+}
+
+/**
+ * Creates a device, a valid render pipeline, valid resources for the pipeline, and
+ * ties them together into a set of render commands ready to be submitted to the GPU
+ * queue. Does not submit the commands in order to make sure that all resources are
+ * kept alive until the device is destroyed.
+ */
+async function createDeviceAndRenderCommands(adapter: GPUAdapter) {
+ // Constants are computed such that per run, this function should allocate roughly 2G
+ // worth of data. This should be sufficient as we run these creation functions many
+ // times. If the data backing the created objects is not recycled we should OOM.
+ const kNumPipelines = 128;
+ const kNumBindgroups = 128;
+ const kSize = 128;
+ const kBufferData = new Uint32Array([...iterRange(kSize * kSize, x => x)]);
+
+ const device: GPUDevice = await adapter.requestDevice();
+ const commands = [];
+
+ for (let pipelineIndex = 0; pipelineIndex < kNumPipelines; ++pipelineIndex) {
+ const module = device.createShaderModule({
+ code: `
+ struct Buffer { data: array<vec4<u32>, ${(kSize * kSize) / 4}>, };
+
+ @group(0) @binding(0) var<uniform> buffer: Buffer;
+ @vertex fn vmain(
+ @builtin(vertex_index) vertexIndex: u32
+ ) -> @builtin(position) vec4<f32> {
+ let index = buffer.data[vertexIndex / 4u][vertexIndex % 4u];
+ let position = vec2<f32>(f32(index % ${kSize}u), f32(index / ${kSize}u));
+ let r = vec2<f32>(1.0 / f32(${kSize}));
+ let a = 2.0 * r;
+ let b = r - vec2<f32>(1.0);
+ return vec4<f32>(fma(position, a, b), 0.0, 1.0);
+ }
+
+ @fragment fn fmain() -> @location(0) vec4<f32> {
+ return vec4<f32>(${pipelineIndex}.0 / ${kNumPipelines}.0, 0.0, 0.0, 1.0);
+ }
+ `,
+ });
+ const pipeline = device.createRenderPipeline({
+ layout: device.createPipelineLayout({
+ bindGroupLayouts: [
+ device.createBindGroupLayout({
+ entries: [
+ {
+ binding: 0,
+ visibility: GPUShaderStage.VERTEX,
+ buffer: { type: 'uniform' },
+ },
+ ],
+ }),
+ ],
+ }),
+ vertex: { module, entryPoint: 'vmain', buffers: [] },
+ primitive: { topology: 'point-list' },
+ fragment: {
+ targets: [{ format: 'rgba8unorm' }],
+ module,
+ entryPoint: 'fmain',
+ },
+ });
+ for (let bindgroupIndex = 0; bindgroupIndex < kNumBindgroups; ++bindgroupIndex) {
+ const buffer = device.createBuffer({
+ size: kSize * kSize * 4,
+ usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
+ });
+ device.queue.writeBuffer(buffer, 0, kBufferData, 0, kBufferData.length);
+ const bindgroup = device.createBindGroup({
+ layout: pipeline.getBindGroupLayout(0),
+ entries: [{ binding: 0, resource: { buffer } }],
+ });
+ const texture = device.createTexture({
+ size: [kSize, kSize],
+ usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC,
+ format: 'rgba8unorm',
+ });
+
+ const encoder = device.createCommandEncoder();
+ const pass = encoder.beginRenderPass({
+ colorAttachments: [
+ {
+ view: texture.createView(),
+ loadOp: 'load',
+ storeOp: 'store',
+ },
+ ],
+ });
+ pass.setPipeline(pipeline);
+ pass.setBindGroup(0, bindgroup);
+ pass.draw(kSize * kSize);
+ pass.end();
+ commands.push(encoder.finish());
+ }
+ }
+ return { device, objects: commands };
+}
+
+/**
+ * Creates a device and a large number of buffers which are immediately written to. The
+ * buffers are expected to be kept alive until they or the device are destroyed.
+ */
+async function createDeviceAndBuffers(adapter: GPUAdapter) {
+ // Currently we just allocate 2G of memory using 512MB blocks. We may be able to
+ // increase this to hit OOM instead, but on integrated GPUs on Metal, this can cause
+ // kernel panics at the moment, and it can greatly increase the time needed.
+ const kTotalMemorySize = 2 * 1024 * 1024 * 1024;
+ const kMemoryBlockSize = 512 * 1024 * 1024;
+ const kMemoryBlockData = new Uint8Array(kMemoryBlockSize);
+
+ const device: GPUDevice = await adapter.requestDevice();
+ const buffers = [];
+ for (let memory = 0; memory < kTotalMemorySize; memory += kMemoryBlockSize) {
+ const buffer = device.createBuffer({
+ size: kMemoryBlockSize,
+ usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,
+ });
+
+ // Write out to the buffer to make sure that it has backing memory.
+ device.queue.writeBuffer(buffer, 0, kMemoryBlockData, 0, kMemoryBlockData.length);
+ buffers.push(buffer);
+ }
+ return { device, objects: buffers };
+}
+
+g.test('coexisting')
+ .desc(`Tests allocation of many coexisting GPUDevice objects.`)
+ .params(u => u.combine('adapterType', kAdapterTypes))
+ .fn(async t => {
+ const { adapterType } = t.params;
+ const adapter = await getGPU().requestAdapter(kAdapterTypeOptions[adapterType]);
+ assert(adapter !== null, 'Failed to get adapter.');
+
+ // Based on Vulkan conformance test requirement to be able to create multiple devices.
+ const kNumDevices = 5;
+
+ const devices = [];
+ for (let i = 0; i < kNumDevices; ++i) {
+ const device: GPUDevice = await adapter.requestDevice();
+ devices.push(device);
+ }
+ });
+
+g.test('continuous,with_destroy')
+ .desc(
+ `Tests allocation and destruction of many GPUDevice objects over time. Device objects
+are sequentially requested with a series of device allocated objects created on each
+device. The devices are then destroyed to verify that the device and the device allocated
+objects are recycled over a very large number of iterations.`
+ )
+ .params(u => u.combine('adapterType', kAdapterTypes))
+ .fn(async t => {
+ const { adapterType } = t.params;
+ const adapter = await getGPU().requestAdapter(kAdapterTypeOptions[adapterType]);
+ assert(adapter !== null, 'Failed to get adapter.');
+
+ // Since devices are being destroyed, we should be able to create many devices.
+ const kNumDevices = 100;
+ const kFunctions = [
+ createDeviceAndBuffers,
+ createDeviceAndComputeCommands,
+ createDeviceAndRenderCommands,
+ ];
+
+ const deviceList = [];
+ const objectLists = [];
+ for (let i = 0; i < kNumDevices; ++i) {
+ const { device, objects } = await kFunctions[i % kFunctions.length](adapter);
+ t.expect(objects.length > 0, 'unable to allocate any objects');
+ deviceList.push(device);
+ objectLists.push(objects);
+ device.destroy();
+ }
+ });
+
+g.test('continuous,no_destroy')
+ .desc(
+ `Tests allocation and implicit GC of many GPUDevice objects over time. Objects are
+sequentially requested and dropped for GC over a very large number of iterations. Note
+that without destroy, we do not create device allocated objects because that will
+implicitly keep the device in scope.`
+ )
+ .params(u => u.combine('adapterType', kAdapterTypes))
+ .fn(async t => {
+ const { adapterType } = t.params;
+ const adapter = await getGPU().requestAdapter(kAdapterTypeOptions[adapterType]);
+ assert(adapter !== null, 'Failed to get adapter.');
+
+ const kNumDevices = 10_000;
+ for (let i = 1; i <= kNumDevices; ++i) {
+ await (async () => {
+ t.expect((await adapter.requestDevice()) !== null, 'unexpected null device');
+ })();
+ if (i % 10 === 0) {
+ // We need to occasionally wait for GC to clear out stale devices.
+ await attemptGarbageCollection();
+ }
+ }
+ });