summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/common/cmemory.h
diff options
context:
space:
mode:
Diffstat (limited to 'intl/icu/source/common/cmemory.h')
-rw-r--r--intl/icu/source/common/cmemory.h900
1 files changed, 900 insertions, 0 deletions
diff --git a/intl/icu/source/common/cmemory.h b/intl/icu/source/common/cmemory.h
new file mode 100644
index 0000000000..3705c2dfd0
--- /dev/null
+++ b/intl/icu/source/common/cmemory.h
@@ -0,0 +1,900 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+******************************************************************************
+*
+* Copyright (C) 1997-2016, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+******************************************************************************
+*
+* File CMEMORY.H
+*
+* Contains stdlib.h/string.h memory functions
+*
+* @author Bertrand A. Damiba
+*
+* Modification History:
+*
+* Date Name Description
+* 6/20/98 Bertrand Created.
+* 05/03/99 stephen Changed from functions to macros.
+*
+******************************************************************************
+*/
+
+#ifndef CMEMORY_H
+#define CMEMORY_H
+
+#include "unicode/utypes.h"
+
+#include <stddef.h>
+#include <string.h>
+#include "unicode/localpointer.h"
+#include "uassert.h"
+
+#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
+#include <stdio.h>
+#endif
+
+// uprv_memcpy and uprv_memmove
+#if defined(__clang__)
+#define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ /* Suppress warnings about addresses that will never be NULL */ \
+ _Pragma("clang diagnostic push") \
+ _Pragma("clang diagnostic ignored \"-Waddress\"") \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ _Pragma("clang diagnostic pop") \
+ U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ /* Suppress warnings about addresses that will never be NULL */ \
+ _Pragma("clang diagnostic push") \
+ _Pragma("clang diagnostic ignored \"-Waddress\"") \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ _Pragma("clang diagnostic pop") \
+ U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#elif defined(__GNUC__)
+#define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ /* Suppress warnings about addresses that will never be NULL */ \
+ _Pragma("GCC diagnostic push") \
+ _Pragma("GCC diagnostic ignored \"-Waddress\"") \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ _Pragma("GCC diagnostic pop") \
+ U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ /* Suppress warnings about addresses that will never be NULL */ \
+ _Pragma("GCC diagnostic push") \
+ _Pragma("GCC diagnostic ignored \"-Waddress\"") \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ _Pragma("GCC diagnostic pop") \
+ U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#else
+#define uprv_memcpy(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ U_STANDARD_CPP_NAMESPACE memcpy(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#define uprv_memmove(dst, src, size) UPRV_BLOCK_MACRO_BEGIN { \
+ U_ASSERT(dst != NULL); \
+ U_ASSERT(src != NULL); \
+ U_STANDARD_CPP_NAMESPACE memmove(dst, src, size); \
+} UPRV_BLOCK_MACRO_END
+#endif
+
+/**
+ * \def UPRV_LENGTHOF
+ * Convenience macro to determine the length of a fixed array at compile-time.
+ * @param array A fixed length array
+ * @return The length of the array, in elements
+ * @internal
+ */
+#define UPRV_LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
+#define uprv_memset(buffer, mark, size) U_STANDARD_CPP_NAMESPACE memset(buffer, mark, size)
+#define uprv_memcmp(buffer1, buffer2, size) U_STANDARD_CPP_NAMESPACE memcmp(buffer1, buffer2,size)
+#define uprv_memchr(ptr, value, num) U_STANDARD_CPP_NAMESPACE memchr(ptr, value, num)
+
+U_CAPI void * U_EXPORT2
+uprv_malloc(size_t s) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR(1);
+
+U_CAPI void * U_EXPORT2
+uprv_realloc(void *mem, size_t size) U_ALLOC_SIZE_ATTR(2);
+
+U_CAPI void U_EXPORT2
+uprv_free(void *mem);
+
+U_CAPI void * U_EXPORT2
+uprv_calloc(size_t num, size_t size) U_MALLOC_ATTR U_ALLOC_SIZE_ATTR2(1,2);
+
+/**
+ * Get the least significant bits of a pointer (a memory address).
+ * For example, with a mask of 3, the macro gets the 2 least significant bits,
+ * which will be 0 if the pointer is 32-bit (4-byte) aligned.
+ *
+ * uintptr_t is the most appropriate integer type to cast to.
+ */
+#define U_POINTER_MASK_LSB(ptr, mask) ((uintptr_t)(ptr) & (mask))
+
+/**
+ * Create & return an instance of "type" in statically allocated storage.
+ * e.g.
+ * static std::mutex *myMutex = STATIC_NEW(std::mutex);
+ * To destroy an object created in this way, invoke the destructor explicitly, e.g.
+ * myMutex->~mutex();
+ * DO NOT use delete.
+ * DO NOT use with class UMutex, which has specific support for static instances.
+ *
+ * STATIC_NEW is intended for use when
+ * - We want a static (or global) object.
+ * - We don't want it to ever be destructed, or to explicitly control destruction,
+ * to avoid use-after-destruction problems.
+ * - We want to avoid an ordinary heap allocated object,
+ * to avoid the possibility of memory allocation failures, and
+ * to avoid memory leak reports, from valgrind, for example.
+ * This is defined as a macro rather than a template function because each invocation
+ * must define distinct static storage for the object being returned.
+ */
+#define STATIC_NEW(type) [] () { \
+ alignas(type) static char storage[sizeof(type)]; \
+ return new(storage) type();} ()
+
+/**
+ * Heap clean up function, called from u_cleanup()
+ * Clears any user heap functions from u_setMemoryFunctions()
+ * Does NOT deallocate any remaining allocated memory.
+ */
+U_CFUNC UBool
+cmemory_cleanup(void);
+
+/**
+ * A function called by <TT>uhash_remove</TT>,
+ * <TT>uhash_close</TT>, or <TT>uhash_put</TT> to delete
+ * an existing key or value.
+ * @param obj A key or value stored in a hashtable
+ * @see uprv_deleteUObject
+ */
+typedef void U_CALLCONV UObjectDeleter(void* obj);
+
+/**
+ * Deleter for UObject instances.
+ * Works for all subclasses of UObject because it has a virtual destructor.
+ */
+U_CAPI void U_EXPORT2
+uprv_deleteUObject(void *obj);
+
+#ifdef __cplusplus
+
+#include <utility>
+#include "unicode/uobject.h"
+
+U_NAMESPACE_BEGIN
+
+/**
+ * "Smart pointer" class, deletes memory via uprv_free().
+ * For most methods see the LocalPointerBase base class.
+ * Adds operator[] for array item access.
+ *
+ * @see LocalPointerBase
+ */
+template<typename T>
+class LocalMemory : public LocalPointerBase<T> {
+public:
+ using LocalPointerBase<T>::operator*;
+ using LocalPointerBase<T>::operator->;
+ /**
+ * Constructor takes ownership.
+ * @param p simple pointer to an array of T items that is adopted
+ */
+ explicit LocalMemory(T *p=nullptr) : LocalPointerBase<T>(p) {}
+ /**
+ * Move constructor, leaves src with isNull().
+ * @param src source smart pointer
+ */
+ LocalMemory(LocalMemory<T> &&src) noexcept : LocalPointerBase<T>(src.ptr) {
+ src.ptr=nullptr;
+ }
+ /**
+ * Destructor deletes the memory it owns.
+ */
+ ~LocalMemory() {
+ uprv_free(LocalPointerBase<T>::ptr);
+ }
+ /**
+ * Move assignment operator, leaves src with isNull().
+ * The behavior is undefined if *this and src are the same object.
+ * @param src source smart pointer
+ * @return *this
+ */
+ LocalMemory<T> &operator=(LocalMemory<T> &&src) noexcept {
+ uprv_free(LocalPointerBase<T>::ptr);
+ LocalPointerBase<T>::ptr=src.ptr;
+ src.ptr=nullptr;
+ return *this;
+ }
+ /**
+ * Swap pointers.
+ * @param other other smart pointer
+ */
+ void swap(LocalMemory<T> &other) noexcept {
+ T *temp=LocalPointerBase<T>::ptr;
+ LocalPointerBase<T>::ptr=other.ptr;
+ other.ptr=temp;
+ }
+ /**
+ * Non-member LocalMemory swap function.
+ * @param p1 will get p2's pointer
+ * @param p2 will get p1's pointer
+ */
+ friend inline void swap(LocalMemory<T> &p1, LocalMemory<T> &p2) noexcept {
+ p1.swap(p2);
+ }
+ /**
+ * Deletes the array it owns,
+ * and adopts (takes ownership of) the one passed in.
+ * @param p simple pointer to an array of T items that is adopted
+ */
+ void adoptInstead(T *p) {
+ uprv_free(LocalPointerBase<T>::ptr);
+ LocalPointerBase<T>::ptr=p;
+ }
+ /**
+ * Deletes the array it owns, allocates a new one and reset its bytes to 0.
+ * Returns the new array pointer.
+ * If the allocation fails, then the current array is unchanged and
+ * this method returns nullptr.
+ * @param newCapacity must be >0
+ * @return the allocated array pointer, or nullptr if the allocation failed
+ */
+ inline T *allocateInsteadAndReset(int32_t newCapacity=1);
+ /**
+ * Deletes the array it owns and allocates a new one, copying length T items.
+ * Returns the new array pointer.
+ * If the allocation fails, then the current array is unchanged and
+ * this method returns nullptr.
+ * @param newCapacity must be >0
+ * @param length number of T items to be copied from the old array to the new one;
+ * must be no more than the capacity of the old array,
+ * which the caller must track because the LocalMemory does not track it
+ * @return the allocated array pointer, or nullptr if the allocation failed
+ */
+ inline T *allocateInsteadAndCopy(int32_t newCapacity=1, int32_t length=0);
+ /**
+ * Array item access (writable).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ T &operator[](ptrdiff_t i) const { return LocalPointerBase<T>::ptr[i]; }
+};
+
+template<typename T>
+inline T *LocalMemory<T>::allocateInsteadAndReset(int32_t newCapacity) {
+ if(newCapacity>0) {
+ T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
+ if(p!=nullptr) {
+ uprv_memset(p, 0, newCapacity*sizeof(T));
+ uprv_free(LocalPointerBase<T>::ptr);
+ LocalPointerBase<T>::ptr=p;
+ }
+ return p;
+ } else {
+ return nullptr;
+ }
+}
+
+
+template<typename T>
+inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t length) {
+ if(newCapacity>0) {
+ T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
+ if(p!=nullptr) {
+ if(length>0) {
+ if(length>newCapacity) {
+ length=newCapacity;
+ }
+ uprv_memcpy(p, LocalPointerBase<T>::ptr, (size_t)length*sizeof(T));
+ }
+ uprv_free(LocalPointerBase<T>::ptr);
+ LocalPointerBase<T>::ptr=p;
+ }
+ return p;
+ } else {
+ return nullptr;
+ }
+}
+
+/**
+ * Simple array/buffer management class using uprv_malloc() and uprv_free().
+ * Provides an internal array with fixed capacity. Can alias another array
+ * or allocate one.
+ *
+ * The array address is properly aligned for type T. It might not be properly
+ * aligned for types larger than T (or larger than the largest subtype of T).
+ *
+ * Unlike LocalMemory and LocalArray, this class never adopts
+ * (takes ownership of) another array.
+ *
+ * WARNING: MaybeStackArray only works with primitive (plain-old data) types.
+ * It does NOT know how to call a destructor! If you work with classes with
+ * destructors, consider:
+ *
+ * - LocalArray in localpointer.h if you know the length ahead of time
+ * - MaybeStackVector if you know the length at runtime
+ */
+template<typename T, int32_t stackCapacity>
+class MaybeStackArray {
+public:
+ // No heap allocation. Use only on the stack.
+ static void* U_EXPORT2 operator new(size_t) noexcept = delete;
+ static void* U_EXPORT2 operator new[](size_t) noexcept = delete;
+#if U_HAVE_PLACEMENT_NEW
+ static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete;
+#endif
+
+ /**
+ * Default constructor initializes with internal T[stackCapacity] buffer.
+ */
+ MaybeStackArray() : ptr(stackArray), capacity(stackCapacity), needToRelease(false) {}
+ /**
+ * Automatically allocates the heap array if the argument is larger than the stack capacity.
+ * Intended for use when an approximate capacity is known at compile time but the true
+ * capacity is not known until runtime.
+ */
+ MaybeStackArray(int32_t newCapacity, UErrorCode status) : MaybeStackArray() {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (capacity < newCapacity) {
+ if (resize(newCapacity) == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ }
+ }
+ /**
+ * Destructor deletes the array (if owned).
+ */
+ ~MaybeStackArray() { releaseArray(); }
+ /**
+ * Move constructor: transfers ownership or copies the stack array.
+ */
+ MaybeStackArray(MaybeStackArray<T, stackCapacity> &&src) noexcept;
+ /**
+ * Move assignment: transfers ownership or copies the stack array.
+ */
+ MaybeStackArray<T, stackCapacity> &operator=(MaybeStackArray<T, stackCapacity> &&src) noexcept;
+ /**
+ * Returns the array capacity (number of T items).
+ * @return array capacity
+ */
+ int32_t getCapacity() const { return capacity; }
+ /**
+ * Access without ownership change.
+ * @return the array pointer
+ */
+ T *getAlias() const { return ptr; }
+ /**
+ * Returns the array limit. Simple convenience method.
+ * @return getAlias()+getCapacity()
+ */
+ T *getArrayLimit() const { return getAlias()+capacity; }
+ // No "operator T *() const" because that can make
+ // expressions like mbs[index] ambiguous for some compilers.
+ /**
+ * Array item access (const).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ const T &operator[](ptrdiff_t i) const { return ptr[i]; }
+ /**
+ * Array item access (writable).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ T &operator[](ptrdiff_t i) { return ptr[i]; }
+ /**
+ * Deletes the array (if owned) and aliases another one, no transfer of ownership.
+ * If the arguments are illegal, then the current array is unchanged.
+ * @param otherArray must not be nullptr
+ * @param otherCapacity must be >0
+ */
+ void aliasInstead(T *otherArray, int32_t otherCapacity) {
+ if(otherArray!=nullptr && otherCapacity>0) {
+ releaseArray();
+ ptr=otherArray;
+ capacity=otherCapacity;
+ needToRelease=false;
+ }
+ }
+ /**
+ * Deletes the array (if owned) and allocates a new one, copying length T items.
+ * Returns the new array pointer.
+ * If the allocation fails, then the current array is unchanged and
+ * this method returns nullptr.
+ * @param newCapacity can be less than or greater than the current capacity;
+ * must be >0
+ * @param length number of T items to be copied from the old array to the new one
+ * @return the allocated array pointer, or nullptr if the allocation failed
+ */
+ inline T *resize(int32_t newCapacity, int32_t length=0);
+ /**
+ * Gives up ownership of the array if owned, or else clones it,
+ * copying length T items; resets itself to the internal stack array.
+ * Returns nullptr if the allocation failed.
+ * @param length number of T items to copy when cloning,
+ * and capacity of the clone when cloning
+ * @param resultCapacity will be set to the returned array's capacity (output-only)
+ * @return the array pointer;
+ * caller becomes responsible for deleting the array
+ */
+ inline T *orphanOrClone(int32_t length, int32_t &resultCapacity);
+
+protected:
+ // Resizes the array to the size of src, then copies the contents of src.
+ void copyFrom(const MaybeStackArray &src, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (this->resize(src.capacity, 0) == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ uprv_memcpy(this->ptr, src.ptr, (size_t)capacity * sizeof(T));
+ }
+
+private:
+ T *ptr;
+ int32_t capacity;
+ UBool needToRelease;
+ T stackArray[stackCapacity];
+ void releaseArray() {
+ if(needToRelease) {
+ uprv_free(ptr);
+ }
+ }
+ void resetToStackArray() {
+ ptr=stackArray;
+ capacity=stackCapacity;
+ needToRelease=false;
+ }
+ /* No comparison operators with other MaybeStackArray's. */
+ bool operator==(const MaybeStackArray & /*other*/) = delete;
+ bool operator!=(const MaybeStackArray & /*other*/) = delete;
+ /* No ownership transfer: No copy constructor, no assignment operator. */
+ MaybeStackArray(const MaybeStackArray & /*other*/) = delete;
+ void operator=(const MaybeStackArray & /*other*/) = delete;
+};
+
+template<typename T, int32_t stackCapacity>
+icu::MaybeStackArray<T, stackCapacity>::MaybeStackArray(
+ MaybeStackArray <T, stackCapacity>&& src) noexcept
+ : ptr(src.ptr), capacity(src.capacity), needToRelease(src.needToRelease) {
+ if (src.ptr == src.stackArray) {
+ ptr = stackArray;
+ uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity);
+ } else {
+ src.resetToStackArray(); // take ownership away from src
+ }
+}
+
+template<typename T, int32_t stackCapacity>
+inline MaybeStackArray <T, stackCapacity>&
+MaybeStackArray<T, stackCapacity>::operator=(MaybeStackArray <T, stackCapacity>&& src) noexcept {
+ releaseArray(); // in case this instance had its own memory allocated
+ capacity = src.capacity;
+ needToRelease = src.needToRelease;
+ if (src.ptr == src.stackArray) {
+ ptr = stackArray;
+ uprv_memcpy(stackArray, src.stackArray, sizeof(T) * src.capacity);
+ } else {
+ ptr = src.ptr;
+ src.resetToStackArray(); // take ownership away from src
+ }
+ return *this;
+}
+
+template<typename T, int32_t stackCapacity>
+inline T *MaybeStackArray<T, stackCapacity>::resize(int32_t newCapacity, int32_t length) {
+ if(newCapacity>0) {
+#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
+ ::fprintf(::stderr, "MaybeStackArray (resize) alloc %d * %lu\n", newCapacity, sizeof(T));
+#endif
+ T *p=(T *)uprv_malloc(newCapacity*sizeof(T));
+ if(p!=nullptr) {
+ if(length>0) {
+ if(length>capacity) {
+ length=capacity;
+ }
+ if(length>newCapacity) {
+ length=newCapacity;
+ }
+ uprv_memcpy(p, ptr, (size_t)length*sizeof(T));
+ }
+ releaseArray();
+ ptr=p;
+ capacity=newCapacity;
+ needToRelease=true;
+ }
+ return p;
+ } else {
+ return nullptr;
+ }
+}
+
+template<typename T, int32_t stackCapacity>
+inline T *MaybeStackArray<T, stackCapacity>::orphanOrClone(int32_t length, int32_t &resultCapacity) {
+ T *p;
+ if(needToRelease) {
+ p=ptr;
+ } else if(length<=0) {
+ return nullptr;
+ } else {
+ if(length>capacity) {
+ length=capacity;
+ }
+ p=(T *)uprv_malloc(length*sizeof(T));
+#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
+ ::fprintf(::stderr,"MaybeStacArray (orphan) alloc %d * %lu\n", length,sizeof(T));
+#endif
+ if(p==nullptr) {
+ return nullptr;
+ }
+ uprv_memcpy(p, ptr, (size_t)length*sizeof(T));
+ }
+ resultCapacity=length;
+ resetToStackArray();
+ return p;
+}
+
+/**
+ * Variant of MaybeStackArray that allocates a header struct and an array
+ * in one contiguous memory block, using uprv_malloc() and uprv_free().
+ * Provides internal memory with fixed array capacity. Can alias another memory
+ * block or allocate one.
+ * The stackCapacity is the number of T items in the internal memory,
+ * not counting the H header.
+ * Unlike LocalMemory and LocalArray, this class never adopts
+ * (takes ownership of) another memory block.
+ */
+template<typename H, typename T, int32_t stackCapacity>
+class MaybeStackHeaderAndArray {
+public:
+ // No heap allocation. Use only on the stack.
+ static void* U_EXPORT2 operator new(size_t) noexcept = delete;
+ static void* U_EXPORT2 operator new[](size_t) noexcept = delete;
+#if U_HAVE_PLACEMENT_NEW
+ static void* U_EXPORT2 operator new(size_t, void*) noexcept = delete;
+#endif
+
+ /**
+ * Default constructor initializes with internal H+T[stackCapacity] buffer.
+ */
+ MaybeStackHeaderAndArray() : ptr(&stackHeader), capacity(stackCapacity), needToRelease(false) {}
+ /**
+ * Destructor deletes the memory (if owned).
+ */
+ ~MaybeStackHeaderAndArray() { releaseMemory(); }
+ /**
+ * Returns the array capacity (number of T items).
+ * @return array capacity
+ */
+ int32_t getCapacity() const { return capacity; }
+ /**
+ * Access without ownership change.
+ * @return the header pointer
+ */
+ H *getAlias() const { return ptr; }
+ /**
+ * Returns the array start.
+ * @return array start, same address as getAlias()+1
+ */
+ T *getArrayStart() const { return reinterpret_cast<T *>(getAlias()+1); }
+ /**
+ * Returns the array limit.
+ * @return array limit
+ */
+ T *getArrayLimit() const { return getArrayStart()+capacity; }
+ /**
+ * Access without ownership change. Same as getAlias().
+ * A class instance can be used directly in expressions that take a T *.
+ * @return the header pointer
+ */
+ operator H *() const { return ptr; }
+ /**
+ * Array item access (writable).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ T &operator[](ptrdiff_t i) { return getArrayStart()[i]; }
+ /**
+ * Deletes the memory block (if owned) and aliases another one, no transfer of ownership.
+ * If the arguments are illegal, then the current memory is unchanged.
+ * @param otherArray must not be nullptr
+ * @param otherCapacity must be >0
+ */
+ void aliasInstead(H *otherMemory, int32_t otherCapacity) {
+ if(otherMemory!=nullptr && otherCapacity>0) {
+ releaseMemory();
+ ptr=otherMemory;
+ capacity=otherCapacity;
+ needToRelease=false;
+ }
+ }
+ /**
+ * Deletes the memory block (if owned) and allocates a new one,
+ * copying the header and length T array items.
+ * Returns the new header pointer.
+ * If the allocation fails, then the current memory is unchanged and
+ * this method returns nullptr.
+ * @param newCapacity can be less than or greater than the current capacity;
+ * must be >0
+ * @param length number of T items to be copied from the old array to the new one
+ * @return the allocated pointer, or nullptr if the allocation failed
+ */
+ inline H *resize(int32_t newCapacity, int32_t length=0);
+ /**
+ * Gives up ownership of the memory if owned, or else clones it,
+ * copying the header and length T array items; resets itself to the internal memory.
+ * Returns nullptr if the allocation failed.
+ * @param length number of T items to copy when cloning,
+ * and array capacity of the clone when cloning
+ * @param resultCapacity will be set to the returned array's capacity (output-only)
+ * @return the header pointer;
+ * caller becomes responsible for deleting the array
+ */
+ inline H *orphanOrClone(int32_t length, int32_t &resultCapacity);
+private:
+ H *ptr;
+ int32_t capacity;
+ UBool needToRelease;
+ // stackHeader must precede stackArray immediately.
+ H stackHeader;
+ T stackArray[stackCapacity];
+ void releaseMemory() {
+ if(needToRelease) {
+ uprv_free(ptr);
+ }
+ }
+ /* No comparison operators with other MaybeStackHeaderAndArray's. */
+ bool operator==(const MaybeStackHeaderAndArray & /*other*/) {return false;}
+ bool operator!=(const MaybeStackHeaderAndArray & /*other*/) {return true;}
+ /* No ownership transfer: No copy constructor, no assignment operator. */
+ MaybeStackHeaderAndArray(const MaybeStackHeaderAndArray & /*other*/) {}
+ void operator=(const MaybeStackHeaderAndArray & /*other*/) {}
+};
+
+template<typename H, typename T, int32_t stackCapacity>
+inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::resize(int32_t newCapacity,
+ int32_t length) {
+ if(newCapacity>=0) {
+#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
+ ::fprintf(::stderr,"MaybeStackHeaderAndArray alloc %d + %d * %ul\n", sizeof(H),newCapacity,sizeof(T));
+#endif
+ H *p=(H *)uprv_malloc(sizeof(H)+newCapacity*sizeof(T));
+ if(p!=nullptr) {
+ if(length<0) {
+ length=0;
+ } else if(length>0) {
+ if(length>capacity) {
+ length=capacity;
+ }
+ if(length>newCapacity) {
+ length=newCapacity;
+ }
+ }
+ uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T));
+ releaseMemory();
+ ptr=p;
+ capacity=newCapacity;
+ needToRelease=true;
+ }
+ return p;
+ } else {
+ return nullptr;
+ }
+}
+
+template<typename H, typename T, int32_t stackCapacity>
+inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t length,
+ int32_t &resultCapacity) {
+ H *p;
+ if(needToRelease) {
+ p=ptr;
+ } else {
+ if(length<0) {
+ length=0;
+ } else if(length>capacity) {
+ length=capacity;
+ }
+#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
+ ::fprintf(::stderr,"MaybeStackHeaderAndArray (orphan) alloc %ul + %d * %lu\n", sizeof(H),length,sizeof(T));
+#endif
+ p=(H *)uprv_malloc(sizeof(H)+length*sizeof(T));
+ if(p==nullptr) {
+ return nullptr;
+ }
+ uprv_memcpy(p, ptr, sizeof(H)+(size_t)length*sizeof(T));
+ }
+ resultCapacity=length;
+ ptr=&stackHeader;
+ capacity=stackCapacity;
+ needToRelease=false;
+ return p;
+}
+
+/**
+ * A simple memory management class that creates new heap allocated objects (of
+ * any class that has a public constructor), keeps track of them and eventually
+ * deletes them all in its own destructor.
+ *
+ * A typical use-case would be code like this:
+ *
+ * MemoryPool<MyType> pool;
+ *
+ * MyType* o1 = pool.create();
+ * if (o1 != nullptr) {
+ * foo(o1);
+ * }
+ *
+ * MyType* o2 = pool.create(1, 2, 3);
+ * if (o2 != nullptr) {
+ * bar(o2);
+ * }
+ *
+ * // MemoryPool will take care of deleting the MyType objects.
+ *
+ * It doesn't do anything more than that, and is intentionally kept minimalist.
+ */
+template<typename T, int32_t stackCapacity = 8>
+class MemoryPool : public UMemory {
+public:
+ MemoryPool() : fCount(0), fPool() {}
+
+ ~MemoryPool() {
+ for (int32_t i = 0; i < fCount; ++i) {
+ delete fPool[i];
+ }
+ }
+
+ MemoryPool(const MemoryPool&) = delete;
+ MemoryPool& operator=(const MemoryPool&) = delete;
+
+ MemoryPool(MemoryPool&& other) noexcept : fCount(other.fCount),
+ fPool(std::move(other.fPool)) {
+ other.fCount = 0;
+ }
+
+ MemoryPool& operator=(MemoryPool&& other) noexcept {
+ // Since `this` may contain instances that need to be deleted, we can't
+ // just throw them away and replace them with `other`. The normal way of
+ // dealing with this in C++ is to swap `this` and `other`, rather than
+ // simply overwrite: the destruction of `other` can then take care of
+ // running MemoryPool::~MemoryPool() over the still-to-be-deallocated
+ // instances.
+ std::swap(fCount, other.fCount);
+ std::swap(fPool, other.fPool);
+ return *this;
+ }
+
+ /**
+ * Creates a new object of typename T, by forwarding any and all arguments
+ * to the typename T constructor.
+ *
+ * @param args Arguments to be forwarded to the typename T constructor.
+ * @return A pointer to the newly created object, or nullptr on error.
+ */
+ template<typename... Args>
+ T* create(Args&&... args) {
+ int32_t capacity = fPool.getCapacity();
+ if (fCount == capacity &&
+ fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity,
+ capacity) == nullptr) {
+ return nullptr;
+ }
+ return fPool[fCount++] = new T(std::forward<Args>(args)...);
+ }
+
+ template <typename... Args>
+ T* createAndCheckErrorCode(UErrorCode &status, Args &&... args) {
+ if (U_FAILURE(status)) {
+ return nullptr;
+ }
+ T *pointer = this->create(args...);
+ if (U_SUCCESS(status) && pointer == nullptr) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ return pointer;
+ }
+
+ /**
+ * @return Number of elements that have been allocated.
+ */
+ int32_t count() const {
+ return fCount;
+ }
+
+protected:
+ int32_t fCount;
+ MaybeStackArray<T*, stackCapacity> fPool;
+};
+
+/**
+ * An internal Vector-like implementation based on MemoryPool.
+ *
+ * Heap-allocates each element and stores pointers.
+ *
+ * To append an item to the vector, use emplaceBack.
+ *
+ * MaybeStackVector<MyType> vector;
+ * MyType* element = vector.emplaceBack();
+ * if (!element) {
+ * status = U_MEMORY_ALLOCATION_ERROR;
+ * }
+ * // do stuff with element
+ *
+ * To loop over the vector, use a for loop with indices:
+ *
+ * for (int32_t i = 0; i < vector.length(); i++) {
+ * MyType* element = vector[i];
+ * }
+ */
+template<typename T, int32_t stackCapacity = 8>
+class MaybeStackVector : protected MemoryPool<T, stackCapacity> {
+public:
+ template<typename... Args>
+ T* emplaceBack(Args&&... args) {
+ return this->create(args...);
+ }
+
+ template <typename... Args>
+ T *emplaceBackAndCheckErrorCode(UErrorCode &status, Args &&... args) {
+ return this->createAndCheckErrorCode(status, args...);
+ }
+
+ int32_t length() const {
+ return this->fCount;
+ }
+
+ T** getAlias() {
+ return this->fPool.getAlias();
+ }
+
+ const T *const *getAlias() const {
+ return this->fPool.getAlias();
+ }
+
+ /**
+ * Array item access (read-only).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ const T* operator[](ptrdiff_t i) const {
+ return this->fPool[i];
+ }
+
+ /**
+ * Array item access (writable).
+ * No index bounds check.
+ * @param i array index
+ * @return reference to the array item
+ */
+ T* operator[](ptrdiff_t i) {
+ return this->fPool[i];
+ }
+};
+
+
+U_NAMESPACE_END
+
+#endif /* __cplusplus */
+#endif /* CMEMORY_H */